CLINICAL STUDY REPORT

PROTOCOL CORAL: 50-03B

RANDOMIZED STUDY OF ICE PLUS RITUXIMAB (R-ICE) VERSUS DHAP PLUS RITUXIMAB (R-DHAP) IN PREVIOUSLY TREATED PATIENTS WITH CD 20 POSITIVE DIFFUSE LARGE B-CELL LYMPHOMA, ELIGIBLE FOR TRANSPLANTATION FOLLOWED BY RANDOMIZED MAINTENANCE TREATMENT WITH RITUXIMAB

Phase III clinical trial

SPONSOR:

LYSARC: The Lymphoma Academic Research Organisation
Centre Hospitalier Lyon-Sud - Secteur Sainte Eugénie - Pavillon 6D - 69495 PIERRE-BÉNITE Cedex - France
Fax: +33 (0)4 72 66 93 33 Fax: +33(0)4 72 66 93 71

INTERGROUP PROTOCOL COORDINATOR/CHAIRMAN:

Pr Christian Gisselbrecht
Hôpital Saint Louis
1, avenue Claude Vellefaux 75010 Paris -
Fax: +33 (0)1 42 49 98 11
Fax: +33 (0)1 42 49 99 72
christian.gisselbrecht@sls.ap-hop-paris.fr

CONTENTS:

J Clin Oncol. 2012;
Induction part statistical analysis, Version 2.
Exploratory analysis.
Annual safety report, 09 August 2011.
Salvage Regimens With Autologous Transplantation for Relapsed Large B-Cell Lymphoma in the Rituximab Era

Christian Gisselbrecht, Bertram Glass, Nicolas Mounier, Devinder Singh Gill, David C. Linch, Marek Trnery, Andre Bosly, Nicolas Ketterer, Ofer Shipilberg, Hans Hagberg, David Ma, Josette Brière, Craig H. Moskowitz, and Norbert Schmitz

See accompanying articles on pages 4191, 4199, and 4207

ABSTRACT

Purpose
Salvage chemotherapy followed by high-dose therapy and autologous stem-cell transplantation (ASCT) is the standard treatment for relapsed diffuse large B-cell lymphoma (DLBCL). Salvage regimens have never been compared; their efficacy in the rituximab era is unknown.

Patients and Methods
Patients with CD20+ DLBCL in first relapse or who were refractory after first-line therapy were randomly assigned to either rituximab, ifosfamide, etoposide, and carboplatin (R-ICE) or rituximab, dexamethasone, high-dose cytarabine, and cisplatin (R-DHAP). Responding patients received high-dose chemotherapy and ASCT.

Results
The median age of the 396 patients enrolled (R-ICE, n = 202; R-DHAP, n = 194) was 55 years. Similar response rates were observed after three cycles of R-ICE (63.5%; 95% CI, 56% to 70%) and R-DHAP (62.8%; 95 CI, 55% to 69%). Factors affecting response rates (P < .001) were refractory disease/relapse less than versus more than 12 months after diagnosis (46% v 88%, respectively), International Prognostic Index (IPI) of more than 1 versus 0 to 1 (52% v 71%, respectively), and prior rituximab treatment versus no prior rituximab (51% v 83%, respectively). There was no significant difference between R-ICE and R-DHAP for 3-year event-free survival (EFS) or overall survival. Three-year EFS was affected by prior rituximab treatment versus no rituximab (21% v 47%, respectively), relapse less than versus more than 12 months after diagnosis (20% v 45%, respectively), and IPI of 2 to 3 versus 0 to 1 (18% v 40%, respectively). In the Cox model, these parameters were significant (P < .001).

Conclusion
In patients who experience relapse more than 12 months after diagnosis, prior rituximab treatment does not affect EFS. Patients with early relapses after rituximab-containing first-line therapy have a poor prognosis, with no difference between the effects of R-ICE and R-DHAP.

INTRODUCTION

During the last decade, the addition of the anti-CD20 monoclonal antibody rituximab to various chemotherapies1-3 has dramatically improved response rates in diffuse large B-cell lymphoma (DLBCL), with complete responses (CRs) in 75% to 80% of patients. The use of rituximab in first-line treatment improved 5-year event-free survival (EFS) from 29% to 47% in the initial study of patients between age 60 and 80 years4 and improved 3-year EFS from 59% to 79% in patients age 18 to 60 years;5 rituximab was also associated with improved overall survival (OS). Before the rituximab era, 5-year OS rate for relapsed DLBCL was 53% after high-dose chemotherapy with autologous stem-cell transplantation (ASCT).6 Various parameters greatly affect the results of ASCT, including chemotherapy sensitivity before ASCT,7 time from diagnosis to relapse of less than 12 months,8 and the presence of prognostic factors at relapse, as defined by the secondary age-adjusted International Prognostic Index (saIPI).9,10 The addition of rituximab to second-line chemotherapy followed by ASCT significantly improved progression-free survival (PFS) in patients not exposed to rituximab as part of their first-line treatment.11 For patients who have experienced relapse, no comparative studies have thus far been performed to our knowledge to evaluate the efficacy of the different salvage regimens.12 Therefore, we compared the effects of two established salvage regimens...
followed by ASCT, attempted to identify the parameters influencing the effectiveness of each regimen, and aimed to establish whether or not the widespread use of rituximab as part of first-line therapy affects the outcome of patients with relapsed DLBCL.6

The present Collaborative Trial in Relapsed Aggressive Lymphoma (CORAL) study was a collaborative effort by 12 countries worldwide. Patients with refractory or relapsed CD20+ DLBCL were randomly assigned to one of the following two widely used regimens that included rituximab: rituximab, ifosfamide, carboplatin, and etoposide (R-ICE)13 or rituximab, dexamethasone, high-dose cytarabine, and cisplatin (R-DHAP).14 In responding patients, peripheral progenitor cells were collected after chemotherapy and reinfused after a high-dose chemotherapy conditioning regimen. We also investigated the impact of post-transplantation rituximab administration. Here, we report the results of the comparison between these two salvage regimens and the factors affecting outcome.

Patients and Methods

Patients

Eligible patients were age 18 to 65 years and had aggressive CD20+ B-cell non-Hodgkin’s lymphoma, including DLBCL, and had experienced relapse or did not achieve CR with a standard anthracycline-based regimen composed of cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP). Before enrollment, CD20+ aggressive B-cell lymphoma was histologically confirmed in all patients. Patients eligible for inclusion had a performance status of 0 to 1. Exclusion criteria included CNS involvement, a history of HIV infection, post-transplantation lymphoproliferative disorders, and inadequate organ function. Patients were fully evaluated by examinations that included thoracic and abdominal computed tomography scans and bone marrow biopsy. saaIPI factor status was determined by the absence or presence of risk factors, poor performance status, elevated lactate dehydrogenase, and disseminated stage before salvage treatment.9,10 The study was approved by the

Fig 1.

CONSORT diagram of distribution of patients according to arm resulting from the first random assignment. CRF, case report forms; R-ICE, rituximab, ifosfamide, carboplatin, etoposide; R-DHAP, rituximab, dexamethasone, high-dose cytarabine, cisplatin; BEAM, carmustine, etoposide, cytarabine, melphalan; ASCT, autologous stem-cell transplantation.
relevant institutional review boards or ethics committees, and all patients gave written informed consent.

The study was registered under European Union Drug Regulating Authorities Clinical Trials (EudraCT) No. 2004-002103-32 and ClinicalTrials.gov NCT 00137995. Four hundred patients were enrolled between July 2003 and September 2007 for part 1 of the study. On an intent-to-treat basis, 396 patients were randomly assigned (202 patients to the R-ICE arm and 194 patients to the R-DHAP arm), and 388 patients were actually treated (Fig 1). Patient characteristics are listed in Table 1. No significant differences between the two arms were observed. Histology was reviewed by local hematopathologists attached to the participating centers. In addition, an international central review was performed in 289 (73%) of 396 patients. Only 13 patients did not have DLBCL; three patients had grade 3 follicular lymphoma, six patients had grade 2 follicular lymphoma, two patients had T-cell lymphoma, and two patients had Hodgkin’s lymphoma. Only four patients were CD20⁺, and CD20 status was not documented in 13 patients. All of the patients were included in an intent-to-treat analysis and received the protocol arm.

Study Design and Treatment

This study was a phase III multicenter randomized trial designed to compare the efficacy of R-ICE and R-DHAP in patients with previously treated DLBCL, followed by ASCT with or without rituximab maintenance therapy (Fig 2). There were two random assignments, the first for salvage therapy and the second for maintenance treatment. The efficacy of the two salvage regimens is the subject of this report.

Patients were stratified according to participating country, prior rituximab treatment, and relapse occurring less than or more than 12 months after diagnosis. Every 3 weeks, patients were given three cycles of chemotherapy, followed by ASCT. In both regimens, rituximab (375 mg/m²) was administered before chemotherapy, and in the first course, additional rituximab was given on day −1. The R-ICE regimen consisted of etoposide (100 mg/m²) on days 1 through 3, ifosfamide (5,000 mg/m²) infused continuously for 24 hours on days 2 and 3 with mesna; and carboplatin (area under the curve = 5; maximum dose, 800 mg) on day 2. The R-DHAP regimen consisted of cisplatin (100 mg/m²) on day 1 via continuous 24-hour infusion, followed on day 2 by cytarabine (2 g/m²) in a 3-hour infusion repeated after 12 hours, and dexamethasone (40 mg/d) for 4 consecutive days. Granulocyte colony-stimulating factor was administered after R-ICE and, depending on site policy, with R-DHAP, but always after the third cycle until the end of leukaphereses. Leukaphereses were performed after the third or second course of salvage therapy to obtain a target of 2,000,000 CD34⁺ hematopoietic stem cells per kilogram for cryopreservation. In case of inadequate peripheral stem-cell collection after the third course, patients were considered to be experiencing treatment failure and withdrawn from the study.

Assessment of Response and Follow-Up

Response was assessed by conventional diagnostic methods, including computed tomography scans, after the third chemotherapy course. Bone marrow biopsies were only repeated if abnormal before treatment.

Response was assessed using the International Working Group criteria. CR was defined by the disappearance of all documented disease; unconfirmed CR (CRu) was used when a residual mass was present without evidence of treatment failure and withdrawn from the study.

Table 1. Baseline Patient Demographics and Clinical Characteristics

<table>
<thead>
<tr>
<th>Demographic or Clinical Characteristic</th>
<th>No. of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>R-ICE (n = 202)</td>
</tr>
<tr>
<td>Median</td>
<td>54</td>
</tr>
<tr>
<td>Range</td>
<td>19-65</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>125</td>
</tr>
<tr>
<td>Female</td>
<td>77</td>
</tr>
<tr>
<td>Ann Arbor stage</td>
<td></td>
</tr>
<tr>
<td>I-II</td>
<td>81</td>
</tr>
<tr>
<td>III-IV</td>
<td>119</td>
</tr>
<tr>
<td>Extranodal site > 1</td>
<td>55</td>
</tr>
<tr>
<td>Bone marrow involvement</td>
<td>17</td>
</tr>
<tr>
<td>Elevated LDH</td>
<td>104</td>
</tr>
<tr>
<td>saaIPI at relapse</td>
<td></td>
</tr>
<tr>
<td>0-1</td>
<td>119</td>
</tr>
<tr>
<td>2-3</td>
<td>75</td>
</tr>
<tr>
<td>Time to relapse after diagnosis, months</td>
<td></td>
</tr>
<tr>
<td>< 12*</td>
<td>112</td>
</tr>
<tr>
<td>≥ 12*</td>
<td>122</td>
</tr>
<tr>
<td>Prior rituximab treatment</td>
<td></td>
</tr>
<tr>
<td>Prior first-line CHOP-like chemotherapy</td>
<td>171</td>
</tr>
<tr>
<td>Intensified CHOP</td>
<td>28</td>
</tr>
</tbody>
</table>

Abbreviations: R-ICE, rituximab, ifosfamide, carboplatin, and etoposide; R-DHAP, rituximab, dexamethasone, high-dose cytarabine, and cisplatin; NS, not significant; LDH, lactate dehydrogenase; saaIPI, secondary age-adjusted international prognostic index at relapse; CHOP, cyclophosphamide, doxorubicin, vincristine, and prednisone.

*Including patients not achieving complete response after first-line treatment.
active disease. Partial response (PR) was defined as a 50% reduction of measurable disease. The mobilization response rate was defined as the objective CR and PR rates associated with the target mobilization of the peripheral stem cells (2,000,000 CD34+ hematopoietic stem cells/kg). Response was evaluated 3 months after transplantation. Follow-up procedures included a physical examination every 3 months for the first year and every 6 months thereafter for 2 years and a complete evaluation at the end of the first year or earlier if necessary.

ASCT

Patients who achieved a CR or PR after the third cycle of salvage treatment were given carmustine, etoposide, cytarabine, and melphalan (BEAM) high-dose chemotherapy. The BEAM regimen included carmustine (300 mg/m²) on day −6, etoposide (200 mg/m²), cytarabine (200 mg/m²) on days −5 to −2, and melphalan (140 mg/m²) on day −1. Peripheral-blood stem cells were reinfused on day 0, at least 24 hours after completion of BEAM.

Radiotherapy after transplantation was not allowed and was considered to be an event. Supportive treatments were given according to standard use in each center.

RESULTS

Statistical Analysis

The primary end point was the mobilization-adjusted response rate after three cycles of chemotherapy. A higher favorable response rate was expected for R-ICE than for R-DHAP, with fewer failed stem-cell collections. To detect a difference of 15% in the mobilization-adjusted response rate between R-ICE, for which this rate was 60% (75% response minus 15% mobilization failure), and R-DHAP, with a corresponding rate of 45% (65% response minus 20% mobilization failure) with a power of 82% and a 5% significance level, 400 patients had to be randomly assigned to the two chemotherapy arms. This allowed the second random assignment of 240 patients, with an expected dropout rate of 40% (Appendix, online only).

Administration of an alternative treatment was considered as an event. EFS was defined as the time from the start of treatment to progression, relapse, new treatment, or death (irrespective of cause), whichever event occurred first. DFS was defined as the time from study entry until disease progression or death. OS was defined as the time from the start of treatment to death.

The Kaplan-Meier method was used to estimate EFS, DFS, and OS, and 95% CIs were calculated. Cox regression analysis was used to calculate the hazard ratio between the two arms. All reported P values are two-sided, and P < .05 was considered significant. All analyses were carried out with SAS 9.1.3 software (SAS Institute, Cary, NC).

The study was designed by the Steering Committee of CORAL. The same investigator (C.G.) checked the data for medical coherence, analyzed and interpreted the data, and was the principal writer of this article (Appendix).

Table 2. Response After Induction Treatment (including death) for All Patients

<table>
<thead>
<tr>
<th>Response</th>
<th>R-ICE (n = 197)</th>
<th>R-DHAP (n = 191)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Patients</td>
<td>%</td>
<td>No. of Patients</td>
</tr>
<tr>
<td>Complete response</td>
<td>48 (24)</td>
<td>53 (28)</td>
</tr>
<tr>
<td>Unconfirmed complete response</td>
<td>24 (12)</td>
<td>22 (12)</td>
</tr>
<tr>
<td>Partial response</td>
<td>53 (27)</td>
<td>45 (24)</td>
</tr>
<tr>
<td>Stable disease</td>
<td>23 (12)</td>
<td>22 (12)</td>
</tr>
<tr>
<td>Progressive disease</td>
<td>38 (19)</td>
<td>35 (18)</td>
</tr>
<tr>
<td>Death</td>
<td>6 (3)</td>
<td>10 (5)</td>
</tr>
<tr>
<td>Premature withdrawal, not evaluated</td>
<td>4 (2)</td>
<td>4 (2)</td>
</tr>
</tbody>
</table>

Autologous transplantation

- **Median CD34+ cells collected, million/kg**: 4.5 (4.9) days/H11021
- **Collection failure < 2,000,000 CD34+ cells**: 20 (10) /H11021
- **Mobilization-adjusted response**: 103 (52.3) /H11021
- **Consolidation with BEAM performed per protocol**: 101 (51) /H11021

Abbreviations:
- R-ICE, rituximab, ifosfamide, carboplatin, and etoposide
- R-DHAP, rituximab, dexamethasone, cytarabine, and cisplatin
- BEAM, carmustine, etoposide, cytarabine, and melphalan
- saaIPI, secondary age-adjusted International Prognostic Index

Table 3. Response Rate and Survival According to Prognostic Factors

<table>
<thead>
<tr>
<th>Factor</th>
<th>All patients (n = 398)</th>
<th>R-ICE (n = 197)</th>
<th>R-DHAP (n = 191)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response CR/CRu/PR</td>
<td>246/122/38</td>
<td>148/124/51</td>
<td></td>
</tr>
<tr>
<td>Total No. of Patients</td>
<td>398</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-Year Event-Free Survival</td>
<td>% 63/31/51/50</td>
<td>% 51/70</td>
<td></td>
</tr>
<tr>
<td>3-Year Overall Survival</td>
<td>% 50/41/66/64</td>
<td>% 70/40</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations:
- CR, complete response
- CRu, unconfirmed complete response
- PR, partial response
- saaIPI, secondary age-adjusted International Prognostic Index
(73%) of 181 evaluable patients had CR or CRu, 24 (13%) had PR, one had stable disease, and 17 (9%) had progressive disease.

Survival
After a median follow-up time of 27 months, the 3-year EFS rate was 31% (95% CI, 26% to 36%) and was not significantly different between the R-ICE and R-DHAP arms (26% and 35%, respectively; \(P = .6 \)). Three-year PFS was 37% (95% CI, 31% to 42%), and again, the R-ICE and R-DHAP arms were not significantly different (31% and 42%, respectively; \(P = .4 \)). Three-year OS (Figs 3A and 3B) was 49% (95% CI, 43% to 55%), with no difference between the R-ICE and R-DHAP arms (47% and 51%, respectively; \(P = .4 \)). For patients who underwent ASCT, 3-year PFS was 53% (Fig 4A). There was no difference between the numbers of patients who achieved CR and PR just before ASCT (Fig 4B).

Three-year EFS, PFS, and OS were affected by prior rituximab treatment, early relapse, and saaIPI (Table 3). In the Cox model, all of these parameters remained significant (\(P < .001 \)) for EFS, PFS, and OS; prior rituximab treatment was significant at a lower level (\(P = .2 \)). The treatment arm was not significant.

When patients were analyzed according to early relapse and prior rituximab treatment, there was no difference in PFS, EFS, or OS for patients with relapse more than 12 months after diagnosis (Figs 3C and 3D). Early relapse and prior rituximab treatment (\(n = 187 \)) defined a population with a poor response rate to the standard treatment; thus, their 3-year PFS was only 23%. However, for responding patients who underwent ASCT (\(n = 68 \)), 3-year PFS was 39%, compared with 14% for patients who did not receive transplantation (\(n = 119; P < .001 \); Appendix Fig A1, online only). At the time of our analysis, 92 deaths (47%) had occurred in the R-ICE arm, and 82 deaths (43%) had occurred in the R-DHAP arm, mainly as a result of lymphoma.

Relapse and Progression
Progression or relapse was experienced by 104 patients in the R-ICE arm and 97 patients in the R-DHAP arm, mostly at the initial site and by half of patients during the treatment period. Various treatments were administered, including radiotherapy and chemotherapy, with or without transplantation (32 autotransplantations and 14 allografts; Appendix Tables A1 to A3, online only). A second CR was experienced by 32 of 176 patients. In all, 48 patients, 24 in each treatment arm, reported an event as a result of a new treatment after progression.

Adverse Events
The median time between salvage cycles was 22 days for both arms for the 230 patients who completed three cycles. Grade 3 to 4 hematologic toxicities were more severe in the R-DHAP arm than the R-ICE arm.
R-ICE arm, and more patients required at least one platelet transfusion during the induction phase (57% in R-DHAP arm v 35% in R-ICE arm). In all, 90 serious adverse events occurred in 58 patients in the R-ICE arm, and 120 serious events occurred in 68 patients in the R-DHAP arm.

In both arms, the most common serious adverse events were infections, with a similar rate of infection as a result of neutropenia (16%) in both arms. Grade 3 to 4 nonhematologic toxicities were more severe in the R-DHAP arm and included grade 4 renal toxicity in 11 patients (Appendix Tables A4 and A5, online only). Patients who underwent BEAM followed by ASCT experienced the usual patterns of hematologic and nonhematologic toxicity, and three toxic deaths occurred.

DISCUSSION

In DLBCL, two populations are candidates for salvage treatment followed by high-dose chemotherapy and ASCT—patients who experience a relapse after achieving CR and those who do not achieve CR but are still responding to treatment. From the PARMA data, patients experiencing early relapses less than 12 months after diagnosis have the same poor prognosis as incomplete responders. Such patients constituted 57% of all patients in the present study. Because this study was performed between 2003 and 2007, not all of the patients had access to rituximab as first-line treatment. This fact enabled us to prospectively enroll patients who did and did not have prior rituximab treatment (62% and 36%, respectively).

Because no randomized comparison of any salvage regimens had ever been previously reported, it was not clear which regimen was preferable for treatment of relapsed DLBCL. The R-ICE regimen was chosen because we assumed that rituximab would improve its results, as suggested by the Memorial Sloan-Kettering Cancer Center. Because DHAP has been widely used all over the world and was the salvage regimen of the PARMA study, it was used here as comparator. Both regimens were supplemented with rituximab, which has been shown to improve treatment results of patients with relapsed DLBCL and not previously treated with rituximab.

The present results show a similar response rate of 63% for the two regimens, with a CR rate of only 38%, even after adjustment for mobilization failure. Furthermore, similar prospective mobilization failure rates of 10% were observed after both regimens. Only 50% of patients were able to undergo ASCT. Toxicities were similar, but there were more platelets and renal toxicity in the R-DHAP arm. An important finding was that several independent factors significantly affected response rates after salvage therapy, including saaIPI score, early relapse less than 12 months after diagnosis, and prior rituximab treatment. The same independent factors were found for OS, EFS, and PFS. R-ICE and R-DHAP gave similar results for all conceivable situations, thus demonstrating that it will be difficult to improve therapy without new drugs.

In this study, it was possible to identify a population with late relapse who benefited from the introduction of rituximab into their salvage regimen and exhibited an 80% response rate and a 3-year EFS ranging from 40% to 50%. Here, the standard treatment with ASCT reproduced the PARMA results. However, there was a group of patients with a poor prognosis whose prior rituximab treatment was predictive, in cases of early relapse, of a response rate of 50% and 3-year EFS of only 20%. For these patients, the results of standard therapy should be improved, and new approaches are needed.

At the time of this analysis, there were not enough events (85 of 140 events) to determine the impact of rituximab administered as post-transplantation maintenance therapy. For patients who underwent transplantation, 3-year PFS was 53% (Fig 4).

Our results seem less favorable than those reported in a nonrandomized study with R-ICE and in a study using high-dose rituximab before and after transplantation. In the randomized CORAL study, the three courses of R-ICE were separated by a 3-week interval instead of 2 weeks, which may have helped to lower the CR rate. However, the patients in the present study differed from those in both of the previously cited studies because they had not had previous rituximab treatment and their response was evaluated by functional imaging. We believe, however, that our results are more representative of the general population with relapsed DLBCL than those reported by single institutions with limited numbers of patients and no random assignment. When we looked at the initial prognostic parameters before failure/relapse according to prior rituximab treatment, patients who had received rituximab had more adverse factors, a finding likely to prove representative of the patients we will have to treat in the future.
Consequently, new drugs designed to increase the response rate of salvage regimens and new approaches, including allogeneic transplantation, should be explored. In the era of antibody chemotherapy, novel targeted therapy resulting from better understanding of the biology of DLBCL, including studies of patient tumor specimens, will play a key role in these respects.

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Although all authors completed the disclosure declaration, the following author(s) indicated a financial or other interest that is relevant to the subject matter under consideration in this article. Certain relationships marked with a “U” are those for which no compensation was received; those relationships marked with a “C” were compensated. For a detailed description of the disclosure categories, or for more information about ASCO’s conflict of interest policy, please refer to the Author Disclosure Declaration and the Disclosures of Potential Conflicts of Interest section in Information for Contributors.

Employment or Leadership Position: None Consultant or Advisory Role: Christian Gisselbrecht, Bertram Glass, Nicolas Mounier, Devinder Singh Gill, David C. Linch, Marek Trneny, Andre Bosly, Hans Hagberg, David Ma, Craig H. Moskowitz, Norbert Schmitz

Stock Ownership: None

Honoraria: Bertram Glass, Roche Pharma AG; David C. Linch, Roche C

Research Funding: None

Consultant or Advisory Role: Christian Gisselbrecht, Bertram Glass, Nicolas Mounier, Devinder Singh Gill, David C. Linch, Marek Trneny, Andre Bosly, Nicolas Ketterer, Craig H. Moskowitz, Norbert Schmitz

Expert Testimony: None

Other Remuneration: None

REFERENCES

AUTHOR CONTRIBUTIONS

Conception and design: Christian Gisselbrecht, Nicolas Mounier, Devinder Singh Gill, David C. Linch, Marek Trneny, Andre Bosly, Hans Hagberg, David Ma, Craig H. Moskowitz, Norbert Schmitz

Administrative support: Christian Gisselbrecht, David C. Linch, Marek Trneny, Andre Bosly, Nicolas Ketterer, Craig H. Moskowitz, Norbert Schmitz

Provision of study materials or patients: Christian Gisselbrecht, Bertram Glass, Nicolas Mounier, Devinder Singh Gill, David C. Linch, Marek Trneny, Andre Bosly, Nicolas Ketterer, Ofer Shpilberg, Hans Hagberg, David Ma, Craig H. Moskowitz, Norbert Schmitz

Collection and assembly of data: Christian Gisselbrecht, Nicolas Mounier, Devinder Singh Gill, Marek Trneny, Andre Bosly, Nicolas Ketterer, Ofer Shpilberg, Hans Hagberg, David Ma, Josette Brière, Craig H. Moskowitz, Norbert Schmitz

Data analysis and interpretation: Christian Gisselbrecht, Bertram Glass, Nicolas Mounier, Ofer Shpilberg, Norbert Schmitz

Manuscript writing: Christian Gisselbrecht, Bertram Glass, Nicolas Mounier, David Ma, Norbert Schmitz

Final approval of manuscript: Christian Gisselbrecht, Bertram Glass, Nicolas Mounier, Devinder Singh Gill, David C. Linch, Marek Trneny, Andre Bosly, Nicolas Ketterer, Ofer Shpilberg, Hans Hagberg, David Ma, Josette Brière, Craig H. Moskowitz, Norbert Schmitz
The Germinal Center/Activated B-Cell Subclassification Has a Prognostic Impact for Response to Salvage Therapy in Relapsed/Refractory Diffuse Large B-Cell Lymphoma: A Bio-CORAL Study

See accompanying editorial on page 4065

ABSTRACT

Purpose
To evaluate the prognostic value of the cell of origin (COO) in patients with relapsed/refractory diffuse large B-cell lymphoma (DLBCL), prospectively treated by rituximab, dexamethasone, high-dose cytarabine, and cisplatin (R-DHAP) versus rituximab, ifosfamide, carboplatin, and etoposide and followed by intensive therapy plus autologous stem-cell transplantation on the Collaborative Trial in Relapsed Aggressive Lymphoma (CORAL) trial.

Patients and Methods
Among the 396 patients included on the trial, histologic material was available for a total of 249 patients at diagnosis (n = 189 patients) and/or at relapse (n = 147 patients), which included 87 matched pairs. The patient data were analyzed by immunochemistry for CD10, BCL6, MUM1, FOXP1, and BCL2 expression and by fluorescent in situ hybridization for BCL2, BCL6, and c-MYC breakpoints. The correlation with survival data was performed by using the log-rank test and the Cox model.

Results
Characteristics of immunophenotype and chromosomal abnormalities were statistically highly concordant in the matched biopsies. In univariate analysis, the presence of c-MYC gene rearrangement was the only parameter to be significantly correlated with a worse progression-free survival (PFS; \(P = .02 \)) and a worse overall survival (\(P = .04 \)). When treatment interaction was tested, the germinal center B (GCB)–like DLBCL that was based on the algorithm by Hans was significantly associated with a better PFS in the R-DHAP arm. In multivariate analysis, independent prognostic relevance was found for the GCB/non-GCB the Hans phenotype interaction treatment (\(P = .04 \)), prior rituximab exposure (\(P = .0052 \)), secondary age-adjusted International Prognostic Index (\(P = .039 \)), and FoxP1 expression (\(P = .047 \)). Confirmation was obtained by gene expression profiling in a subset of 39 patients.

Conclusion
COO remains a major and independent factor in relapsed/refractory DLBCL, with a better response to R-DHAP in GCB-like DLBCL. This needs confirmation by a prospective study.

J Clin Oncol 29:4079-4087. © 2011 by American Society of Clinical Oncology

INTRODUCTION

Diffuse large B-cell lymphoma (DLBCL) is a well-defined entity\(^1\) and the most common form of adult non-Hodgkin’s lymphoma.\(^2\) Complexity and heterogeneity of the disease have been demonstrated over the past 10 years, first by the most recent WHO classification that includes no less than 15 different subentities\(^3\) and second by the gene expression profiling analyses leading to a molecular classification of DLBCL into at least three distinct subtypes: germinal center B (GCB)–cell-like, activated B-cell (ABC)–like, and primary mediastinal B-cell lymphoma (PMBL)\(^4,5\) associated with different oncogenic events\(^6,7\).

The prognosis has been demonstrated to be variable, with a poorer outcome for patients with ABC-like DLBCL than for those with GCB-like DLBCL.
when treated with conventional anthracycline-based chemotherapy (usually cyclophosphamide, doxorubicin, vincristine, and prednisone [CHOP]). Consequently, surrogates of this molecular classification have been developed for routine usage on the basis of immunohistochemical protein expression or genetic markers detected by fluorescence in situ hybridization (FISH), the most concordant with the microarray results being the algorithms of Cho and Hans. Published algorithms encompass proteins such as CD10, BCL2, MUM1, FOXP1, GCET1, and BCL2. Individually, these proteins have shown to have equivocal prognostic relevance. Expression of the antiapoptotic molecule BCL2 has been associated with a poor clinical outcome, although treatment with rituximab appears to eliminate the unfavorable effect from BCL2 expression. High-level expression of FOXP1 is correlated with the non-GC phenotype and has been reported to be an independent adverse prognostic marker for DLBCL.

In first-line therapy with conventional CHOP or intensive chemotherapy plus autograft, most studies that are based on GCB/ABC subtyping report a better outcome in patients with GCB-like than in patients with ABC-like DLBCL. In patients treated with a combination of rituximab and chemotherapy, the clinical significance of the GCB/ABC subtyping is more controversial. The pivotal study published by Lenz et al showed that cell of origin (COO) was highly predictive in patients treated by rituximab plus CHOP (R-CHOP) as well as in patients treated by CHOP. Other studies found that patients with de novo DLBCL no longer showed differential clinical outcomes in GCB and non-GCB subgroups when treated with R-CHOP. At relapse, no data regarding the clinical significance of GCB/ABC subtyping were available. In this context, the international Collaborative Trial in Relapsed Aggressive Lymphoma (CORAL) study addressed the question of the best induction treatment in young patients with relapsed/refractory DLBCL between the most widely used regimens, R-ICE (ie, rituximab, ifosfamide, carboplatin, and etoposide) and R-DHAP (ie, rituximab, dexamethasone, high-dose cytarabine, and cisplatin). The study found no difference between R-ICE and R-DHAP.

In this study, we wanted to assess whether tumor biology is a predictive factor for response to R-ICE or R-DHAP in relapse/refractory DLBCL compared with other known clinical prognostic factors.

PATIENTS AND METHODS

The patients studied for the present biologic analyses were a subset of the 396 patients analyzed in the CORAL study, which was designed to compare the efficacy of R-ICE and R-DHAP followed by high-dose therapy and autologous stem-cell transplantation in patients age 18 to 65 years old who presented with relapsed/refractory CD20(+)

Morphology, Immunohistochemistry, and COO Algorithms

Histologic material was available in a total of 249 patients at diagnosis (n = 189 patients) and/or at relapse (n = 147 patients). A panel of seven hematopathologists (J.B., P.G., H.U.V., C.S., S.C., P.T., A.J.) conducted a central review to confirm the diagnosis of CD20(+) DLBCL and to evaluate the immunostaining and FISH. Among these 249 patients, eight (3%) presented with a primary mediastinal B-cell lymphoma (PMBL), and 12 (4.8%) presented with a follicular lymphoma (FL) grade 1 to 2 either at diagnosis or at relapse. Immunostaining against CD10, BCL2, IRF4/MUM1, BCL6, and FOXP1 were performed by using 3-µm sections either from full slides or from tissue microarrays containing two or three representative 0.6-mm cores of routinely formalin-fixed paraffin-embedded tissues. LMO2 expression was not evaluated, because its predictive value was not confirmed in our previous work. The tissue quality was evaluated morphologically on hepatoyxin and eosin staining. All evaluable occurrences were given a secondary classification according to the COO algorithms previously published by Hans et al, Muris et al, and Nyman et al.

FISH Analysis

FISH analysis was performed on tissue microarray or full paraffin-embedded 2- to 3-µm tissue sections by using the breakapart probes for c-MYC(8q24), BCL2(18q21), and BCL6(3q27) (Abbott, Paris, France). Samples were analyzed with an AxioImager.M1 epifluorescence microscope (Carl Zeiss, Hamburg, Germany). Images were captured with a ×63 or ×100 oil objective and were analyzed by using the Isis software (METASystems, Alt-Lusseheim, Germany). The hybridization signal scoring was performed according to Haralambieva et al. with a normal cutoff value of 10%. On the basis of the results of BCL6(3q27) gene rearrangement and expression levels of MUM1 and FOXP1, the occurrences were scored with the immunofISH index, as reported by Copie-Bergman et al.

Microarray Procedures and Analyses

Fresh-frozen lymphoma samples were obtained retrospectively from 50 patients included on the CORAL trial. None of them presented with an FL or a PMBL. Tumor infiltration was checked on hepatoyxin and eosin–stained frozen sections. Total RNA quantity and initial quality were estimated by a NanoDrop ND-1000 spectrophotometer (Thermo Fisher Scientific, Wilmington, DE), and quality was assessed by electrophoresis (Agilent 2100 Bioanalyzer; Agilent Technologies, Missisauga, Ontario). Overall, 11 samples were not accepted for additional experimentation: three were of insufficient quantity, and eight were of insufficient quality. A total of 44 samples (n = 14 primary biopsies, n = 20 relapse biopsies, and n = 5 matched cases) that corresponded to 39 patients were analyzed. The Agilent Whole Human Genome microarray (G4112F) and a gene voting method were used to determine the COO on the basis of the genes discriminating GCB/ABC signatures that were published initially by Alizadeh et al. Details of the

<table>
<thead>
<tr>
<th>Table 1.</th>
<th>Index of Variation Considering Immunophenotypes and Chromosomal Abnormalities Between Primary and Relapse Biopsies in Matched Pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>No. of Patients (n = 87)</td>
</tr>
<tr>
<td>CD10</td>
<td>77</td>
</tr>
<tr>
<td>BCL6</td>
<td>75</td>
</tr>
<tr>
<td>MUM1/IRF4</td>
<td>75</td>
</tr>
<tr>
<td>FOXP1</td>
<td>68</td>
</tr>
<tr>
<td>BCL2</td>
<td>75</td>
</tr>
<tr>
<td>Chromosomal breakpoint</td>
<td></td>
</tr>
<tr>
<td>BCL2(18q21)</td>
<td>28</td>
</tr>
<tr>
<td>BCL6(3q27)</td>
<td>25</td>
</tr>
<tr>
<td>c-MYC(8q24)</td>
<td>24</td>
</tr>
<tr>
<td>GCB/ABC surrogate publication</td>
<td></td>
</tr>
<tr>
<td>Hans et al</td>
<td>77</td>
</tr>
<tr>
<td>Muris et al</td>
<td>73</td>
</tr>
<tr>
<td>Nyman et al</td>
<td>67</td>
</tr>
</tbody>
</table>

Abbreviations: ABC, activated B-cell; GCB, germinal center B.
procedures and analyses are in the Data Supplement. Microarray data have been submitted to the Gene Expression Omnibus (GEO; GSE26812).

Statistical Analysis

Each biologic parameter obtained at diagnosis and at relapse within the matched pairs were analyzed for variation. The results showed no statistical variation (Wilcoxon paired ranked test; Table 1). This finding allowed us to analyze all data in a similar manner, irrespective of whether they were generated by diagnostic or relapse biopsies. For the survival analyses, all analyses were performed on an intention-to-treat basis. Patient characteristics and complete remission rates were compared by the χ² and Fisher’s exact tests.

Progression-free survival (PFS) was defined as the time from study entry until disease progression or death. Overall survival (OS) was defined as the time from the start of treatment to death. Survival functions were estimated by the Kaplan-Meier method and were compared by the log-rank test. Differences between the results of comparative tests were considered significant at a two-sided P < .05. Because the CORAL trial was not stratified by biologic data, we controlled for the effects of prognostic factors on outcome that resulted from sampling fluctuation in the treatment groups by using multivariate analysis of survival in a Cox model. All statistical analyses were performed with SAS 9.13 (SAS Institute, Cary, NC) and S-Plus 6.2 (MathSoft, Cambridge, MA) software.

<table>
<thead>
<tr>
<th>Table 2. Baseline Characteristics of Patients Enrolled Onto Bio-CORAL and CORAL</th>
<th>Patients</th>
<th>At Diagnosis</th>
<th>At Time to Relapse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>156</td>
<td>63</td>
<td>241</td>
</tr>
<tr>
<td>Female</td>
<td>93</td>
<td>37</td>
<td>152</td>
</tr>
<tr>
<td>Age, years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>53</td>
<td>54</td>
<td>.9</td>
</tr>
<tr>
<td>Range</td>
<td>19-65</td>
<td>19-65</td>
<td></td>
</tr>
<tr>
<td>ECOG PS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-1</td>
<td>190</td>
<td>88</td>
<td>300</td>
</tr>
<tr>
<td>2-3</td>
<td>28</td>
<td>22</td>
<td>55</td>
</tr>
<tr>
<td>Ann Arbor stage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-II</td>
<td>111</td>
<td>45</td>
<td>159</td>
</tr>
<tr>
<td>III-IV</td>
<td>133</td>
<td>55</td>
<td>226</td>
</tr>
<tr>
<td>Elevated LDH</td>
<td>115</td>
<td>27</td>
<td>187</td>
</tr>
<tr>
<td>"B" symptoms</td>
<td>95</td>
<td>38</td>
<td>154</td>
</tr>
<tr>
<td>Extranasal site > 1</td>
<td>55</td>
<td>22.5</td>
<td>93</td>
</tr>
<tr>
<td>Bone marrow involvement</td>
<td>—</td>
<td>—</td>
<td>20</td>
</tr>
<tr>
<td>aIPI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-1</td>
<td>138</td>
<td>59</td>
<td>217</td>
</tr>
<tr>
<td>2-3</td>
<td>78</td>
<td>40</td>
<td>131</td>
</tr>
<tr>
<td>Initial response</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR-CRU</td>
<td>173</td>
<td>70</td>
<td>255</td>
</tr>
<tr>
<td>CRU</td>
<td>34</td>
<td>14</td>
<td>47</td>
</tr>
<tr>
<td>PR</td>
<td>38</td>
<td>15</td>
<td>76</td>
</tr>
<tr>
<td>Stable disease</td>
<td>9</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>Progression</td>
<td>27</td>
<td>11</td>
<td>43</td>
</tr>
<tr>
<td>Time to relapse, months</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 12</td>
<td>134</td>
<td>54</td>
<td>229</td>
</tr>
<tr>
<td>≥ 12</td>
<td>115</td>
<td>46</td>
<td>164</td>
</tr>
<tr>
<td>Prior rituximab treatment</td>
<td>152</td>
<td>61</td>
<td>243</td>
</tr>
<tr>
<td>Treatment at relapse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-ICE</td>
<td>—</td>
<td>—</td>
<td>126</td>
</tr>
<tr>
<td>R-DHAP</td>
<td>—</td>
<td>—</td>
<td>123</td>
</tr>
<tr>
<td>Response at induction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR/CRU</td>
<td>—</td>
<td>—</td>
<td>99</td>
</tr>
<tr>
<td>PR</td>
<td>—</td>
<td>—</td>
<td>63</td>
</tr>
<tr>
<td>Stable disease</td>
<td>—</td>
<td>—</td>
<td>24</td>
</tr>
<tr>
<td>Progression</td>
<td>—</td>
<td>—</td>
<td>43</td>
</tr>
<tr>
<td>Not evaluable</td>
<td>—</td>
<td>—</td>
<td>8</td>
</tr>
<tr>
<td>Death</td>
<td>12</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>Transplantation</td>
<td>—</td>
<td>—</td>
<td>139</td>
</tr>
</tbody>
</table>

NOTE. Baseline characteristics of the patients in the CORAL study included in the bio-CORAL study.

Abbreviations: CORAL, Collaborative Trial in Relapsed Aggressive Lymphoma; CR, complete response; CRU, complete response undetermined; ECOG PS, Eastern Cooperative Oncology Group performance status; LDH, lactate dehydrogenase; PR, partial response; R-DHAP, rituximab, dexamethasone, high-dose cytarabine, and cisplatin; R-ICE, rituximab, ifosfamide, carboplatin, and etoposide.
RESULTS

Patient Characteristics and Outcome

Overall, 249 patients included in the CORAL trial were enrolled onto this study (Table 2). At initial therapy, the median age was 53 years (range, 18 to 65 years), and 40% had a high-intermediate or high age-adjusted International Prognostic Index (aIPI). At relapse and time to CORAL inclusion, the median age was 54 years (range, 19 to 65 years), and 38% had a secondary high-intermediate or high aIPI. At salvage therapy, 123 patients were treated with R-DHAP;126, with R-I CE.

After a median follow-up time of 27 months, the 3-year PFS was 47.5% and was not significantly different between the R-ICE and R-DHAP arms (28.7% v 40.9%, respectively; \(P = .24 \)). Three-year OS was 50.8% (95% CI, 43% to 55%), with no difference between the R-ICE and R-DHAP arms (47.7% v 54%, respectively; \(P = .23 \); data not shown). As initially described in the CORAL study,27 early relapse less than 12 months after the diagnosis, prior rituximab exposure, and secondary aIPI were the individual risk factors for OS and PFS (\(P < .001 \), \(P < .001 \), and \(P < .001 \), respectively). Moreover, initial aIPI and response to initial treatment had a significant impact on outcome (OS and PFS, \(P < .001 \) and \(P < .001 \), respectively; data not shown).

Tumor Biology

Immunohistochemical expression of CD10, BCL6, MUM1/IRF4, BCL2, and FOXP1 in tumor cells were observed in 59%, 60%, 42%, 73%, and 65% of the cells, respectively, when pooled (Table 3). Among the tumor samples displaying interpretable FISH signals, BCL2/18q21, BCL6/3q27, and c-MYC/8q24 gene rearrangements were found in 31%, 18%, and 13% of the samples, respectively. BCL2/18q21 and c-MYC/8q24 rearrangements were strongly associated with the GCB category according to the Hans classifier (\(P = .0007 \) and \(P = .0001 \), respectively). BCL6/3q27 rearrangement was not correlated to any Hans category. On the basis of the algorithm by Hans,14 49% of the patients were classified as GCB, and 51% were classified as non-GCB. On the basis of the algorithm by Muris,15 72% were classified as group 1, and 28% were classified as group 2. On the basis of the algorithm by Nyman,24 73% were classified as ABC, and 27% were classified as others.

Biologic Prognostic Factors

By univariate analysis, c-MYC/8q24 gene rearrangement was the only parameter to be significantly correlated with a worse PFS (\(P = .02 \)) and a worse OS (\(P = .04 \); Table 3). To investigate the impact of different treatment arms on some biomarkers, we studied clinical outcome according to the treatment arms in each biomarker subgroup. PFS was significantly different when we studied BCL6 protein expression, BCL2/18q21 gene rearrangement, GCB/non-GCB classification on the basis of the Hans algorithm, and ABC phenotype on the basis of the algorithm by Nyman, in the R-ICE arm and R-DHAP arms. Interaction between GCB/non-GCB Hans classification and the R-ICE treatment versus R-DHAP treatment was significant (\(P < .035 \)). Patients with GCB DLBCL according to the algorithm by Hans, who were treated with R-DHAP, had a better PFS than patients with non-GCB DLBCL (3-year PFS rate and standard deviation, 52% ± 7% v 32% ± 7%, respectively; \(P = .01 \); Fig 1A). Patients treated with R-ICE had a poor PFS without significant difference between the GCB and non-GCB Hans phenotypes (3-year PFS rate and standard deviation, 31% ± 7% v 27% ± 7%, respectively; \(P = .81 \); Fig 1B). Similar results were observed for OS (Figs IC and ID). Analysis realized after removing PMBL and transformed FL occurrences resulted in unchanged results neither in PFS (non-GC v GC, 34% v 72%; 2-year PFS for R-DHAP, \(P = .04 \); 41% v 51% for R-ICE; \(P = .60 \)), nor in OS (non-GC v GC, 51% v 83%; 2-year OS for R-DHAP, \(P = .11 \); 57% v 62% for R-ICE; \(P = .65 \)).

Multivariate analysis showed an independent prognostic impact of the following parameters on PFS: GCB/non-GCB Hans phenotype interaction with treatment (\(P = .04 \)), prior rituximab exposure (\(P = .0052 \)), secondary aIPI (\(P = .039 \)), and FoxP1 expression (\(P = .047 \)). This analysis confirmed that R-DHAP was significantly more beneficial than R-ICE in patients presenting with GCB DLBCL as classified by Hans et al,14 irrespective of clinical variables, such as aIPI.

Gene Expression Profiling

Gene expression–based COO predictor. A diagnostic predictor was built on the basis of the gene expression signatures published by Alizadeh et al.3 From this report,3 we obtained a reference of 325 IMAGE clones.31 We could obtain references to 185 genes by using MADgene,32 and 140 did not have any annotation. Among them, 85 genes (258 probes) were listed in the Agilent Whole Human Genome microarrays (G4112F). From this set, we selected the genes, discriminating the samples into two classes, one overexpressing GCB genes and another overexpressing ABC genes. This selection resulted in a list of 48 genes.

Sample classification with the gene expression–based COO predictor. The prediction of GCB and ABC classes for each sample is shown in Appendix Figure A1 (online only). Considering the gene expression classification by Alizadeh et al,3 51% of the cases were predicted as GCB occurrences, and 49% were predicted as ABC occurrences, with an identical prediction within the matched pairs. Two samples could not be predicted. Concordance between the algorithm by Hans and gene expression profiling results was calculated at 75% of the occurrences (\(n = 28 \) of 37). Two patients were classified as GCB by the Hans algorithm who were showing ABC gene expression profiling. Six patients were classified as non-GCB by the Hans algorithm who were showing GCB gene expression profiling.

Prognostic impact. Survival analysis demonstrated that GCB-like DLBCLs have a better PFS and OS than ABC-like DLBCLs, with 3-year OS rates of 74% for GCB and 40% for ABC and with 3-year PFS rates at 70% for GCB and 28% for ABC. When subgrouping the patients according to their gene expression profiling groups and according to the type of treatment with R-DHAP or R-ICE (\(n = 10, 16, 12, \) and 8, respectively), patients with GCB-like DLBCL treated with R-DHAP had a better outcome than patients with GCB-like DLBCL treated with R-ICE (Figs 2A to 2D). The 3-year PFS was 100% for GCB-like DLBCL treated with R-DHAP, whereas the 3-year PFS for GCB DLBCL treated with R-ICE was 27% (\(P = .01 \)). Patients with ABC-like DLBCL had an unfavorable course irrespective of the treatment, R-ICE or R-DHAP, with 3-year PFS rates of 60% and 30%, respectively.
DISCUSSION

In this study, we biologically analyzed a population of patients younger than 65 years who had DLBCL at first relapse or progression after one line of chemotherapy that was based on anthracycline and who were enrolled on the international, multicenter, CORAL trial.\(^2^7\) Selected patients were representative of the whole population, with similar clinical characteristics and identical clinical prognostic parameters, including aIPI, early relapse, prior rituximab exposure and secondary aIPI. We confirmed that patients who had relapsed/refractory DLBCL could be profiled on the basis of the COO entities, and we demonstrated that patients with GCB-like DLBCL have an improved outcome when treated with R-DHAP compared with R-ICE in the context of a randomized trial.

Biomarkers were analyzed to help us understand the biologic basis for the outcomes of these patients with relapsed/refractory DLBCL. We did not find any individual immunohistochemical or FISH markers sufficiently powerful to predict survival independently from the aIPI, except FOXP1. FOXP1 expression was significantly associated with a poorer PFS and OS but had a marginal prognostic

Table 3. Immunohistochemical Staining Results, Cell of Origin Classification, Chromosomal Break Points, and Their Association With OS and PFS by Univariate Analysis

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Diagnosis</th>
<th>Relapse</th>
<th>Pooled Occurrences</th>
<th>OS</th>
<th>PFS</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immunohistochemistry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD10</td>
<td>179</td>
<td>82</td>
<td>240</td>
<td>.21</td>
<td>.48</td>
<td>.23</td>
</tr>
<tr>
<td>Positive</td>
<td>74</td>
<td>44</td>
<td>40</td>
<td>49</td>
<td>98</td>
<td>59</td>
</tr>
<tr>
<td>Negative</td>
<td>105</td>
<td>57</td>
<td>42</td>
<td>51</td>
<td>140</td>
<td>41</td>
</tr>
<tr>
<td>BCL2</td>
<td>177</td>
<td>81</td>
<td>239</td>
<td>.17</td>
<td>.08</td>
<td>.50</td>
</tr>
<tr>
<td>Positive</td>
<td>99</td>
<td>56</td>
<td>50</td>
<td>62</td>
<td>142</td>
<td>60</td>
</tr>
<tr>
<td>Negative</td>
<td>78</td>
<td>44</td>
<td>31</td>
<td>38</td>
<td>96</td>
<td>40</td>
</tr>
<tr>
<td>MUM1/IRF4</td>
<td>176</td>
<td>81</td>
<td>239</td>
<td>.61</td>
<td>.83</td>
<td>.35</td>
</tr>
<tr>
<td>Positive</td>
<td>61</td>
<td>37</td>
<td>27</td>
<td>33</td>
<td>100</td>
<td>42</td>
</tr>
<tr>
<td>Negative</td>
<td>115</td>
<td>65</td>
<td>54</td>
<td>67</td>
<td>134</td>
<td>58</td>
</tr>
<tr>
<td>FOXP1 (Barrans)</td>
<td>157</td>
<td>77</td>
<td>217</td>
<td>.036</td>
<td>.024</td>
<td>.56</td>
</tr>
<tr>
<td>Positive</td>
<td>104</td>
<td>66</td>
<td>55</td>
<td>71</td>
<td>142</td>
<td>65</td>
</tr>
<tr>
<td>Negative</td>
<td>53</td>
<td>33</td>
<td>22</td>
<td>29</td>
<td>75</td>
<td>35</td>
</tr>
<tr>
<td>BCL2</td>
<td>175</td>
<td>78</td>
<td>241</td>
<td>.63</td>
<td>.3</td>
<td>.56</td>
</tr>
<tr>
<td>Positive</td>
<td>123</td>
<td>70</td>
<td>55</td>
<td>70</td>
<td>175</td>
<td>73</td>
</tr>
<tr>
<td>Negative</td>
<td>52</td>
<td>30</td>
<td>23</td>
<td>30</td>
<td>66</td>
<td>27</td>
</tr>
<tr>
<td>Chromosomal break point (FISH)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCL2/18q21</td>
<td>92</td>
<td>45</td>
<td>107</td>
<td>.1</td>
<td>.52</td>
<td>.84</td>
</tr>
<tr>
<td>Positive</td>
<td>36</td>
<td>39</td>
<td>16</td>
<td>38</td>
<td>33</td>
<td>31</td>
</tr>
<tr>
<td>Negative</td>
<td>56</td>
<td>61</td>
<td>29</td>
<td>62</td>
<td>74</td>
<td>59</td>
</tr>
<tr>
<td>BCL6/3q27</td>
<td>81</td>
<td>49</td>
<td>94</td>
<td>.89</td>
<td>.65</td>
<td>.06</td>
</tr>
<tr>
<td>Positive</td>
<td>15</td>
<td>19</td>
<td>11</td>
<td>23</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>Negative</td>
<td>66</td>
<td>81</td>
<td>38</td>
<td>77</td>
<td>77</td>
<td>82</td>
</tr>
<tr>
<td>c-MYC/8q24</td>
<td>89</td>
<td>49</td>
<td>96</td>
<td>.02</td>
<td>.04</td>
<td>.005</td>
</tr>
<tr>
<td>Positive</td>
<td>18</td>
<td>20</td>
<td>10</td>
<td>20</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>Negative</td>
<td>71</td>
<td>80</td>
<td>39</td>
<td>80</td>
<td>84</td>
<td>87</td>
</tr>
<tr>
<td>ImmunofISH index published by Copie-Bergman et al(^1^3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of occurrences</td>
<td>154</td>
<td>130</td>
<td>217</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>113</td>
<td>73</td>
<td>92</td>
<td>71</td>
<td>148</td>
<td>68</td>
</tr>
<tr>
<td>Positive</td>
<td>41</td>
<td>34</td>
<td>38</td>
<td>29</td>
<td>69</td>
<td>30</td>
</tr>
<tr>
<td>GCB/ABC algorithm publication</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hans et al(^1^3)</td>
<td>173</td>
<td>82</td>
<td>235</td>
<td>.23</td>
<td>.09</td>
<td>.89</td>
</tr>
<tr>
<td>GC</td>
<td>90</td>
<td>52</td>
<td>48</td>
<td>59</td>
<td>116</td>
<td>49</td>
</tr>
<tr>
<td>Non GC</td>
<td>83</td>
<td>48</td>
<td>34</td>
<td>41</td>
<td>119</td>
<td>51</td>
</tr>
<tr>
<td>Muris et al(^1^4)</td>
<td>171</td>
<td>78</td>
<td>237</td>
<td>.89</td>
<td>.51</td>
<td>.46</td>
</tr>
<tr>
<td>Group 1</td>
<td>124</td>
<td>73</td>
<td>56</td>
<td>72</td>
<td>171</td>
<td>72</td>
</tr>
<tr>
<td>Group 2</td>
<td>47</td>
<td>27</td>
<td>2</td>
<td>28</td>
<td>66</td>
<td>28</td>
</tr>
<tr>
<td>Nyman et al(^2^1)</td>
<td>160</td>
<td>74</td>
<td>225</td>
<td>.18</td>
<td>.08</td>
<td>.36</td>
</tr>
<tr>
<td>ABC</td>
<td>116</td>
<td>72.5</td>
<td>56</td>
<td>76</td>
<td>165</td>
<td>73</td>
</tr>
<tr>
<td>Others</td>
<td>44</td>
<td>27.5</td>
<td>18</td>
<td>24</td>
<td>60</td>
<td>27</td>
</tr>
</tbody>
</table>

Abbreviations: ABC, activated B-cell; CR, complete response; FISH, fluorescent in situ hybridization; GC, germinal cell; GCB, germinal center B; OS, overall survival; PFS, progression-free survival.

\(^1^3\)Double-hit lymphomas were observed in 20 occurrences with the combination BCL2+/MYC+, BCL6+/MYC+, BCL2+/BCL6+ in 12, four, and four occurrences, respectively. BCL2+/BCL6+/MYC+ triple-hit lymphomas were observed in four occurrences.
value in our series (PFS, \(P = .02\); OS, \(P = .03\)). Several other biomarkers (BCL6, BCL2 expression, and c-MYC breakpoint) had a statistical significance in PFS or in OS in the separated subgroups as defined by the group of primary biopsies or the group of relapse biopsies. However, none of these abnormalities, except for the c-MYC breakpoint, were associated with a poorer outcome when the analysis was conducted for the whole group of patients. Additionally, none of the algorithms significantly predicted survival. These results may be due to the interaction between biomarkers and clinical characteristics and/or treatment. Interactions between several biologic markers, such as BCL6 expression, BCL2 breakpoint, Hans algorithm, and treatment were found to be significant, indicating that treatment efficacy depended on the pattern of these risk factors.

Thirty-one percent of the occurrences interpretable by FISH harbored \(t(14;18)\). This chromosomal abnormality was significantly associated with a GCB phenotype on the basis of the Hans algorithm. We cannot exclude that, in our retrospective series, these occurrences of GCB-DLBCL with \(t(14;18)\) correspond to transformed FL, which can not be distinguish morphologically—including by histology, immunohistochemistry, and gene expression profiling—from de novo GCB DLBCL.

Importantly, in studying matched cases, we observed similar phenotype and genotype between primary and relapse biopsies, suggesting that tumor biology of DLBCL is present at time of diagnosis with all characteristics and is stable over the evolution. Therapeutic implications of this observation are important because of the possible use of targeted therapies.

Our results demonstrated that COO is one of the main predictive factors for the response to treatment in patients with relapsed/refractory DLBCL treated by a nonanthracycline-based immunochecmotherapy. This finding has already been suggested in first-line therapy.\(^{20,33,34}\) However, this finding remains controversial, and others authors have not reported any differences.\(^{35}\) This controversy may be explained by these differences: retrospective analyses gather different population of patients, different treatment protocols (R-CHOP, DA-EPOCH with sequential rituximab or concurrent rituximab) can be used, and there was a relatively short follow-up period.\(^{36}\) One important issue is also the accuracy of immunohistochemical determination of tumor phenotype. Validation with gene expression profiling is an important control. These limitations have been well reported by the Lunenbourg Lymphoma Biomarker Consortium study.\(^{37,38}\) In this study, even if the series of patients analyzed by gene expression profiling was small, we could confirm by gene expression profiling a survival benefit under R-DHAP treatment in patients who had GCB-like DLBCL compared with patients who had ABC-like DLBCL.

![Fig 1.](image-url) (A, B) Progression-free survival (PFS) and (C, D) overall survival (OS) according to the (A, C) rituximab, dexamethasone, high-dose cytarabine, and cisplatin (R-DHAP) versus (B, D) rituximab, ifosfamide, carboplatin, and etoposide (R-ICE) treatment arms (ie, Collaborative Trial in Relapsed Aggressive Lymphoma [CORAL] first-line therapy.\(^{20,33,34}\) However, this finding remains controversial, and others authors have not reported any differences.\(^{35}\) This controversy may be explained by these differences: retrospective analyses gather different population of patients, different treatment protocols (R-CHOP, DA-EPOCH with sequential rituximab or concurrent rituximab) can be used, and there was a relatively short follow-up period.\(^{36}\) One important issue is also the accuracy of immunohistochemical determination of tumor phenotype. Validation with gene expression profiling is an important control. These limitations have been well reported by the Lunenbourg Lymphoma Biomarker Consortium study.\(^{37,38}\) In this study, even if the series of patients analyzed by gene expression profiling was small, we could confirm by gene expression profiling a survival benefit under R-DHAP treatment in patients who had GCB-like DLBCL compared with patients who had ABC-like DLBCL.
However, the present findings were retrospectively observed and should be cautiously considered as hypothesis generating. Definitive observation of the survival benefit under R-DHAP treatment in patients with GCB-like DLBCL have to be performed by prospective randomized trials that are based on a COO stratification.

Understanding the relationship of tumor biology to outcome is important for the identification of molecular targets and for improvement of therapy. The hypothesis as proposed by Wilson et al.20 for a different result of DA-EPOCH with a better efficacy in GCB-like DLBCL than in ABC-like DLBCL was due to a prolonged exposure of agents, particularly topoisomerase II inhibitors.20 Our results did not support this hypothesis, as the best results were obtained with cytarabine in GCB-like DLBCL and not with etoposide. However, drug combinations and regimen schedules were also different, and this could be of importance. The BCL6 oncogenic transcriptional repressor is required for the development of germinal center centroblasts and directly represses TP53.39 One can hypothesize that cytarabine might modulate BCL6 expression through epigenetic mechanisms to allow the release of TP53. Dexamethasone known for inducing apoptosis in leukemia cells, via mechanisms that are yet unknown, might also act differently in function of the COO. In contrast, the poor outcome of ABC-like DLBCL, might relate to the constitutive activation of the nuclear factor kappa \(\beta \) pathway.7,40,41 Inhibition of nuclear factor kappa \(\beta \) and blockade of its ability to inhibit apoptosis in ABC cell lines is toxic, and recent clinical evidence suggests that the ABC-like DLBCL can be preferentially targeted (over the GCB-like DLBCL) by strategies that block I kappa \(\beta \) degradation.6,7,34,40

In conclusion, COO remains a major factor in patients who experienced disease relapse and who have a better response to R-DHAP salvage chemotherapy in GCB-like DLBCL. Treatment of the ABC subtype is still unsatisfactory, with a classical multidrug regimen. Our study highlights the pivotal role of tumor biology in the rational design of targeted therapies in DLBCL and the importance of well-designed prospective studies.

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Although all authors completed the disclosure declaration, the following author(s) indicated a financial or other interest that is relevant to the subject matter under consideration in this article. Certain relationships marked with a “U” are those for which no compensation was received; those relationships marked with a “C” were compensated. For a detailed description of the disclosure categories, or for more information about

Fig 2. Progression-free survival (FFS; A, B) and overall survival (OS; C, D) according to the treatment and germinal center B (GCB)/activated B-cell (ABC) status as classified by the gene predictor on the basis of gene signatures published by Alizadeh et al.3 Blue lines indicate patients with a GCB profile (n = 19; 51%). Gold lines indicate patients with an ABC profile (n = 18; 49%). Patients with GCB-like diffuse large B-cell lymphoma (DLBCL) treated with rituximab, dexamethasone, high-dose cytarabine, and cisplatin (R-DHAP) had a significant better (A) FFS and (C) OS than patients with ABC-like DLBCL treated with R-DHAP. Patients treated with (B, D) rituximab, ifosfamide, carboplatin, and etoposide (R-ICE) had poor survival regardless of the molecular subtype.
Thieblemont et al

Provision of study materials or patients: Catherine Thieblemont, Andreas Rosenwald, Andrew Jack, Christer Sundstrom, Sergio Cogliatti, Philippe Trouougoboff, Ludmila Boudova, Loic Ysebaert, Dominique Bron, Norbert Schmitz, Philippe Gaulard, Christian Gisselbrecht

Manuscript writing: All authors

Final approval of manuscript: All authors

REFERENCES

Affiliations

Catherine Thieblemont, Assistance Publique-Hôpitaux de Paris, Hôpital Saint Louis, Hematology; Catherine Thieblemont, Josette Briere, INSERM U728, Institut Universitaire d’hématologie, Paris VII; Catherine Thieblemont, Josette Briere, Nicolas Mounier, Philippe Gaulard, Christian Gisselbrecht, Groupe d’Etude des Lymphomes de l’Adulte; Josette Briere, Assistance Publique-Hôpitaux de Paris, Hôpital Saint Louis, Anatomie Pathologie; Wendy Cuccuini, Jean Soulier, Assistance Publique-Hôpitaux de Paris, Hôpital Saint Louis, Hematologie biologique, Paris; Nicolas Mounier, CHU de l’Arche–Hematology, Nice; Edouard Hirchau, Catherine Chevalier, Remi Houlgatte, INSERM U533, Institut du thorax, Faculté de Médecine, Université de Nantes, Nantes; Loïc Ysebaert, Service d’Hématologie CHU Purpan, Toulouse; Philippe Gaulard, Assistance Publique-Hôpitaux de Paris, Hopital Henri Mondor, Pathology, Créteil, France; Hans-Ullrich Voelker, Andreas Rosenwald, Institute of Pathology, University of Wuerzburg, Wuerzburg; Norbert Schmitz, ASKLEPIOS Klinik St Georg, Hamburg, Germany; Andrew Jack, University College London Hospital, London, United Kingdom; Christer Sundstrom, Uppsala University Hospital, Uppsala, Sweden; Sergio Cogliatti, St Gallen, Switzerland; Philippe Troughouboff, Emek Medical Center, Afula, Technion-Haifa, Israel; Ludmila Boudova, Medical Faculty Hospital, Charles University, Pilsen, Czech Republic; and Dominique Bron, Institut Jules Bordet, Service Hématologie, Bruxelles, Belgium.
Rituximab Maintenance Therapy After Autologous Stem-Cell Transplantation in Patients With Relapsed CD20\(^+\) Diffuse Large B-Cell Lymphoma: Final Analysis of the Collaborative Trial in Relapsed Aggressive Lymphoma

ABSTRACT

Purpose
The standard treatment for relapsed diffuse large B-cell lymphoma (DLBCL) is salvage chemotherapy followed by high-dose therapy and autologous stem-cell transplantation (ASCT). The impact of maintenance rituximab after ASCT is not known.

Patients and Methods
In total, 477 patients with CD20\(^+\) DLBCL who were in their first relapse or refractory to initial therapy were randomly assigned to one of two salvage regimens. After three cycles of salvage chemotherapy, the responding patients received high-dose chemotherapy followed by ASCT. Then, 242 patients were randomly assigned to either rituximab every 2 months for 1 year or observation.

Results
After ASCT, 122 patients received rituximab, and 120 patients were observed only. The median follow-up time was 44 months. The 4-year event-free survival (EFS) rates after ASCT were 52% and 53% for the rituximab and observation groups, respectively (\(P = .7\)). Treatment with rituximab was associated with a 15% attributable risk of serious adverse events after day 100, with more deaths (six deaths v three deaths in the observation arm). Several factors affected EFS after ASCT (\(P < .05\)), including relapsed disease within 12 months (EFS: 46% v 56% for relapsed disease after 12 months), secondary age-adjusted International Prognostic Index (saaIPI) more than 1 (EFS: 37% v 61% for saaIPI < 1), and prior treatment with rituximab (EFS: 47% v 59% for no prior rituximab). A significant difference in EFS between women (63%) and men (46%) was also observed in the rituximab group. In the Cox model for maintenance, the saaIPI was a significant prognostic factor (\(P < .001\)), as was male sex (\(P = .01\)).

Conclusion
In relapsed DLBCL, we observed no difference between the control group and the rituximab maintenance group and do not recommend rituximab after ASCT.

J Clin Oncol 30. © 2012 by American Society of Clinical Oncology

INTRODUCTION

The addition of the anti-CD20 monoclonal antibody rituximab to various chemotherapies\(^1-3\) has dramatically improved the response rates in diffuse large B-cell lymphoma (DLBCL) and has resulted in complete responses (CRs) in 75% to 80% of patients. The use of rituximab in first-line treatment improves the overall survival (OS), the 5-year event-free survival (EFS) from 29% to 47% in older patients (60 to 80 years),\(^4\) and the 3-year EFS from 59% to 79% in younger patients (18 to 60 years).\(^5\) However, patients with a poor International Prognostic Index (IPi) require more effective treatment options because they have an unsatisfactory CR rate and a high relapse rate.\(^6,7\) In patients who do not achieve a CR or who experience relapse but remain sensitive to salvage chemotherapy, the therapy should be consolidated with high-dose therapy (HDT) and autologous stem-cell transplantation (ASCT).\(^8\) Even in
the rituximab era,9 only 10\% of these patients obtain long-term disease-free survival with salvage chemotherapy alone.10 The addition of rituximab to second-line chemotherapy followed by ASCT significantly improves progression-free survival (PFS) in patients who do not receive rituximab in their first-line treatment.11

Maintenance treatment has been used successfully in relapsed follicular lymphoma.12 Furthermore, maintenance treatment after ASCT showed some encouraging results in refractory DLBCL,13,14 but a randomized study in first-line treatment revealed no significant survival advantage.15

The Collaborative Trial in Relapsed Aggressive Lymphoma (CORAL) study was organized among 12 countries. In this study, patients with refractory or relapsed CD20− DLBCL were randomly assigned to either rituximab, ifosfamide, carboplatin, and etoposide (R-ICE)16 or rituximab, dexamethasone, cytarabine, and cisplatin (R-DHAP).17 Patients who responded to the chemotherapy were submitted to HDT and ASCT. The initial results18 revealed no significant difference in outcome between the two regimens. However, several factors did affect survival, including early relapse (< 12 months), the IPI at relapse, and prior exposure to rituximab. The results of the post-transplantation part of the trial, comparing rituximab treatment every 2 months for 1 year with observation alone, and the factors that influenced patient outcome are reported herein.

PATIENTS AND METHODS

This study was a phase III, multicenter, randomized trial that compared the efficacy of R-ICE and R-DHAP in patients with previously treated DLBCL followed by ASCT with or without rituximab maintenance therapy. There were two separate random assignments for salvage therapy and maintenance therapy after transplantation.18 The present report focuses on the primary end point for the maintenance phase.

Patients were stratified according to participating country, prior rituximab treatment, and relapse within 12 months of diagnosis. The primary end point was EFS, and the secondary end points included response rate, PFS, OS, and toxicities. To detect a 15\% change in the 2-year EFS after ASCT in the maintenance therapy arm (65\%) versus no maintenance therapy (50\%) and to provide an 80\% power at the overall 5\% (two-sided) significance level, power analyses revealed that 240 patients who underwent ASCT were required for a 1:1 random assignment into two treatment groups over 3 years and that they should be observed for a minimum of 2 years. The expected number of events during a 3-year period was 140 events. This sample size takes drop-out rates as a result of the salvage treatment and transplantation procedure into account. Initially, we expected a 40\% drop-out rate, but this estimate was adjusted to 50\% after the first interim analysis of 200 patients. As suggested by the data monitoring committee in May 2007, the initial sample size was amended from 400 to 480 participants to maintain the planned power with 240 patients (Data Supplement).

This study was designed by the steering committee of CORAL and approved by the relevant institutional review boards or ethics committees. All patients gave written informed consent. The study is registered under EUDRACT No. 2004-002103-32 and ClinicalTrials.gov NCT00137995.

Patients

In brief, the CORAL study included patients 18 to 65 years old with aggressive CD20+ B-cell lymphoma, including DLBCL with relapse or patients who did not achieve CR using a standard anthracycline-based (eg, cyclophosphamide, doxorubicin, vincristine, and prednisone) regimen. All patients underwent histologic confirmation of CD20+ aggressive B-cell lymphoma before enrollment. Eligible patients had a WHO performance status of 0 to 1. Exclusion criteria included CNS involvement, history of HIV infection, post-transplantation lymphoproliferative disorder, and inadequate organ function. Patients were fully evaluated, including computed tomography (CT) scanning of the thorax and abdomen and bone marrow biopsy. The secondary age-adjusted IPI (saaIPI) was determined according to the absence or presence of risk factors, poor performance status, elevated lactate dehydrogenase, and disseminated stage before salvage treatment.19,20 Patient enrollment occurred between July 2003 and June 2008, and the last patient was randomly assigned in the maintenance phase of the study in October 2008. In total, 481 patients were randomly assigned to the R-ICE arm (n = 243) or the R-DHAP arm (n = 234; Fig 1). A total of 255 patients who achieved CR (n = 142), partial response (PR; n = 92), or stable disease (n = 7) after the third cycle of salvage treatment received consolidation with ASCT, and 242 patients received maintenance rituximab (n = 122) or observation (n = 120; Fig 1).

Characteristics at the second random assignment are listed in Table 1. Patient characteristics at entry for all patients are provided in the Data Supplement. No significant differences between the two arms were observed. Histologic materials were reviewed by local hematopathologists in the participating centers. An international central review was performed in 69\% of the patients, and 18 patients were not reviewed as having DLBCL (two patients had follicular lymphoma grade 3, five patients had follicular lymphoma grade 2, two patients had T-cell lymphoma, two patients had Hodgkin lymphoma, and seven patients remained unclassified).

Treatment

Details of the treatment and monitoring have been published previously.18 Briefly, only chemotherapy-sensitive patients (CR, unconfirmed CR [CRu], or PR) after three cycles of R-ICE16 or R-DHAP17 received a consolidation with high-dose chemotherapy (carmustine, etoposide, cytarabine, and melphalan [BEAM]) followed by ASCT. These patients were randomly assigned to groups with or without rituximab maintenance therapy (375 mg/m2 every 8 weeks for 1 year) on day 28 after ASCT (Fig 2).

Radiotherapy after transplantation was not performed, and it was considered as an event. Supportive treatments were administered according to the standard use in each center.

Assessment of Response and Follow-Up

Response was assessed using conventional diagnostic methods, including CT scanning after the third chemotherapy course. Positron emission tomography scans were not mandatory, and bone marrow biopsies were repeated only if the samples were observed to be abnormal before treatment.

Response was assessed using the International Working Group criteria.21 CR was defined as the disappearance of all documented disease, and CRu was used in cases of residual mass. PR included a 50\% reduction in measurable disease. Follow-up procedures included a physical examination every 3 months for the first year with a complete evaluation at the end or at an earlier time point if clinically indicated. Follow-up procedures were performed every 6 months for 2 years thereafter, and thoracic and abdominal CT scans were performed annually.

Statistical Analysis

Analyses were first performed following the intent-to-treat principle. EFS was defined as the time from treatment initiation to progression, relapse, new treatment, or death by any cause, whichever occurred first. It was considered an event if patients received alternative treatment outside of the protocol. PFS was defined as the time from study entry until disease progression or death by any cause. OS was defined as the time from treatment initiation to death by any cause.

Survival functions were estimated using the Kaplan-Meier method and compared using the log-rank test. Multivariate analyses
were performed using a Cox proportional hazards model. Differences between the results of comparative tests were considered significant if the two-sided $P < .05$. All statistical analyses were performed using SAS version 9.1.3 software (SAS Institute, Cary, NC).

RESULTS

Response to Treatment

The overall response rate (CR + CRu + PR) after salvage chemotherapy and before transplantation was 63% in the R-ICE group and 64% in R-DHAP group, with 142 patients (58%) experiencing CR or CRu and 92 patients (38%) exhibiting PR before ASCT. For patients with prior exposure to rituximab and progression within 12 months of diagnosis, the overall response rate was 46% (Data Supplement).

A total of 245 patients received BEAM and ASCT, and 242 evaluable patients were randomly assigned to either the treatment group (Fig 2, Table 1) with rituximab or the observation-only group. In the treatment group, 78 patients (67%) received all six cycles; new progression of the disease was the primary reason for patients not completing the full treatment. At the end of the maintenance therapy, the CR rates were 57% and 50% for the rituximab and observation groups, respectively, including all deaths.

Survival

After a median follow-up of 44 months for the 469 patients who were enrolled, no difference was detected between the treatment and control arms of the study. The 4-year OS was 43% (95% CI, 36% to 50%) for the R-ICE arm and 34% (95% CI, 36% to 50%) in the R-DHAP arm ($P = .2$; Appendix Figs A1A and A1B, online only).

Considering only patients who received ASCT and were randomly assigned to the maintenance arm after ASCT, the 4-year EFS was 52% (95% CI, 42% to 61%) in the rituximab group and 53% (95% CI, 44% to 62%) in the observation group ($P = .7$; Fig 3A). We observed no difference in the PFS ($P = .8$) or OS between the rituximab group and the observation group (Table 2). We also observed no significant difference between the patients who achieved CR or PR before ASCT (Table 2, Fig 3B).

The 4-year EFS, PFS, and OS after ASCT were affected by a number of factors, including prior treatment with rituximab, early relapse, and saaIPI (Table 2, Figs 3C and 3D). However, the Cox model revealed that only an saaIPI of 2 to 3 remained significant ($P < .001$) for the EFS, PFS, and OS. Men performed significantly poorer than women (Table 2), a finding that was related to the superior survival of women in the rituximab group (Figs 4A to 4C). Additional subset analyses are included in the Data Supplement. In the multivariate analyses of PFS, male sex ($P = .01$) and saaIPI ($P < .001$) remained significant prognostic factors. Treatment arm, early relapse, prior rituximab exposure, and PR were no longer significant factors (Data Supplement). However, in a subset analysis based on sex that compared the rituximab and observation groups, the 3-year EFS was 43% (95% CI, 31% to 54%) in men and 69% (95% CI, 53% to 81%) in women ($P = .1$; Data Supplement).

Relapse and Progression

The first progression or relapse was observed in 47 and 46 patients in the rituximab and observation groups, respectively, among 469 patients who were enrolled in the study. The 4-year DFS was 52% (95% CI, 42% to 61%) in the rituximab group and 53% (95% CI, 44% to 62%) in the observation group ($P = .7$; Appendix Figs A1A and A1B, online only).

A total of 245 patients received BEAM and ASCT, and 242 evaluable patients were randomly assigned to either the treatment group (Fig 2, Table 1) with rituximab or the observation-only group. In the treatment group, 78 patients (67%) received all six cycles; new progression of the disease was the primary reason for patients not completing the full treatment. At the end of the maintenance therapy, the CR rates were 57% and 50% for the rituximab and observation groups, respectively, including all deaths.

Survival

After a median follow-up of 44 months for the 469 patients who were enrolled, no difference was detected between the treatment and control arms of the study. The 4-year OS was 43% (95% CI, 36% to 50%) for the R-ICE arm and 34% (95% CI, 36% to 50%) in the R-DHAP arm ($P = .2$; Appendix Figs A1A and A1B, online only).

Considering only patients who received ASCT and were randomly assigned to the maintenance arm after ASCT, the 4-year EFS was 52% (95% CI, 42% to 61%) in the rituximab group and 53% (95% CI, 44% to 62%) in the observation group ($P = .7$; Fig 3A). We observed no difference in the PFS ($P = .8$) or OS between the rituximab group and the observation group (Table 2). We also observed no significant difference between the patients who achieved CR or PR before ASCT (Table 2, Fig 3B).

The 4-year EFS, PFS, and OS after ASCT were affected by a number of factors, including prior treatment with rituximab, early relapse, and saaIPI (Table 2, Figs 3C and 3D). However, the Cox model revealed that only an saaIPI of 2 to 3 remained significant ($P < .001$) for the EFS, PFS, and OS. Men performed significantly poorer than women (Table 2), a finding that was related to the superior survival of women in the rituximab group (Figs 4A to 4C). Additional subset analyses are included in the Data Supplement. In the multivariate analyses of PFS, male sex ($P = .01$) and saaIPI ($P < .001$) remained significant prognostic factors. Treatment arm, early relapse, prior rituximab exposure, and PR were no longer significant factors (Data Supplement). However, in a subset analysis based on sex that compared the rituximab and observation groups, the 3-year EFS was 43% (95% CI, 31% to 54%) in men and 69% (95% CI, 53% to 81%) in women ($P = .1$; Data Supplement).
during the follow-up period. Although this occurrence was at the initial site, half included a new site of involvement. These patients underwent various additional treatments, including radiotherapy (25%) and chemotherapy (76%) with transplantation (14 allografts; Data Supplement). A second CR was observed in 21 patients and a PR in 13 patients.

The majority of deaths were a result of lymphoma. Forty-three deaths occurred in the rituximab group, and 17 of these deaths occurred within 1 year after the transplantation. Thirty-eight deaths occurred in the observation group, and 19 occurred within 1 year after ASCT.

Adverse Events

The treatment was well tolerated, and the reported events were separated into those that occurred before day 100 after ASCT and those that occurred after day 100. A total of 87 adverse events (AEs) were reported in 54 patients (47%) within 100 days in the rituximab group, whereas 75 AEs were reported in 50 patients (42%) in the observation group. A total of 75 AEs were reported in 35 patients (30%) in the rituximab group more than 100 days after ASCT, whereas 24 AEs were observed in 20 patients (17%) in the observation group. The majority of the AEs were infections; 45 episodes of infection were reported in the rituximab group, and 13 episodes were reported in the observation group. Grade 3 or greater delayed neutropenia after day 100, excluding values after additional treatment, was reported in 11 patients (9%) in the rituximab group and in seven patients (6%) in the observation group.

Forty-three serious AEs (SAEs) were reported in the rituximab group, and 22 SAEs were reported in the observation group. After day 100, 23 SAEs were reported in the rituximab arm, and only five were reported in the observation group. Fatal outcomes were observed in six patients in the rituximab group and three patients in the observation group; four deaths resulted from secondary cancers (two in the rituximab group and two in the observation group), one death resulted from varicella and one death resulted from myocarditis several months after the end of the treatment, and three deaths resulted from infections and pneumonia.

DISCUSSION

The present results demonstrate a similar response rate of 63% for the two initial chemotherapy regimens over a 4-year follow-up, but only 37% of the patients attained CR. In addition, only 51% of patients were able to undergo ASCT. We did not observe a difference in the

Table 1. Baseline Demographic and Clinical Characteristics of the Patients Randomly Assigned for Maintenance (Intent to Treat)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Rituximab (n = 122)</th>
<th>Observation (n = 120)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>54</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>19-65</td>
<td>19-65</td>
<td></td>
</tr>
<tr>
<td>< 40</td>
<td>17</td>
<td>22</td>
<td>NS</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>76</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>46</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Body mass index, kg/m²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>25.8</td>
<td>26.7</td>
<td>NS</td>
</tr>
<tr>
<td>Range</td>
<td>17.3-36.8</td>
<td>18.3-45.2</td>
<td></td>
</tr>
<tr>
<td>> 30</td>
<td>21</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Ann Arbor stage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-II</td>
<td>53</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>III-IV</td>
<td>69</td>
<td>71</td>
<td>NS</td>
</tr>
<tr>
<td>Extranal site > 1</td>
<td>30</td>
<td>30</td>
<td>NS</td>
</tr>
<tr>
<td>Bone marrow involvement</td>
<td>13</td>
<td>8</td>
<td>NS</td>
</tr>
<tr>
<td>Elevated LDH</td>
<td>54</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>Response after salvage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>therapy</td>
<td>CR + CRu</td>
<td>73</td>
<td>69</td>
</tr>
<tr>
<td>PR</td>
<td>47</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Stable disease</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>saaIPI at relapse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-1</td>
<td>84</td>
<td>81</td>
<td>NS</td>
</tr>
<tr>
<td>2-3</td>
<td>36</td>
<td>36</td>
<td>NS</td>
</tr>
<tr>
<td>Time to relapse, months</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 12*</td>
<td>33</td>
<td>41</td>
<td>NS</td>
</tr>
<tr>
<td>≥ 12</td>
<td>89</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>Prior rituximab treatment</td>
<td>63</td>
<td>62</td>
<td>NS</td>
</tr>
<tr>
<td>Prior CHOP-like first-line</td>
<td>102</td>
<td>100</td>
<td>NS</td>
</tr>
<tr>
<td>chemotherapy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salvage regimen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-ICE</td>
<td>60</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>R-DHAP</td>
<td>62</td>
<td>64</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: CHOP, cyclophosphamide, doxorubicin, vincristine, and prednisone; CR, complete response; CRu, uncertain complete response; LDH, lactate dehydrogenase; NS, not significant; PR, partial response; R-DHAP, rituximab, high-dose cytarabine, and cisplatin; R-ICE, rituximab, ifosfamide, carboplatin, and etoposide; SD, stable disease.

*Including patients not achieving CR in first-line treatment.
survival rates between the two treatment regimens after ASCT. In the multivariate analysis for maintenance, the hazard ratio for R-ICE was 1.47 (95% CI, 0.98 to 2.2; $P = 0.06$). This trend of an improved outcome for R-DHAP (Appendix Fig A1) may reflect the observed preference for the germinal center B subtype for this regimen in the subset analysis.22

The objective of the second part of this study was to test the hypothesis that rituximab treatment after transplantation would reduce the relapse rate in these patients. Although patients who received HDT with BEAM and ASCT were randomly assigned to either rituximab or the observation group, no difference was observed between these two groups (Fig 3). However, the toxicity was increased by 15% in reported SAEs in the rituximab arm after day 100 after ASCT, with an excess of deaths by infections that was most likely related to immunodeficiency. Only 10% of patients in the rituximab-treated group experienced delayed neutropenia, which was not significantly different from patients in the observation arm. Maintenance rituximab therapy after ASCT has been evaluated over different durations and treatment strategies, but it has been primarily examined in the context of short treatment courses administered soon after transplantation.13-15 The increase in toxicity that was observed after this treatment raises concerns about prolonging immunodeficiency after ASCT and leads us to propose only 1 year of treatment, rather than the 2 years of treatment recommended in cases of follicular lymphoma.

This first randomized study does not support the promising results that had been described in two phase II studies after ASCT.13,14 These results are consistent with our randomized study of high-risk DLBCL where 269 patients were randomly assigned to either an observation-only control group or a treatment group who received 4 weekly injections of rituximab after transplantation,15 which found that rituximab treatment lacked efficacy. These results are also consistent with those of the Intergroup study,3 which reported that maintenance therapy had no impact on patients who had previously been exposed to rituximab. The duration of the maintenance therapy does not explain these results because 50% of the relapses after ASCT occurred during the maintenance period. Rituximab alone has limited activity in DLBCL, and its role is mostly related to chemotherapy sensitization of the lymphoma by different mechanisms that are not completely understood.23

The previously described factors that affected the outcome of patients who received transplantation were also identified in our univariate analysis (Table 2). The saaIPI score was the only significant variable that was associated with male sex in the multivariate analyses.
Male sex is an adverse prognostic factor in follicular lymphomas and DLBCL in the rituximab era.24,25 One striking observation in the present study was the significant survival difference between women and men who received rituximab maintenance therapy. This disparity cannot be explained by the underlying sex-related mortality hazard (ie, the natural 5- to 10-year survival advantage of women over men in the general population) because no such sex difference was observed in the observation arm. A higher rituximab clearance in males, which results in lower rituximab exposure, has been reported previously.24 These results are similar to the findings of Ng et al26 in a population approach examining the outcome of rituximab in patients with rheumatoid arthritis. These investigators also observed a 39% greater clearance of rituximab in men than in women. In our study, the impact of rituximab was obscured in overweight postmenopausal women who presented higher testosterone levels as a result of hyperinsulinism.27 Therefore, we hypothesize that the lower survival impact of rituximab that we observed in males may be a result of hormone-related pharmacokinetic variations. Thus, the impact of an increased dose of rituximab on survival requires further investigation using randomized studies.

<table>
<thead>
<tr>
<th>Table 2. Prognostic Factors at the Second Random Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>Arm</td>
</tr>
<tr>
<td>Rituximab</td>
</tr>
<tr>
<td>Observation</td>
</tr>
<tr>
<td>R-ICE</td>
</tr>
<tr>
<td>Rituximab</td>
</tr>
<tr>
<td>Observation</td>
</tr>
<tr>
<td>R-DHAP</td>
</tr>
<tr>
<td>Rituximab</td>
</tr>
<tr>
<td>Observation</td>
</tr>
<tr>
<td>Prior rituximab</td>
</tr>
<tr>
<td>Yes</td>
</tr>
<tr>
<td>No</td>
</tr>
<tr>
<td>Treatment failure, months</td>
</tr>
<tr>
<td>< 12</td>
</tr>
<tr>
<td>≥12</td>
</tr>
<tr>
<td>saaIPI</td>
</tr>
<tr>
<td>0-1</td>
</tr>
<tr>
<td>2-3</td>
</tr>
<tr>
<td>Response</td>
</tr>
<tr>
<td>CR + CRu</td>
</tr>
<tr>
<td>PR</td>
</tr>
<tr>
<td>Sex</td>
</tr>
<tr>
<td>Male</td>
</tr>
<tr>
<td>Female</td>
</tr>
<tr>
<td>Rituximab arm</td>
</tr>
<tr>
<td>Male</td>
</tr>
<tr>
<td>Female</td>
</tr>
<tr>
<td>Observation arm</td>
</tr>
<tr>
<td>Male</td>
</tr>
<tr>
<td>Female</td>
</tr>
</tbody>
</table>

Abbreviations: CR, complete response; CRu, unconfirmed complete response; EFS, event-free survival; OS, overall survival; PFS, progression-free survival; PR, partial response; R-DHAP, rituximab dexamethasone, cytarabine, and cisplatin; R-ICE, rituximab, ifosfamide, carboplatin, and etoposide; saaIPI, secondary age-adjusted International Prognostic Index.

Our data are surprising because no other drugs were involved after ASCT. The role of rituximab in DLBCL requires further analysis, as does the role of sex, in large randomized studies with or without rituximab maintenance. In summary, rituximab maintenance therapy does not prevent relapse after ASCT and was associated with higher toxicity. Therefore,
this treatment is not recommended in relapsed DLBCL. The initial prognostic parameters still apply for patients who receive transplantation. The patient population in this study is representative of patients who will require innovative approaches to treatment in the future. Consequently, new drugs that are designed to increase the response rate of salvage regimens and novel approaches, including allogeneic transplantation, should be explored. An improved understanding of the biology of DLBCL derived at least in part from studies of patient tumor specimens will play a key role in the development of novel targeted therapies for this disease.

Although all authors completed the disclosure declaration, the following author(s) and/or an author's immediate family member(s) indicated a financial or other interest that is relevant to the subject matter under consideration in this article. Certain relationships marked with a “U” are those for which no compensation was received; those relationships marked with a “C” were compensated. For a detailed description of the disclosure categories, or for more information about ASCO's conflict of interest policy, please refer to the Author Disclosure Declaration and the Disclosures of Potential Conflicts of Interest section in Information for Contributors.

Employment or Leadership Position: None Consultant or Advisory Role: Christian Gisselbrecht, Roche (U); Norbert Schnyder, Roche (C); Gilles Salles, Roche (U); Devinder Singh Gill, Millennium/Takeda Company (C); David C. Linch, Chugai Pharmaceutical (C), Roche (C); Andre Bosly, Roche (C); John Radford, Roche (C); Ofer Shpilberg, Roche (C); Gilles Salles, Roche (C); Christian Gisselbrecht, Roche (C). Financial Support: Christian Gisselbrecht, Gilles Salles

Downloaded from jco.ascopubs.org by CHRISTIAN GISSELBRECHT on October 24, 2012 from 81.93.6.33

www.jco.org

REFERENCES

Affiliations

Christian Gisselbrecht and Josette Brière, Hôpital Saint Louis, Paris; Nicolas Mounier, Centre Hospitalier Universitaire de l’Archet, Nice; Noel J. Milpied, Hopital Haut-Leveque, Pessac; Gilles Salles, Hospices Civils de Lyon and Universite ´ de Lyon, Lyon, France; Norbert Schmitz and Bertram Glass, Asklepios Klinik St Georg, Hamburg; Ulrich Dührsen, Universitätsklinikum Essen, Essen; Andreas Viardot, Universitätsklinik Ulm, Ulm, Germany; Devinder Singh Gill, Princess Alexandra Hospital, Woodville, South Australia; David D. Ma, St Vincent’s Hospital Sydney, Darlinghurst, New South Wales; Ray Lowenthal, Royal Hobart Hospital, Tasmania, Australia; David C. Linch, University College London, Cancer Institute, London; John Radford, University of Manchester, Christie Hospital National Health Service Trust, Manchester, United Kingdom; Marek Trenny, Charles University General Hospital, Prague, Czech Republic; Andre Bosly, Université Catholique de Louvain Mont-Godinne, Yvoir, Belgium; Nicolas Ketterer, Clinique Bois-Cerf, Lausanne, Switzerland; Ofer Shpilberg, Davidoff Center, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel; Hans Hagberg, Akademiska Sjukhuset, Uppsala, Sweden; and Craig H. Moskowitz, Memorial Sloan-Kettering Cancer Center, New York, NY.

Acknowledgment

We thank the Groupe d’Etude des Lymphomes de l’Adulte Recherche Clinique for coordinating the study; Camille Pitrou, Fabienne Morand, Marion Fournier, Laurence Girard, and the project leaders from the different countries; the data safety committee (Marc Buysse, Massimo Federico, Armando Guillermo-Lopez); American Journal Experts for reviewing English; Catherine Druong for preparing manuscript; and all investigators and pathologists (Appendix).

Appendix

Overall Survival (proportion)

<table>
<thead>
<tr>
<th>Time (months)</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Survival (proportion)</td>
<td>1.0</td>
<td>0.8</td>
<td>0.6</td>
<td>0.4</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

P = .2672

Arm A/R-ICE

Arm B/R-DHAP

No. of Patients: 239

Event: 71% (170)

Censored: 29% (69)

Median Survival (95% CI): 6.51 (4.99 to 9.92)

No. of Patients: 230

Event: 67% (153)

Censored: 33% (77)

Median Survival (95% CI): 7.49 (5.82 to 12.71)

P = .338

Arm A/R-ICE

Arm B/R-DHAP

No. of Patients: 239

Event: 52% (125)

Censored: 48% (114)

Median Survival (95% CI): 34.53 (23.85 to 51.42)

No. of Patients: 230

Event: 49% (112)

Censored: 51% (118)

Median Survival (95% CI): 58.97 (23.23 to NA)

Fig A1. (A) Event-free survival (EFS) according to treatment arm from induction treatment. (B) Overall survival (OS) according to treatment arm (induction intent to treat). NA, not available; R-DHAP, rituximab, dexamethasone, high-dose cytarabine, and cisplatin; R-ICE, rituximab, ifosfamide, carboplatin, and etoposide.
PROTOCOL CORAL: 50-03B / STATISTICAL REPORT:
ANALYSIS OF INDUCTION PART

RANDOMIZED STUDY OF ICE PLUS RITUXIMAB (R-ICE) versus DHAP PLUS RITUXIMAB
(R-DHAP) IN PREVIOUSLY TREATED PATIENTS WITH CD 20 POSITIVE DIFFUSE LARGE B-
CELL LYMPHOMA, ELIGIBLE FOR TRANSPLANTATION FOLLOWED BY RANDOMIZED
MAINTENANCE TREATMENT WITH RITUXIMAB

Phase III clinical trial

SPONSOR:

GELARC : Groupe d'Étude des Lymphomes de l’Adulte – Recherche Clinique

📍: CHU Saint Louis – Centre Hayem – 75475 Paris cedex 10 - France
📞 : +33(0)1 42 49 98 11 Fax : +33(0)1 42 49 99 72

INTERGROUP PROTOCOL COORDINATOR/CHAIRMAN:

Pr Christian Gisselbrecht
Hôpital Saint Louis – Centre Hayem
1, avenue Claude Vellefaux 75010 Paris - France
📞: +33 (0)1 42 49 98 11
Fax : +33 (0)1 42 49 99 72
christian.gisselbrecht@sls.ap-hop-paris.fr

BIOSTATISTICS:

Marion FOURNIER
GELARC
CH Lyon Sud Bât. 6D
69310 Pierre-Bénite - France
📞: +33 (0)4 72 66 93 33
Fax : +33 (0)4 72 66 93 71
marion.fournier@gelarc.org
Table of contents

1. INVESTIGATIONAL PLAN .. 14
 1.1. Overall study design .. 14
 1.2. Study objectives ... 14
 1.2.1. Primary objective .. 14
 1.2.2. Secondary objectives ... 14
2. STATISTICAL METHODOLOGY ... 14
 2.1. Statistical methods .. 14
 2.2. Determination of sample size .. 15
 2.3. Interim analysis ... 15
3. STUDY PATIENTS .. 16
 3.1. Disposition of patients ... 16
 3.2. Patients recruitment ... 19
 3.3. Protocol deviations .. 22
 3.3.1. Protocol violations .. 22
 3.3.2. Withdrawals ... 22
4. EFFICACY EVALUATION .. 23
 4.1. Eligible patients for analysis ... 23
 4.2. Baseline data .. 27
 4.2.1. Demography ... 27
 4.2.2. Initial diagnosis .. 28
 4.2.3. Initial treatment ... 33
 4.2.4. Progression/relapse diagnosis ... 34
 4.2.5. Medical history .. 41
 4.2.6. Concomitant treatments ... 41
 4.3. Evaluation after induction treatment ... 42
 4.4. Follow-up .. 43
 4.5. Efficacy results .. 44
 4.5.1. Primary criterion .. 44
 4.5.2. Secondary criteria .. 48
 4.5.2.1. Mobilization .. 48
 4.5.2.2. Consolidation treatment: BEAM+ASCT .. 49
 4.5.2.3. Event-Free Survival .. 51
 4.5.2.4. Progression-Free Survival ... 54
 4.5.2.5. Overall Survival ... 56
 4.5.2.6. Event-Free Survival of patients submitted to ASCT .. 59
 4.5.2.7. Progression-Free Survival of patients submitted to ASCT .. 62
 4.5.2.8. Overall Survival of patients submitted to ASCT ... 64
 4.5.3. Exploratory analyses ... 67
 4.5.3.1. According to prior rituximab .. 68
 4.5.3.2. According to failure from diagnosis ... 75
 4.5.3.3. According to prior rituximab and failure from diagnosis ... 84
 4.5.3.4. According to age-adjusted IPI .. 94
 4.5.3.5. Multivariate models .. 99
 4.5.3.6. According to response to induction (CR/CRu vs PR) .. 100
 4.5.3.7. According to PET after induction .. 105
 4.5.4. Non study or new treatment out of progression ... 109
 4.5.5. Progression/relapse .. 110
5. SAFETY EVALUATION .. 114
 5.1. Extent of exposure to trial medication ... 114
 5.2. Adverse events ... 122
 5.2.1. Overview of toxicity profile .. 122
 5.2.2. Description of adverse events .. 127
 5.2.3. Corrective treatments .. 137
 5.3. Deaths and other serious adverse events .. 138
 5.3.1. Serious adverse events ... 138
 5.3.1.1. Description of serious adverse events .. 138
 5.3.1.2. Corrective treatments ... 146
 5.3.2. Deaths ... 147
 5.4. Clinical laboratory evaluation .. 161
 5.5. Vitals signs, physical finding and other observations related to safety 163
6. TABLES, LISTINGS AND FIGURES NOT INCLUDED IN THE REPORT ... 164
6.1. Withdrawals ..164
6.2. Initial treatment ..186
6.3. Progression/relapse diagnosis ..189
6.4. Evaluation after complete induction treatment ..198
6.5. Follow-up ...199
6.6. Efficacy results ..201
 6.6.1. Primary criterion ..201
 6.6.2. Secondary criteria ..212
 6.6.3. Non study or new treatment out of progression ...213
 6.6.4. Progression/relapse ...217
6.7. Safety evaluation ..248
 6.7.1. Extent of exposure to trial medication ...248
 6.7.2. Overview of toxicity profile ...255
 6.7.3. Adverse events ..272
 6.7.4. Serious adverse events ..273
 6.7.5. Deaths ...289
 6.7.6. Laboratory tests ..290
 6.7.7. Vital signs ..301
List of Tables, Listings and Figures

Listing 3.1-1 Patients with CRF not recovered ... 16
Figure 3.1-1 Disposition of patients according to arm of 1st randomization 17
Figure 3.1-2 Disposition of patients according to arm of 2nd randomization 18
Table 3.2-1 Criteria exceptions .. 19
Table 3.2-2 Inclusion criteria ... 19
Table 3.2-3 Exclusion criteria ... 20
Listing 3.2-1 Criteria not fulfilled ... 20
Table 3.3-1 Withdrawals from study ... 22
Table 3.3-2 Period of withdrawal from study ... 22
Table 3.3-3 Reason of withdrawal from study .. 22
Table 4.1-1 Eligible patients for analysis per efficacy populations 24
Table 4.1-2 Eligible patients for analysis per safety populations 25
Listing 4.1-1 Patients excluded from MITT/safety populations 26
Listing 4.1-3 Patients with actual arm for maintenance treatment different from randomized 26
Table 4.2-1 Demography (FAS) .. 27
Table 4.2-2 Age by category and sex ratio (FAS) .. 27
Table 4.2-3 Time between initial diagnosis and 1st randomization (FAS) 28
Table 4.2-4 Time between initial diagnosis and 1st randomization by category (FAS) 28
Table 4.2-5 Characteristics at initial diagnosis (FAS) .. 28
Table 4.2-6 International Prognostic Index and individual factors at initial diagnosis (FAS) 29
Table 4.2-7 p-values of Chi-2 test for individual factors of IPI at initial diagnosis (FAS) 30
Table 4.2-8 Anatomopathological report at initial diagnosis - review (FAS) 31
Table 4.2-9 Anatomopathological report at initial diagnosis – review or if missing, local (FAS) 32
Table 4.2-10 Time between initial treatment and 1st randomization (FAS) 33
Table 4.2-11 Characteristics of initial treatment (FAS) ... 33
Table 4.2-12 Response at 1st line (FAS) ... 34
Table 4.2-13 p-value of Chi-2 test for response after 1st line (FAS) 34
Table 4.2-14 Time intervals with progression/relapse diagnosis (FAS) 34
Table 4.2-15 Characteristics at relapse (FAS) ... 35
Table 4.2-16 Number of extra nodal sites at relapse (FAS) 35
Table 4.2-17 International Prognostic Index and individual factors at relapse (FAS) ... 36
Table 4.2-18 p-values of Chi-2 test for individual factors of IPI at progression/relapse diagnosis (FAS) ... 37
Table 4.2-19 Other characteristics at relapse (FAS) .. 37
Table 4.2-20 Bone marrow biopsy at relapse (FAS) ... 37
Table 4.2-21 PET scan at relapse (FAS) ... 38
Table 4.2-22 Number of sites used for response evaluation at relapse diagnosis (FAS) 38
Table 4.2-23 Anatomopathological report at relapse - review (FAS) 39
Table 4.2-24 Anatomopathological report at relapse – review or if missing, local (MITT) 40
Table 4.2-25 Medical history (FAS) ... 41
Table 4.2-26 Concomitant treatments (FAS) .. 41
Table 4.3-1 Induction – Bone marrow biopsy (induction ITT) 42
Table 4.3-2 Induction – PET scan (induction ITT) .. 42
Table 4.3-3 Induction - Number of sites used for response evaluation (induction ITT) 42
Table 4.4-1 Stopping date (induction ITT) ... 43
Table 4.4-2 Follow-up duration (induction ITT) ... 43
Table 4.5-1 Primary criterion – Response after induction treatment (induction ITT) 44
Table 4.5-2 Primary criterion – Overall Response rate after induction treatment (induction ITT) 44
Table 4.5-3 Primary criterion – Difference between OR rates after induction treatment (induction ITT) 44
Table 4.5-4 Primary criterion – Complete Response rate after induction treatment (induction ITT) 45
Table 4.5-5 Primary criterion – Difference between CR rates after induction treatment (induction ITT) 45
Table 4.5-6 Primary criterion – Response after induction treatment including deaths for all patients (induction ITT)

Table 4.5-7 Primary criterion – Overall Response rate after induction treatment including deaths for all patients (induction ITT)

Table 4.5-8 Primary criterion – Difference between OR after induction treatment including deaths for all patients (induction ITT)

Table 4.5-9 Primary criterion – Complete Response rate after induction treatment including deaths for all patients (induction ITT)

Table 4.5-10 Primary criterion – Difference between CR rates after induction treatment including deaths for all patients (induction ITT)

Table 4.5-11 Primary criterion – Collection failure (induction ITT)

Table 4.5-12 Primary criterion – Reason of collection failure (induction ITT)

Table 4.5-13 Primary criterion – Overall Response Rate adjusted with successful mobilization (induction ITT)

Table 4.5-14 Primary criterion – Mobilization Adjusted Response Rate (induction ITT)

Table 4.5-15 Primary criterion – Difference between Mobilization Adjusted Response Rates (induction ITT)

Table 4.5-16 Mobilization – Collected cells (induction ITT)

Table 4.5-17 Mobilization – Number of collections (induction ITT)

Table 4.5-18 Mobilization – Source of stem cells (induction ITT)

Table 4.5-19 Consolidation – Patients with BEAM and ASCT (induction ITT)

Table 4.5-20 Consolidation – Time intervals with collection and transplantation (induction ITT)

Table 4.5-21 Consolidation – Period of collection (induction ITT)

Table 4.5-22 Secondary criteria – Events for survival analysis (induction ITT)

Figure 4.5-1 Secondary criteria – Event-Free Survival (induction ITT)

Table 4.5-23 Secondary criteria – Duration of Event-Free Survival (induction ITT)

Table 4.5-24 Secondary criteria – Kaplan-Meier estimates for Event-Free Survival (induction ITT)

Figure 4.5-2 Secondary criteria – Event-Free Survival (induction ITT)

Table 4.5-25 Secondary criteria – Duration of Event-Free Survival according to treatment arm (induction ITT)

Table 4.5-26 Secondary criteria – Kaplan-Meier estimates for Event-Free Survival according to treatment arm (induction ITT)

Table 4.5-27 Secondary criteria – Hazard ratio of R-ICE arm for Event-Free Survival (induction ITT)

Figure 4.5-3 Secondary criteria – Progression-Free Survival (induction ITT)

Table 4.5-28 Secondary criteria – Duration of Progression-Free Survival (induction ITT)

Table 4.5-29 Secondary criteria – Kaplan-Meier estimates for Progression-Free Survival (induction ITT)

Figure 4.5-4 Secondary criteria – Progression-Free Survival according to treatment arm (induction ITT)

Table 4.5-30 Secondary criteria – Duration of Progression-Free Survival according to treatment arm (induction ITT)

Table 4.5-31 Secondary criteria – Kaplan-Meier estimates for Progression-Free Survival according to treatment arm (induction ITT)

Table 4.5-32 Secondary criteria – Hazard ratio of R-ICE arm for Progression-Free Survival (induction ITT)

Figure 4.5-5 Secondary criteria – Overall Survival (induction ITT)

Table 4.5-33 Secondary criteria – Duration of Overall Survival (induction ITT)

Table 4.5-34 Secondary criteria – Kaplan-Meier estimates for Overall Survival (induction ITT)

Figure 4.5-6 Secondary criteria – Overall Survival according to treatment arm (induction ITT)

Table 4.5-35 Secondary criteria – Duration of Overall Survival according to treatment arm (induction ITT)

Table 4.5-36 Secondary criteria – Kaplan-Meier estimates for Overall Survival according to treatment arm (induction ITT)
Table 4.5-37 Secondary criteria – Hazard ratio of R-ICE arm for Overall Survival (induction ITT) .. 59
Figure 4.5-7 Secondary criteria – Event-Free Survival (patients with ASCT) ... 59
Table 4.5-38 Secondary criteria – Duration of Event-Free Survival (patients with ASCT) .. 59
Table 4.5-39 Secondary criteria – Kaplan-Meier estimates for Event-Free Survival (patients with ASCT) .. 60
Figure 4.5-8 Secondary criteria – Event-Free Survival according to treatment arm (patients with ASCT) ... 60
Table 4.5-40 Secondary criteria – Duration of Event-Free Survival according to treatment arm (patients with ASCT) .. 60
Table 4.5-41 Secondary criteria – Kaplan-Meier estimates for Event-Free Survival according to treatment arm (patients with ASCT) .. 61
Table 4.5-42 Secondary criteria – Hazard ratio of R-ICE arm for Event-Free Survival (patients with ASCT) ... 61
Figure 4.5-9 Secondary criteria – Progression-Free Survival (patients with ASCT) ... 62
Table 4.5-43 Secondary criteria – Duration of Progression-Free Survival (patients with ASCT) ... 62
Table 4.5-44 Secondary criteria – Kaplan-Meier estimates for Progression-Free Survival (patients with ASCT) ... 62
Figure 4.5-10 Secondary criteria – Progression-Free Survival according to treatment arm (patients with ASCT) ... 63
Table 4.5-45 Secondary criteria – Duration of Progression-Free Survival according to treatment arm (patients with ASCT) ... 63
Table 4.5-46 Secondary criteria – Kaplan-Meier estimates for Progression-Free Survival according to treatment arm (patients with ASCT) ... 63
Table 4.5-47 Secondary criteria – Hazard ratio of R-ICE arm for Progression-Free Survival (patients with ASCT) ... 63
Figure 4.5-11 Secondary criteria – Overall Survival (patients with ASCT) ... 64
Table 4.5-48 Secondary criteria – Duration of Overall Survival (patients with ASCT) ... 64
Table 4.5-49 Secondary criteria – Kaplan-Meier estimates for Overall Survival (patients with ASCT) ... 65
Figure 4.5-12 Secondary criteria – Overall Survival according to treatment arm (patients with ASCT) ... 65
Table 4.5-50 Secondary criteria – Duration of Overall Survival according to treatment arm (patients with ASCT) ... 65
Table 4.5-51 Secondary criteria – Kaplan-Meier estimates for Overall Survival according to treatment arm (patients with ASCT) ... 66
Table 4.5-52 Secondary criteria – Hazard ratio of R-ICE arm for Overall Survival (patients with ASCT) ... 66
Table 4.5-53 Exploratory analyses – Stratification factors (induction ITT) ... 67
Table 4.5-54 Exploratory analyses – p-values of Chi-2 test for stratification factors (induction ITT) ... 67
Table 4.5-55 Exploratory analyses – Characteristics at initial diagnosis according to prior rituximab (induction ITT) ... 68
Table 4.5-56 Exploratory analyses – p-value of Chi-2 test for characteristics at initial diagnosis according to prior rituximab (induction ITT) ... 69
Table 4.5-57 Exploratory analyses – Characteristics at progression/relapse diagnosis according to prior rituximab (induction ITT) ... 69
Table 4.5-58 Exploratory analyses – p-value of Chi-2 test for characteristics at progression/relapse diagnosis according to prior rituximab (induction ITT) ... 70
Table 4.5-59 Exploratory analyses – Overall response rate according to prior rituximab (induction ITT) ... 71
Table 4.5-60 Exploratory analyses – Complete response rate according to prior rituximab (induction ITT) ... 71
Table 4.5-61 Exploratory analyses – Mobilization adjusted response rate according to prior rituximab (induction ITT) ... 71
Table 4.5-62 Exploratory analyses – Univariate analysis for response rates according to prior rituximab (induction ITT) ... 71
Figure 4.5-13 Exploratory analyses – Event-Free Survival according to prior rituximab (induction ITT)
Table 4.5-63 Exploratory analyses – Duration of Event-Free Survival according to prior rituximab (induction ITT)
Table 4.5-64 Exploratory analyses – Kaplan-Meier estimates for Event-Free Survival according to prior rituximab (induction ITT)
Table 4.5-65 Exploratory analyses – Hazard ratio of prior rituximab for Event-Free Survival (induction ITT)
Figure 4.5-14 Exploratory analyses – Progression-Free Survival according to prior rituximab (induction ITT)
Table 4.5-66 Exploratory analyses – Duration of Progression-Free Survival according to prior rituximab (induction ITT)
Table 4.5-67 Exploratory analyses – Kaplan-Meier estimates for Progression-Free Survival according to prior rituximab (induction ITT)
Table 4.5-68 Exploratory analyses – Hazard ratio of prior rituximab for Progression-Free Survival (induction ITT)
Figure 4.5-15 Exploratory analyses – Overall Survival according to prior rituximab (induction ITT)
Table 4.5-69 Exploratory analyses – Duration of Overall Survival according to prior rituximab (induction ITT)
Table 4.5-70 Exploratory analyses – Kaplan-Meier estimates for Overall Survival according to prior rituximab (induction ITT)
Table 4.5-71 Exploratory analyses – Hazard ratio of prior rituximab for Overall Survival (induction ITT)
Table 4.5-72 Exploratory analyses – Characteristics at initial diagnosis according to failure from diagnosis (induction ITT)
Table 4.5-73 Exploratory analyses – p-value of Chi-2 test for characteristics at initial diagnosis according to failure from diagnosis (induction ITT)
Table 4.5-74 Exploratory analyses – Characteristics at progression/relapse diagnosis according to failure from diagnosis (induction ITT)
Table 4.5-75 Exploratory analyses – p-value of Chi-2 test for characteristics at progression/relapse diagnosis according to failure from diagnosis (induction ITT)
Table 4.5-76 Exploratory analyses – Overall response rate according to failure from diagnosis (induction ITT)
Table 4.5-77 Exploratory analyses – Complete response rate according to failure from diagnosis (induction ITT)
Table 4.5-78 Exploratory analyses – Mobilization adjusted response rate according to failure from diagnosis (induction ITT)
Table 4.5-79 Exploratory analyses – Univariate analysis for response rates according to failure from diagnosis (induction ITT)
Figure 4.5-16 Exploratory analyses – Event-Free Survival according to failure from diagnosis (induction ITT)
Table 4.5-80 Exploratory analyses – Duration of Event-Free Survival according to failure from diagnosis (induction ITT)
Table 4.5-81 Exploratory analyses – Kaplan-Meier estimates for Event-Free Survival according to failure from diagnosis (induction ITT)
Table 4.5-82 Exploratory analyses – Hazard ratio of failure from diagnosis for Event-Free Survival (induction ITT)
Figure 4.5-17 Exploratory analyses – Progression-Free Survival according to failure from diagnosis (induction ITT)
Table 4.5-83 Exploratory analyses – Duration of Progression-Free Survival according to failure from diagnosis (induction ITT)
Table 4.5-84 Exploratory analyses – Kaplan-Meier estimates for Progression-Free Survival according to failure from diagnosis (induction ITT)
Table 4.5-85 Exploratory analyses – Hazard ratio of failure from diagnosis for Progression-Free Survival (induction ITT)
Figure 4.5-18 Exploratory analyses – Overall Survival according to failure from diagnosis (induction ITT)
Table 4.5-107 Exploratory analyses – Hazard ratio of age adjusted IPI for Progression-Free Survival (induction ITT)... 97
Figure 4.5-27 Exploratory analyses – Overall Survival according to age adjusted IPI (induction ITT)... 97
Table 4.5-108 Exploratory analyses – Duration of Overall Survival according to age adjusted IPI (induction ITT).. 98
Table 4.5-109 Exploratory analyses – Kaplan-Meier estimates for Overall Survival according to age adjusted IPI (induction ITT)... 98
Table 4.5-110 Exploratory analyses – Hazard ratio of age adjusted IPI for Overall Survival (induction ITT)... 99
Table 4.5-111 Exploratory analyses – Multivariate logistic model for overall response rate (induction ITT)... 99
Table 4.5-112 Exploratory analyses – Multivariate logistic model for complete response rate (induction ITT).. 99
Table 4.5-113 Exploratory analyses – Multivariate logistic model for mobilization adjusted response rate (induction ITT).. 99
Table 4.5-114 Exploratory analyses – Multivariate Cox model for Event-Free Survival (induction ITT).. 99
Table 4.5-115 Exploratory analyses – Multivariate Cox model for Progression-Free Survival (induction ITT)... 100
Table 4.5-116 Exploratory analyses – Multivariate Cox model for Overall Survival (induction ITT).. 100
Figure 4.5-28 Exploratory analyses – Event-Free Survival according to response to induction (induction ITT)... 100
Table 4.5-117 Exploratory analyses – Duration of Event-Free Survival according to response to induction (induction ITT)... 101
Table 4.5-118 Exploratory analyses – Kaplan-Meier estimates for Event-Free Survival according to response to induction (induction ITT).. 101
Figure 4.5-29 Exploratory analyses – Progression-Free Survival according to response to induction (induction ITT)... 101
Table 4.5-119 Exploratory analyses – Duration of Progression-Free Survival according to response to induction (induction ITT)... 102
Table 4.5-120 Exploratory analyses – Kaplan-Meier estimates for Progression-Free Survival according to response to induction (induction ITT)... 102
Figure 4.5-30 Exploratory analyses – Overall Survival according to response to induction (induction ITT).. 103
Table 4.5-121 Exploratory analyses – Duration of Overall Survival according to response to induction (induction ITT).. 103
Table 4.5-122 Exploratory analyses – Kaplan-Meier estimates for Overall Survival according to response to induction (induction ITT)... 104
Figure 4.5-31 Exploratory analyses – Event-Free Survival according to PET after induction (induction ITT)... 105
Table 4.5-123 Exploratory analyses – Duration of Event-Free Survival according to PET after induction (induction ITT)... 105
Table 4.5-124 Exploratory analyses – Kaplan-Meier estimates for Event-Free Survival according to PET after induction (induction ITT)... 105
Figure 4.5-32 Exploratory analyses – Progression-Free Survival according to PET after induction (induction ITT)... 106
Table 4.5-125 Exploratory analyses – Duration of Progression-Free Survival according to PET after induction (induction ITT).. 106
Table 4.5-126 Exploratory analyses – Kaplan-Meier estimates for Progression-Free Survival according to PET after induction (induction ITT).. 106
Figure 4.5-33 Exploratory analyses – Overall Survival according to PET after induction (induction ITT)... 107
Table 4.5-127 Exploratory analyses – Duration of Overall Survival according to PET after induction (induction ITT).. 107
Table 4.5-128 Exploratory analyses – Kaplan-Meier estimates for Overall Survival according to PET after induction (induction ITT)... 108
Table 4.5-129 Patients with non study or new treatment out of progression (induction ITT)... 109
Table 4.5-130 Type of non study or new treatment out of progression (induction ITT)109
Table 4.5-131 Patients with progression/relapse (induction ITT)..110
Table 4.5-132 Progression/relapse n°1 – Period (induction ITT)..110
Table 4.5-133 Progression/relapse n°1 – Involvement (induction ITT)...............................110
Table 4.5-134 Progression/relapse n°1 – Individual factors of IPI (induction ITT).............111
Table 4.5-135 Progression/relapse n°1 – Progression/relapse treatment (induction ITT)......112
Table 4.5-136 Progression/relapse n°1 – Type of progression/relapse treatment (induction ITT) ...112
Table 4.5-137 Progression/relapse n°1 – Response after additional treatments (induction ITT) ...113
Table 5.1-1 Induction treatment cycles received (induction safety population)114
Table 5.1-2 Time between induction cycles (induction safety population).........................114
Table 5.1-3 Induction - Percentage of planned dose received by cycle for rituximab (induction safety population) ...115
Table 5.1-4 Induction - Percentage of planned dose received by cycle for ICE regimen (induction safety population) ...116
Table 5.1-5 Induction - Percentage of planned dose received by cycle for DHAP regimen (induction safety population) ...118
Table 5.1-6 Induction – Growth factors (induction safety population).................................119
Table 5.1-7 Consolidation - Percentage of planned dose received for BEAM (induction safety population) ...120
Table 5.1-8 Consolidation — Administration of growth factors (induction safety population)121
Table 5.1-9 Consolidation – Type of growth factors (induction safety population)121
Table 5.2-1 Incidence of toxicities by worst grade per patient during induction phase (induction safety population) ...122
Table 5.2-2 Patients with RBC and platelets transfusions during induction (induction safety population) ...124
Table 5.2-3 Incidence of toxicities during consolidation phase (induction safety population).125
Table 5.2-4 Patients with RBC and platelets transfusions during consolidation (induction safety population) ...126
Table 5.2-5 Time intervals for hematological recovery after transplant (induction safety population) ...126
Table 5.2-6 Patients with at least one AE (induction safety population)127
Table 5.2-7 Summary of adverse events by frequency of SOC and PT (induction safety population) ...127
Table 5.2-8 Characteristics of adverse events (induction safety population)136
Table 5.2-9 Action taken with study drugs due to AEs (induction safety population)137
Table 5.2-10 Patients with corrective treatment for AE (induction safety population)137
Table 5.2-11 Corrective treatments for AE (induction safety population)137
Table 5.3-1 Patients with SAE (induction safety population) ...138
Table 5.3-2 Summary of serious adverse events by frequency of SOC and PT (induction safety population) ...138
Table 5.3-3 Category of SAEs (induction safety population) ..144
Table 5.3-4 Characteristics of SAEs (induction safety population) ..144
Table 5.3-5 Action taken with study drugs due to SAE (induction safety population)145
Table 5.3-6 Patients with corrective treatment for SAE (induction safety population)146
Table 5.3-7 Corrective treatments for SAE (induction safety population)146
Table 5.3-8 Summary of deaths (induction safety population) ...147
Table 5.3-9 Cause of death (induction safety population) ..147
Listing 5.3-1 Deaths (induction safety population) ...148
Table 5.4-1 Summary of laboratory tests at relapse diagnosis (induction safety population) 161
Table 5.4-2 Serum electrophoresis values at relapse diagnosis (induction safety population)163
Listing 6.1-1 Withdrawals (FAS) ..165
Listing 6.2-1 Initial treatment - Patients with other chemotherapy (FAS)186
Listing 6.2-2 Initial treatment – Doses of radiotherapy (FAS) ..186
Table 6.3-1 Nodal involvement (FAS) ...189
Listing 6.3-1 Other nodal involvement localizations (FAS) ...191
Table 6.3-2 Extra-nodal involvement (FAS) ...192
Listing 6.3-2 Other extra-nodal involvement localizations (FAS)195
Table 6.6-23 Progression/relapse n°1 – Documentation (induction ITT) ..225
Listing 6.6-12 Progression/relapse n°1 – Other extra-nodal involvement (induction ITT)224
Table 6.6-22 Progression/relapse n°1 – Extra-nodal involvement bis (induction ITT)221
Listing 6.6-11 Progression/relapse n°1 – Other nodal involvement (induction ITT)221
Table 6.6-21 Progression/relapse n°1 – Nodal involvement (induction ITT) ..219
Listing 6.6-20 Progression/relapse n°1 – Extra-nodal involvement (induction ITT)217
Listing 6.6-19 Difference between Mobilization Adjusted Complete Response Rates (induction ITT)216
Listing 6.6-18 Mobilization Adjusted Complete Response Rate (induction ITT)215
Listing 6.6-17 Complete response rate adjusted with successful mobilization (induction ITT)214
Listing 6.6-16 Primary criterion – Overall response rate (including all deaths) by arm according to age adjusted IPI (induction ITT) ...212
Listing 6.6-15 Primary criterion – Complete response rate (including all deaths) by arm according to age adjusted IPI (induction ITT) ...212
Listing 6.6-14 Primary criterion – Complete response rate (including all deaths) by arm according to failure from diagnosis (induction ITT) ...211
Listing 6.6-13 Primary criterion – Complete response rate (including all deaths) by arm according to prior rituximab (induction ITT) ...210
Listing 6.6-12 Primary criterion – Overall response rate (including all deaths) by arm according to prior rituximab (induction ITT) ...210
Listing 6.6-11 Primary criterion – Overall response rate (including all deaths) by arm according to country (induction ITT) ...210
Listing 6.6-10 Primary criterion – Overall response rate (including all deaths) by arm according to failure from diagnosis (induction ITT) ...210
Listing 6.6-9 Primary criterion – Overall response rate (including all deaths) by arm according to prior rituximab (induction ITT) ...210
Listing 6.6-8 Primary criterion – Overall response rate by arm according to age adjusted IPI (induction ITT) ...209
Listing 6.6-7 Primary criterion – Complete response rate by arm according to prior rituximab (induction ITT) ...209
Listing 6.6-6 Primary criterion – Overall response rate by arm according to prior rituximab (induction ITT) ...209
Listing 6.6-5 Primary criterion – Complete response rate by arm according to prior rituximab (induction ITT) ...209
Listing 6.6-4 Primary criterion – Overall response rate by arm according to age adjusted IPI (induction ITT) ...208
Listing 6.6-3 Primary criterion – Overall response rate by arm according to failure from diagnosis (induction ITT) ...208
Listing 6.6-2 Primary criterion – Overall response rate by arm according to country (induction ITT) ...208
Listing 6.6-1 Primary criterion – Overall response rate by arm according to prior rituximab (induction ITT) ...208
Table 6.6-20 Progression/relapse n°1 – Extra-nodal involvement (induction ITT)217
Table 6.6-21 Progression/relapse n°1 – Nodal involvement (induction ITT) ...219
Table 6.6-19 Difference between Mobilization Adjusted Complete Response Rates (induction ITT)216
Table 6.6-18 Mobilization Adjusted Complete Response Rate (induction ITT)215
Table 6.6-17 Complete response rate adjusted with successful mobilization (induction ITT)214
Table 6.6-16 Primary criterion – Overall response rate (including all deaths) by arm according to age adjusted IPI (induction ITT) ...210
Table 6.6-15 Primary criterion – Complete response rate (including all deaths) by arm according to failure from diagnosis (induction ITT) ...210
Table 6.6-14 Primary criterion – Complete response rate (including all deaths) by arm according to prior rituximab (induction ITT) ...210
Table 6.6-13 Primary criterion – Complete response rate (including all deaths) by arm according to prior rituximab (induction ITT) ...210
Table 6.6-12 Primary criterion – Overall response rate (including all deaths) by arm according to age adjusted IPI (induction ITT) ...210
Table 6.6-11 Primary criterion – Overall response rate (including all deaths) by arm according to failure from diagnosis (induction ITT) ...210
Table 6.6-10 Primary criterion – Overall response rate (including all deaths) by arm according to prior rituximab (induction ITT) ...210
Table 6.6-9 Primary criterion – Overall response rate (including all deaths) by arm according to country (induction ITT) ...210
Table 6.6-8 Primary criterion – Overall response rate by arm according to age adjusted IPI (induction ITT) ...209
Table 6.6-7 Primary criterion – Complete response rate by arm according to prior rituximab (induction ITT) ...209
Table 6.6-6 Primary criterion – Overall response rate by arm according to age adjusted IPI (induction ITT) ...209
Table 6.6-5 Primary criterion – Complete response rate by arm according to prior rituximab (induction ITT) ...209
Table 6.6-4 Primary criterion – Overall response rate by arm according to age adjusted IPI (induction ITT) ...208
Table 6.6-3 Primary criterion – Overall response rate by arm according to failure from diagnosis (induction ITT) ...208
Table 6.6-2 Primary criterion – Overall response rate by arm according to country (induction ITT) ...208
Table 6.6-1 Primary criterion – Overall response rate by arm according to prior rituximab (induction ITT) ...208

Listing 6.5- Patients with date of last contact earlier than September 1, 2009 (MITT)199
Listing 6.6-1 Induction - Patients with missing or not evaluated response after induction (induction ITT) ...206
Table 6.4-1 Codification of sites used for response evaluation, sorted by most frequent (FAS) ..197
Table 6.3-3 Codification of sites used for response evaluation, sorted by most frequent (FAS) ..197
Listing 6.6-13 Progression/relapse n°1 - Chemotherapy (induction ITT) ...225
Listing 6.6-14 Progression/relapse n°1 - Radiotherapy (induction ITT) ...229
Listing 6.6-15 Progression/relapse n°1 - Immunotherapy (induction ITT) ..231
Listing 6.6-16 Progression/relapse n°1 - Transplant (induction ITT) ...233
Listing 6.6-17 Progression/relapse n°1 - Other treatments (induction ITT) ..234
Table 6.6-24 Progression/relapse n°2 - Period (induction ITT) ...235
Table 6.6-25 Progression/relapse n°2 - Involvement (induction ITT) ...235
Table 6.6-26 Progression/relapse n°2 - Extra-nodal involvement (induction ITT)236
Table 6.6-27 Progression/relapse n°2 - Nodal involvement (induction ITT) ...238
Listing 6.6-18 Progression/relapse n°2 - Other nodal involvement (induction ITT)240
Table 6.6-28 Progression/relapse n°2 - Extra-nodal involvement bis (induction ITT)241
Listing 6.6-19 Progression/relapse n°2 - Other extra-nodal involvement (induction ITT)243
Table 6.6-29 Progression/relapse n°2 - Documentation (induction ITT) ..244
Table 6.6-30 Progression/relapse n°2 - Individual factors of IPI (induction ITT)244
Table 6.6-31 Progression/relapse n°2 - Treatment (induction ITT) ..245
Table 6.6-32 Progression/relapse n°2 - Type of treatment (induction ITT) ..245
Listing 6.6-20 Progression/relapse n°2 - Chemotherapy (induction ITT) ..245
Listing 6.6-21 Progression/relapse n°2 - Radiotherapy (induction ITT) ...246
Listing 6.6-22 Progression/relapse n°2 - Immunotherapy (induction ITT) ...246
Listing 6.6-23 Progression/relapse n°2 - Transplant (induction ITT) ...247
Listing 6.6-24 Progression/relapse n°2 - Other treatments (induction ITT) ..247
Table 6.6-33 Progression/relapse n°2 – Response after additional treatments (induction ITT)247

Table 6.7-1 Induction – Frequency of percentage of planned dose received by cycle for Rituximab (induction safety population) ..248
Table 6.7-2 Induction – Frequency of percentage of planned dose received by cycle for ICE regimen (induction safety population) ...248
Table 6.7-3 Induction – Frequency of percentage of planned dose received by cycle for R-DHAP (induction safety population) ..250
Table 6.7-4 Induction – G-CSF: number of days (induction safety population)252
Table 6.7-5 Induction – G-CSF: dose at 3rd cycle (induction safety population)252
Table 6.7-6 Consolidation - Percentage of planned dose received for BEAM (induction safety population) ...253
Listing 6.7-1 Consolidation – Other types of growth factors (induction safety population)254
Table 6.7-7 Consolidation – G-CSF: day of administration (induction safety population)254
Table 6.7-8 Incidence of induction toxicities by grade and cycle (induction safety population)255
Listing 6.7-2 Other toxicities during induction (induction safety population)259
Listing 6.7-3 Other toxicities during consolidation (induction safety population)270
Listing 6.7-4 Adverse events of patients receiving no study treatment – Full analysis population272
Listing 6.7-5 Adverse events occurring before 1st induction cycle (induction safety population)272
Listing 6.7-6 Serious adverse events of patients receiving no study treatment – Full analysis population ..273
Listing 6.7-7 Serious adverse events declared to Pharmacovigilance department but not present in clinical database ...273
Listing 6.7-8 Serious adverse events (induction safety population) ..274
Listing 6.7-9 Deaths of patients receiving no study treatment – Full analysis population289
Table 6.7-9 Hemoglobin (induction safety population) ...290
Table 6.7-10 Leukocytes (induction safety population) ...292
Table 6.7-11 Neutrophils (induction safety population) ...294
Table 6.7-12 Platelets (induction safety population) ..296
Table 6.7-13 LDH (induction safety population) ..298
Table 6.7-14 Monoclonal componant at relapse diagnosis (induction safety population)300
Table 6.7-15 Serologies at relapse diagnosis (induction safety population)300
Table 6.7-16 LVEF value at relapse diagnosis (induction safety population)301
Table 6.7-17 Cardiac exams at relapse diagnosis (induction safety population)301
Table 6.7-18 Other exams at relapse diagnosis (induction safety population)301
LIST OF ABBREVIATIONS

AE Adverse Event
CRF Case Report Form
FAS Full Analysis Set
ITT Intent-to-Treat
Max Maximum
Min Minimum
Q1 First quartile
Q3 Third quartile
SAE Serious Adverse Event
Std Standard deviation
vs versus
95% CI 95% Confidence Interval
1. INVESTIGATIONAL PLAN

1.1. Overall study design
This study is a multicenter, phase III open-label, randomized trial evaluating the efficacy of R-ICE compared to R-DHAP in patients aged from 18 to 65 years with previously treated diffuse large B-cell lymphoma, followed by high-dose chemotherapy +/- rituximab maintenance therapy. There will be two phases in the study and patients will undergo two randomizations according to induction phase or maintenance phase.

1.2. Study objectives

1.2.1. Primary objective
Part I (induction chemotherapy): Overall response rate (CR and PR) after 2 and/or 3 cycles of ICE+Rituximab in comparison to DHAP+rituximab, adjusted to successful mobilization of stem cells in patients aged from 18 to 65 years with previously treated diffuse large B-cell lymphoma CD20.
Part II (Maintenance vs. observation): Event free survival (EFS) at 2 years after autotransplant with or without maintenance therapy with rituximab. Events are defined as death from any cause, relapse for complete responders and unconfirmed complete responders (CRu), progression during or after treatment for partial responders, and institution of new antilymphoma therapy. The absence of transplantation procedure will be not considered as an event for the intent to treat analysis.

1.2.2. Secondary objectives
– Eligibility for transplant, (independent from whether transplantation was done or not) transplantation done or not.
– Safety toxicities.
– Event-Free Survival, Progression-Free Survival and Overall Survival for the whole randomized population, for patients submitted to ASCT.
– Progression-Free Survival and Overall Survival for patients randomized in maintenance.

2. STATISTICAL METHODOLOGY

2.1. Statistical methods
Statistical analysis was planned and performed as it follows:

Descriptive statistics
Quantitative variables were summarized in tables displaying sample size, mean, standard deviation, median, range; quartiles were presented when considered relevant.
Qualitative variables were described in terms of frequencies of each response category and frequencies converted into percentages of the number of patients or adverse events examined depending on the statistical unit under investigation.
Censored data were presented as Kaplan-Meier plots of time to first event and summary tables of Kaplan-Meier estimates for criterion rates at fixed time points, with 95% CIs. The median time to event was calculated (if reached) with 95% CIs. Estimates of the treatment effect were expressed as hazard ratios based on the Cox regression with 95% confidence interval.
Statistical inference

Statistical tests were two-sided and performed using a 5% level of significance. 95% confidence intervals were also presented when considered relevant. Survival endpoints were analyzed using the log rank test (unstratified) and Cox model for corresponding hazard ratio and p-value of treatment effect and multivariate models.

The number and proportion of responders and non responders in each treatment group, together with the two-sided 95% Pearson-Clopper CI were presented, as well as the difference between proportion, the two-sided 95% asymptotic confidence interval and p-value of chi-square test.

All statistical analyses were carried out with SAS 9.1.3 software (SAS Institute, Cary, NC).

2.2. Determination of sample size

Part I induction:

The primary end point is mobilization adjusted response rate after 3 cycles of chemotherapy and it is expected to detect a difference in mobilization adjusted response rate of 15% between R-ICE 60% (75% response rate and 15% mobilization failure) and R-DHAP 45% (65% response rate and 20% mobilization failure) with a 82% power at 5% significance level. 400 patients should be randomized between the two chemotherapy arms. Initially 400 patients are to be randomised 1:1 to either R-ICE or R-DHAP.

It was expected that 40% of these patients will either not achieve Complete Response or Partial Response or drop-out before ASCT. Immediately prior to ASCT it was expected that there will be 240 patients (400 x 60%) available for second randomisation (1:1) into the maintenance or mabthera arms. First safety analysis on 100 patients (reviewed by DSMC on 14th November 2005) and first interim analysis on 200 patients (18th April 2007) showed that the drop-out rate is 50%.

Then, in order to keep the planned power with 240 patients for the maintenance or mabthera arms, we increase the initial sample size from 400 to 480 (240 each)

Part II maintenance:

The primary endpoint of event free survival (EFS) was used to assess sample size. If we wish to detect after transplantation a change in the 2 year event-free of 15% in favor of the MabThera arm 65 % versus no maintenance 50 %, 240 patients transplanted, randomized 1:1 between the two treatment groups recruited over 3 years and followed for a minimum of two years, will provide 80% power at the overall 5% (2-sided) significance level to detect the expected difference.

2.3. Interim analysis

An interim analysis of the two parts, response rate and EFS efficacy parameter was planned after 200 patients, necessitating an adjustment of the nominal significance (α-level) for the final analysis to maintain the overall global significance level. The O’Brien-Fleming adjustment will be used to partition the α-level with α=0.003 at the first interim for response and α=0.05 at the final analysis.

An interim analysis of the primary efficacy parameter was planned after the inclusion of 200 patients leading to 100 patients randomized to the maintenance treatment. It necessitates an adjustment of the nominal significance (α-level) for the final analysis to maintain the overall global significance level. The O’Brien-Fleming adjustment will be used to partition the α-level with α=8.10^{-5} (40 events) at the first interim and α=0.05 at the final analysis. The expected number of events during the five years is 140 to 145.
3. STUDY PATIENTS

3.1. Disposition of patients

The whole set of 481 patients was first randomized from July 24, 2003 to June 30, 2008 (approximately five years of enrollment). 245 patients were then randomized in the 2nd part of the study from October 21, 2003 to October 21, 2008.

Nevertheless, CRFs for 4 patients could not be recovered.

<table>
<thead>
<tr>
<th>Listing 3.1-1 Patients with CRF not recovered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arm of treatment=ARM A / R-ICE</td>
</tr>
<tr>
<td>Randomization Number</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>5003620201405</td>
</tr>
<tr>
<td>5003631201412</td>
</tr>
<tr>
<td>N = 3</td>
</tr>
</tbody>
</table>

<p>| Arm of treatment=ARM B / R-DHAP |</p>
<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Country Code</th>
<th>Initials of family name</th>
<th>Initials of first name</th>
<th>Date of Birth</th>
<th>First Randomization Date</th>
<th>Date of 2nd randomization</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003613301404</td>
<td>Australie - Nouvelle-Zélande</td>
<td>KEL</td>
<td>ER</td>
<td>30/01/1946</td>
<td>14/11/2006</td>
<td>08/02/2007</td>
</tr>
<tr>
<td>N = 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thus, 477 patients, 243 from R-ICE arm and 234 from R-DHAP arm, are evaluable for induction part, and 242 patients, 122 from the rituximab arm and 120 from the observation arm, are evaluable for maintenance part of the study.

This report deals with analysis of the induction part of the study.

The following flowcharts describe the disposition of patients during the whole study.
Figure 3.1-1 Disposition of patients according to arm of 1st randomization

Randomized patients
N = 481

CRF not recovered
N = 4

Evaluable patients
N = 477

R-ICE
N = 243

No study treatment received
N = 4
(one death, 3 protocol violations)

Received study treatment
N = 239

Withdrawn during induction
N = 34
(14 after C1, 20 after C2)
(20 for induction treatment failure, 7 for treatment toxicity, 3 for death, 2 for voluntary withdrawal, one other reason, one unknown)

Completed induction phase
N = 205
(one pt with only 2 cycles)

Received BEAM+ASCT
N = 123

Withdrawn during consolidation
N = 7
(2 deaths, 5 other reasons)

Randomized in maintenance
N = 116
(60 rituximab, 56 observation)

R-DHAP
N = 234

No study treatment received
N = 4
(one death, one protocol violation, 2 patient voluntary withdrawals)

Received study treatment
N = 230

Withdrawn during induction
N = 34
(14 after C1, 19 after C2)
(24 for induction treatment failure, 4 for treatment toxicity, 5 for death, one other reason)

Completed induction phase
N = 196

Received BEAM+ASCT
N = 132

Withdrawn during consolidation
N = 6
(one death, 5 other reasons)

Randomized in maintenance
N = 126
(62 rituximab, 64 observation)
Figure 3.1-2 Disposition of patients according to arm of 2nd randomization

Randomized in maintenance
$N = 245$

Evaluable patients
$N = 242$

Rituximab
$N = 122$
(60 with R-ICE, 62 with R-DHAP)

Observation
$N = 120$
(56 with R-ICE, 64 with R-DHAP)

No maintenance visit
$N = 3$
(one transplantation failure, one voluntary withdrawal, one missing withdrawal)

Completed maintenance phase
(6 injections)
$N = 78$

Completed maintenance phase
(6 visits)
$N = 30$

Received study treatment
(i.e. at least one injection)
$N = 116$

Received study treatment
(i.e. at least one visit)
$N = 119$

No study treatment received
$N = 6$
(2 voluntary withdrawals, one lost to FU after ASCT, one missing withdrawal, 2 not treated with rituximab but maintenance visits)

Switched from rituximab arm
$N = 2$
3.2. Patients recruitment

32 patients (7%) did not respect at least one criterion of inclusion/non inclusion: 19 patients (8%) in R-ICE arm and 13 patients (6%) in R-DHAP arm.

<table>
<thead>
<tr>
<th>Table 3.2-1 Criteria exceptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arm of treatment</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>At least one criteria exception</td>
</tr>
<tr>
<td>No</td>
</tr>
<tr>
<td>Yes</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

The following tables details inclusion and non inclusion criteria.

Inclusion criteria

1- Patient with histologically proven, CD20+ diffuse large B cell lymphoma in 1st relapse after CR, less than PR or partial response to first line treatment
2- Aged from 18 to 65 years inclusive
3- Eligible for transplant
4- Previously treated with chemotherapy regimen containing anthracyclin with or without rituximab
5- ECOG performance status ≤ 2
6- With a minimum life expectancy of 3 months
7- Signed informed consent form prior to randomization

The following table presents the number and the percentage of patients respecting or not the inclusion criteria:

<table>
<thead>
<tr>
<th>Table 3.2-2 Inclusion criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRITERIA</td>
</tr>
<tr>
<td>Inclusion Criteria 1</td>
</tr>
<tr>
<td>Inclusion Criteria 2</td>
</tr>
<tr>
<td>Inclusion Criteria 3</td>
</tr>
<tr>
<td>Inclusion Criteria 4</td>
</tr>
<tr>
<td>Inclusion Criteria 5</td>
</tr>
<tr>
<td>Inclusion Criteria 6</td>
</tr>
<tr>
<td>Inclusion Criteria 7</td>
</tr>
</tbody>
</table>

Exclusion criteria

1- Burkitt, mantle cell, T-cell lymphoma
2- CD20-negative NHL
3- HIV or HBV disease
4- Central nervous system or meningeal involvement by lymphoma
5- Not previously treated with anthracycline containing regimens
6- Prior transplantation
7- Contraindication to any drug contained in the chemotherapy regimens
8- Any serious active disease or co-morbid medical condition (according to the investigator’s decision)
9- Poor renal function (creatinin level > 150 µmol/l), poor hepatic function (total bilirubin level > 30 mmol/l, transaminases > 2.5 maximum normal level) unless these abnormalities are related to the lymphoma
10. Poor bone marrow reserve as defined by neutrophils < 1.5 G/l or platelets < 100 G/l, unless related to bone marrow infiltration
11. Any history of cancer during the last 5 years, with the exception of non-melanoma skin tumors or stage 0 (in situ) cervical carcinoma
12. Treatment with any investigational drug within 30 days before planned first cycle of chemotherapy and during the study
13. Pregnant woman
14. Adult patient unable to give informed consent because of intellectual impairment

The following table presents the number and the percentage of patients respecting or not the non inclusion criteria:

Table 3.2-3 Exclusion criteria

<table>
<thead>
<tr>
<th>CRITERIA</th>
<th>FULFILLED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Missing N</td>
</tr>
<tr>
<td>Exclusion Criteria 1</td>
<td>0</td>
</tr>
<tr>
<td>Exclusion Criteria 2</td>
<td>0</td>
</tr>
<tr>
<td>Exclusion Criteria 3</td>
<td>1</td>
</tr>
<tr>
<td>Exclusion Criteria 4</td>
<td>0</td>
</tr>
<tr>
<td>Exclusion Criteria 5</td>
<td>0</td>
</tr>
<tr>
<td>Exclusion Criteria 6</td>
<td>0</td>
</tr>
<tr>
<td>Exclusion Criteria 7</td>
<td>0</td>
</tr>
<tr>
<td>Exclusion Criteria 8</td>
<td>0</td>
</tr>
<tr>
<td>Exclusion Criteria 9</td>
<td>1</td>
</tr>
<tr>
<td>Exclusion Criteria 10</td>
<td>0</td>
</tr>
<tr>
<td>Exclusion Criteria 11</td>
<td>0</td>
</tr>
<tr>
<td>Exclusion Criteria 12</td>
<td>0</td>
</tr>
<tr>
<td>Exclusion Criteria 13</td>
<td>0</td>
</tr>
<tr>
<td>Exclusion Criteria 14</td>
<td>0</td>
</tr>
</tbody>
</table>

Listing 3.2-1 Criteria not fulfilled

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of treatment</th>
<th>Sex</th>
<th>Age (years)</th>
<th>CRITERIA</th>
<th>FULFILLED</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003101021027</td>
<td>ARM A / R-ICE</td>
<td>MALE</td>
<td>33</td>
<td>Exclusion Criteria 2</td>
<td>No</td>
</tr>
<tr>
<td>5003101021027</td>
<td>ARM A / R-ICE</td>
<td>MALE</td>
<td>33</td>
<td>Inclusion Criteria 1</td>
<td>No</td>
</tr>
<tr>
<td>5003101031001</td>
<td>ARM A / R-ICE</td>
<td>MALE</td>
<td>65</td>
<td>Exclusion Criteria 11</td>
<td>No</td>
</tr>
<tr>
<td>5003101041606</td>
<td>ARM A / R-ICE</td>
<td>MALE</td>
<td>64</td>
<td>Exclusion Criteria 1</td>
<td>No</td>
</tr>
<tr>
<td>5003101041606</td>
<td>ARM A / R-ICE</td>
<td>MALE</td>
<td>64</td>
<td>Exclusion Criteria 2</td>
<td>No</td>
</tr>
<tr>
<td>5003101041606</td>
<td>ARM A / R-ICE</td>
<td>MALE</td>
<td>64</td>
<td>Inclusion Criteria 1</td>
<td>No</td>
</tr>
<tr>
<td>5003101051004</td>
<td>ARM A / R-ICE</td>
<td>FEMALE</td>
<td>49</td>
<td>Exclusion Criteria 9</td>
<td>No</td>
</tr>
<tr>
<td>5003101131030</td>
<td>ARM A / R-ICE</td>
<td>FEMALE</td>
<td>48</td>
<td>Exclusion Criteria 3</td>
<td>No</td>
</tr>
<tr>
<td>5003101131030</td>
<td>ARM A / R-ICE</td>
<td>FEMALE</td>
<td>48</td>
<td>Exclusion Criteria 7</td>
<td>No</td>
</tr>
<tr>
<td>5003101131030</td>
<td>ARM A / R-ICE</td>
<td>FEMALE</td>
<td>48</td>
<td>Exclusion Criteria 9</td>
<td>No</td>
</tr>
<tr>
<td>5003101171637</td>
<td>ARM A / R-ICE</td>
<td>FEMALE</td>
<td>63</td>
<td>Exclusion Criteria 3</td>
<td>Missing</td>
</tr>
<tr>
<td>5003102341049</td>
<td>ARM A / R-ICE</td>
<td>MALE</td>
<td>33</td>
<td>Exclusion Criteria 10</td>
<td>No</td>
</tr>
<tr>
<td>5003102491616</td>
<td>ARM A / R-ICE</td>
<td>MALE</td>
<td>46</td>
<td>Exclusion Criteria 10</td>
<td>No</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Arm of treatment</td>
<td>Sex</td>
<td>Age (years)</td>
<td>CRITERIA</td>
<td>FULFILLED</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>---------</td>
<td>-------------</td>
<td>----------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>5003102541625</td>
<td>ARM A / R-ICE</td>
<td>MALE</td>
<td>25</td>
<td>Exclusion Criteria 3</td>
<td>No</td>
</tr>
<tr>
<td>5003602901002</td>
<td>ARM A / R-ICE</td>
<td>MALE</td>
<td>64</td>
<td>Inclusion Criteria 5</td>
<td>No</td>
</tr>
<tr>
<td>5003602901201</td>
<td>ARM A / R-ICE</td>
<td>FEMALE</td>
<td>31</td>
<td>Exclusion Criteria 10</td>
<td>No</td>
</tr>
<tr>
<td>5003603201627</td>
<td>ARM A / R-ICE</td>
<td>MALE</td>
<td>49</td>
<td>Exclusion Criteria 10</td>
<td>No</td>
</tr>
<tr>
<td>5003605201006</td>
<td>ARM A / R-ICE</td>
<td>FEMALE</td>
<td>63</td>
<td>Exclusion Criteria 9</td>
<td>No</td>
</tr>
<tr>
<td>5003609201013</td>
<td>ARM A / R-ICE</td>
<td>MALE</td>
<td>44</td>
<td>Inclusion Criteria 1</td>
<td>No</td>
</tr>
<tr>
<td>5003610201615</td>
<td>ARM A / R-ICE</td>
<td>MALE</td>
<td>62</td>
<td>Exclusion Criteria 9</td>
<td>No</td>
</tr>
<tr>
<td>5003614301614</td>
<td>ARM A / R-ICE</td>
<td>MALE</td>
<td>59</td>
<td>Inclusion Criteria 1</td>
<td>No</td>
</tr>
<tr>
<td>5003617501024</td>
<td>ARM A / R-ICE</td>
<td>MALE</td>
<td>61</td>
<td>Inclusion Criteria 5</td>
<td>No</td>
</tr>
<tr>
<td>5003622201022</td>
<td>ARM A / R-ICE</td>
<td>MALE</td>
<td>60</td>
<td>Exclusion Criteria 10</td>
<td>No</td>
</tr>
<tr>
<td>500362250104</td>
<td>ARM A / R-ICE</td>
<td>MALE</td>
<td>47</td>
<td>Exclusion Criteria 10</td>
<td>No</td>
</tr>
<tr>
<td>5003630201055</td>
<td>ARM A / R-ICE</td>
<td>FEMALE</td>
<td>62</td>
<td>Exclusion Criteria 10</td>
<td>No</td>
</tr>
<tr>
<td>5003101031019</td>
<td>ARM B / R-DHAP</td>
<td>FEMALE</td>
<td>58</td>
<td>Inclusion Criteria 1</td>
<td>No</td>
</tr>
<tr>
<td>5003101061617</td>
<td>ARM B / R-DHAP</td>
<td>FEMALE</td>
<td>54</td>
<td>Exclusion Criteria 9</td>
<td>No</td>
</tr>
<tr>
<td>5003101071002</td>
<td>ARM B / R-DHAP</td>
<td>MALE</td>
<td>64</td>
<td>Exclusion Criteria 9</td>
<td>No</td>
</tr>
<tr>
<td>5003101071005</td>
<td>ARM B / R-DHAP</td>
<td>MALE</td>
<td>56</td>
<td>Inclusion Criteria 1</td>
<td>No</td>
</tr>
<tr>
<td>5003101251044</td>
<td>ARM B / R-DHAP</td>
<td>FEMALE</td>
<td>64</td>
<td>Exclusion Criteria 3</td>
<td>No</td>
</tr>
<tr>
<td>5003603201005</td>
<td>ARM B / R-DHAP</td>
<td>MALE</td>
<td>50</td>
<td>Exclusion Criteria 3</td>
<td>No</td>
</tr>
<tr>
<td>5003603201027</td>
<td>ARM B / R-DHAP</td>
<td>MALE</td>
<td>54</td>
<td>Exclusion Criteria 11</td>
<td>No</td>
</tr>
<tr>
<td>5003603201027</td>
<td>ARM B / R-DHAP</td>
<td>MALE</td>
<td>54</td>
<td>Exclusion Criteria 10</td>
<td>No</td>
</tr>
<tr>
<td>5003604701002</td>
<td>ARM B / R-DHAP</td>
<td>MALE</td>
<td>54</td>
<td>Inclusion Criteria 5</td>
<td>No</td>
</tr>
<tr>
<td>5003608301205</td>
<td>ARM B / R-DHAP</td>
<td>FEMALE</td>
<td>30</td>
<td>Exclusion Criteria 10</td>
<td>No</td>
</tr>
<tr>
<td>5003610201212</td>
<td>ARM B / R-DHAP</td>
<td>MALE</td>
<td>23</td>
<td>Inclusion Criteria 7</td>
<td>No</td>
</tr>
<tr>
<td>5003617201031</td>
<td>ARM B / R-DHAP</td>
<td>FEMALE</td>
<td>56</td>
<td>Exclusion Criteria 9</td>
<td>Missing</td>
</tr>
<tr>
<td>5003623501405</td>
<td>ARM B / R-DHAP</td>
<td>MALE</td>
<td>58</td>
<td>Exclusion Criteria 9</td>
<td>No</td>
</tr>
<tr>
<td>5003631201012</td>
<td>ARM B / R-DHAP</td>
<td>FEMALE</td>
<td>58</td>
<td>Exclusion Criteria 9</td>
<td>No</td>
</tr>
<tr>
<td>5003638501023</td>
<td>ARM B / R-DHAP</td>
<td>MALE</td>
<td>60</td>
<td>Exclusion Criteria 10</td>
<td>No</td>
</tr>
</tbody>
</table>

N = 42
3.3. Protocol deviations

3.3.1. Protocol violations

Protocol violations in course of the study were described in blind-review document.

3.3.2. Withdrawals

318 premature withdrawals (67%) were observed during this trial: 8 before treatment period, 214 during induction period, 13 during consolidation period and for patients randomized in the second part of the study, 83 in maintenance period.

166 patients (68%) were withdrawn in R-ICE arm versus 152 patients (65%) in R-DHAP arm.

Table 3.3-1 Withdrawals from study

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>PREMATURE WITHDRAWAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>77</td>
<td>32</td>
<td>82</td>
</tr>
<tr>
<td>Yes</td>
<td>166</td>
<td>68</td>
<td>152</td>
</tr>
<tr>
<td>Total</td>
<td>243</td>
<td>100</td>
<td>234</td>
</tr>
</tbody>
</table>

Table 3.3-2 Period of withdrawal from study

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Treatment period at withdrawal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEFORE TREATMENT</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>INDUCTION PHASE</td>
<td>116</td>
<td>70</td>
<td>98</td>
</tr>
<tr>
<td>CONSOLIDATION PHASE</td>
<td>7</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>FOLLOW UP PERIOD</td>
<td>39</td>
<td>23</td>
<td>44</td>
</tr>
<tr>
<td>Total</td>
<td>166</td>
<td>100</td>
<td>152</td>
</tr>
</tbody>
</table>

Table 3.3-3 Reason of withdrawal from study

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Reason for premature withdrawal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INDUCTION TREATMENT FAILURE</td>
<td>94</td>
<td>57</td>
<td>73</td>
</tr>
<tr>
<td>TRANSPLANTATION FAILURE</td>
<td>11</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>TREATMENT TOXICITY</td>
<td>8</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>MAJOR PROTOCOL VIOLATION</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PATIENT VOLONTARY WITHDRAWAL</td>
<td>5</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>DEATH</td>
<td>9</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>OTHER</td>
<td>35</td>
<td>21</td>
<td>42</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>166</td>
<td>100</td>
<td>152</td>
</tr>
</tbody>
</table>
The main reasons for premature withdrawal were treatment failure (53%) and other reason (24%). 8 patients (5% of withdrawals) were withdrawn due to treatment toxicity in R-ICE arm versus 12 patients (8%) in R-DHAP arm.

All patients withdrawn prematurely from trial are listed in section §6.1.

4. EFFICACY EVALUATION

4.1. Eligible patients for analysis

Five populations of patients were identified:

- **Induction full analysis set** (following the intent-to-treat principle) refers to all randomized patients regardless they have received study treatment or not: 477 patients analyzed according the therapy they were randomized to receive (243 in R-ICE arm and 234 in R-DHAP arm).

- **Induction Intent-To-Treat (ITT) population** refers to patients receiving at least one injection of study treatment, regardless the quantity injected: 469 patients analyzed according the therapy they were randomized to receive (239 in R-ICE arm and 230 in R-DHAP arm).

- **Induction safety population** refers to patients receiving at least one injection of study treatment: 469 patients analyzed according the therapy they actually received (239 in R-ICE arm and 230 in R-DHAP arm).

- **Maintenance Intent-To-Treat (ITT) population** refers to all patients formally randomized in the 2nd part of the study: 242 patients analyzed according the therapy they were randomized to receive (122 in rituximab arm and 120 in observation arm).

- **Maintenance safety population** refers to all patients formally randomized in the 2nd part of the study and have received at least one dose of rituximab or have only been observed, and have at least one maintenance follow-up assessment: 235 patients analyzed according the therapy they actually received, i.e. patient will be included in rituximab arm if he/she had received at least one dose of rituximab during any maintenance visit otherwise, he/she will be included in observation arm (thus, 116 in rituximab arm and 119 in observation arm).

Since all patients received randomized induction treatment, induction ITT and safety populations are equivalent.

The following tables summarize the repartition of patients per population and lists present excluded patients.
Table 4.1-1 Eligible patients for analysis per efficacy populations

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>Arm of 2nd randomization</th>
<th>All</th>
<th>Arm of 2nd randomization</th>
<th>All</th>
<th>Arm of 2nd randomization</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RITUXIMAB</td>
<td>OBSERVATION</td>
<td>NOT APPLICABLE</td>
<td>All</td>
<td>RITUXIMAB</td>
<td>OBSERVATION</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Induction full analysis population</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>60</td>
<td>13</td>
<td>56</td>
<td>12</td>
<td>127</td>
<td>27</td>
</tr>
<tr>
<td>No</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>Induction ITT population</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>60</td>
<td>25</td>
<td>56</td>
<td>23</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>No</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>127</td>
<td>54</td>
</tr>
<tr>
<td>Maintenance ITT population</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>60</td>
<td>13</td>
<td>56</td>
<td>12</td>
<td>127</td>
<td>27</td>
</tr>
<tr>
<td>No</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>127</td>
<td>54</td>
</tr>
<tr>
<td>TOTAL</td>
<td>60</td>
<td>13</td>
<td>56</td>
<td>12</td>
<td>127</td>
<td>27</td>
</tr>
</tbody>
</table>
Table 4.1-2 Eligible patients for analysis per safety populations

<table>
<thead>
<tr>
<th>Actual arm of induction</th>
<th>Actual arm of maintenance</th>
<th>Actual arm of maintenance</th>
<th>Actual arm of maintenance</th>
<th>Actual arm of maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM A / R-ICE</td>
<td>N</td>
<td>%</td>
<td>ARM A / R-ICE</td>
<td>N</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>59</td>
<td>13</td>
<td>59</td>
<td>13</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>56</td>
<td>12</td>
<td>56</td>
<td>12</td>
</tr>
<tr>
<td>NOT APPLICABLE</td>
<td>124</td>
<td>26</td>
<td>124</td>
<td>26</td>
</tr>
<tr>
<td>All</td>
<td>239</td>
<td>51</td>
<td>239</td>
<td>51</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>N</td>
<td>%</td>
<td>ARM B / R-DHAP</td>
<td>N</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>57</td>
<td>12</td>
<td>57</td>
<td>12</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>63</td>
<td>13</td>
<td>63</td>
<td>13</td>
</tr>
<tr>
<td>NOT APPLICABLE</td>
<td>110</td>
<td>23</td>
<td>110</td>
<td>23</td>
</tr>
<tr>
<td>All</td>
<td>230</td>
<td>49</td>
<td>230</td>
<td>49</td>
</tr>
<tr>
<td>NOT APPLICABLE</td>
<td>234</td>
<td>50</td>
<td>234</td>
<td>50</td>
</tr>
<tr>
<td>All</td>
<td>469</td>
<td>100</td>
<td>469</td>
<td>100</td>
</tr>
</tbody>
</table>

Listing 4.1-1 Patients excluded from MITT/safety populations

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of treatment</th>
<th>First Randomization Date</th>
<th>Date of withdrawal</th>
<th>Treatment period at withdrawal</th>
<th>Reason for premature withdrawal</th>
<th>Other reason for premature withdrawal</th>
</tr>
</thead>
<tbody>
<tr>
<td>50030101041606</td>
<td>ARM A / R-ICE</td>
<td>03/12/2003</td>
<td>05/12/2003</td>
<td>BEFORE TREATMENT</td>
<td>MAJOR PROTOCOL VIOLATION</td>
<td></td>
</tr>
<tr>
<td>5003603201627</td>
<td>ARM A / R-ICE</td>
<td>28/03/2007</td>
<td>03/04/2007</td>
<td>BEFORE TREATMENT</td>
<td>DEATH</td>
<td></td>
</tr>
<tr>
<td>5003609201013</td>
<td>ARM A / R-ICE</td>
<td>14/03/2005</td>
<td>14/03/2005</td>
<td>BEFORE TREATMENT</td>
<td>OTHER</td>
<td>MEET NOT INCLUSION CRITERIAS</td>
</tr>
<tr>
<td>5003614301614</td>
<td>ARM A / R-ICE</td>
<td>16/06/2005</td>
<td>17/06/2005</td>
<td>BEFORE TREATMENT</td>
<td>MAJOR PROTOCOL VIOLATION</td>
<td></td>
</tr>
<tr>
<td>50031010171620</td>
<td>ARM B / R-DHAP</td>
<td>29/10/2004</td>
<td>29/10/2004</td>
<td>BEFORE TREATMENT</td>
<td>PATIENT VOLONTARY WITHDRAWAL</td>
<td></td>
</tr>
<tr>
<td>5003601601004</td>
<td>ARM B / R-DHAP</td>
<td>02/11/2007</td>
<td>04/11/2007</td>
<td>BEFORE TREATMENT</td>
<td>PATIENT VOLONTARY WITHDRAWAL</td>
<td></td>
</tr>
<tr>
<td>5003603201005</td>
<td>ARM B / R-DHAP</td>
<td>08/10/2004</td>
<td>12/10/2004</td>
<td>BEFORE TREATMENT</td>
<td>MAJOR PROTOCOL VIOLATION</td>
<td></td>
</tr>
<tr>
<td>5003603201027</td>
<td>ARM B / R-DHAP</td>
<td>26/01/2006</td>
<td>26/01/2006</td>
<td>BEFORE TREATMENT</td>
<td>DEATH</td>
<td></td>
</tr>
</tbody>
</table>

N = 8
Listing 4.1-2 Patients excluded from maintenance safety population

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of 2nd randomization</th>
<th>Date of 2nd randomization</th>
<th>Date of withdrawal</th>
<th>Reason for premature withdrawal</th>
<th>Other reason for premature withdrawal</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003601301015</td>
<td>RITUXIMAB</td>
<td>08/02/2008</td>
<td>18/03/2008</td>
<td>FOLLOW UP PERIOD</td>
<td>PATIENT VOLONTARY WITHDRAWAL</td>
</tr>
<tr>
<td>5003604901602</td>
<td>RITUXIMAB</td>
<td>02/05/2005</td>
<td>28/06/2005</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
</tr>
<tr>
<td>5003608301605</td>
<td>RITUXIMAB</td>
<td>25/08/2004</td>
<td>13/09/2004</td>
<td>FOLLOW UP PERIOD</td>
<td>PATIENT VOLONTARY WITHDRAWAL</td>
</tr>
<tr>
<td>5003617201613</td>
<td>RITUXIMAB</td>
<td>22/09/2005</td>
<td>-</td>
<td>-</td>
<td>LOST TO FOLLOW-UP AFTER BMT</td>
</tr>
<tr>
<td>5003101601610</td>
<td>OBSERVATION</td>
<td>17/05/2004</td>
<td>11/08/2004</td>
<td>FOLLOW UP PERIOD</td>
<td>TRANSPLANTATION FAILURE</td>
</tr>
<tr>
<td>5003102361203</td>
<td>OBSERVATION</td>
<td>19/02/2004</td>
<td>13/03/2004</td>
<td>FOLLOW UP PERIOD</td>
<td>PATIENT VOLONTARY WITHDRAWAL</td>
</tr>
<tr>
<td>5003631201619</td>
<td>OBSERVATION</td>
<td>14/06/2006</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

N = 7

Listing 4.1-3 Patients with actual arm for maintenance treatment different from randomized

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of 2nd randomization</th>
<th>Actual arm of maintenance</th>
<th>Date of 2nd randomization</th>
<th>Date of withdrawal</th>
<th>Treatment period at withdrawal</th>
<th>Reason for premature withdrawal</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003617201021</td>
<td>RITUXIMAB</td>
<td>OBSERVATION</td>
<td>14/02/2006</td>
<td>17/03/2006</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PATIENT STATUS : DUE TO HEP C INFECTION AFTER APHERESIS AND BAD CONDITION WE DECIDED TO STOP RITUXIMAB THERAPY / EXAMINATION ABNORMAL DUE TO LYMPHOMA ; NO B-SYMPTOMS / LDH = 344 U/L (< 250 U/L)</td>
</tr>
</tbody>
</table>

N = 2
4.2. Baseline data

4.2.1. Demography

Table 4.2-1 Demography (FAS)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>243</td>
<td>234</td>
<td>477</td>
</tr>
<tr>
<td>Mean</td>
<td>50.7</td>
<td>52.3</td>
<td>51.5</td>
</tr>
<tr>
<td>Std</td>
<td>11.10</td>
<td>10.48</td>
<td>10.82</td>
</tr>
<tr>
<td>Median</td>
<td>54.0</td>
<td>55.0</td>
<td>54.0</td>
</tr>
<tr>
<td>Min</td>
<td>19</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>Max</td>
<td>65</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>N</td>
<td>243</td>
<td>233</td>
<td>476</td>
</tr>
<tr>
<td>Mean</td>
<td>79.4</td>
<td>77.8</td>
<td>78.6</td>
</tr>
<tr>
<td>Std</td>
<td>17.38</td>
<td>16.30</td>
<td>16.87</td>
</tr>
<tr>
<td>Median</td>
<td>77.0</td>
<td>76.0</td>
<td>76.0</td>
</tr>
<tr>
<td>Min</td>
<td>47</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>Max</td>
<td>176</td>
<td>137</td>
<td>176</td>
</tr>
<tr>
<td>N</td>
<td>243</td>
<td>233</td>
<td>476</td>
</tr>
<tr>
<td>Mean</td>
<td>172.4</td>
<td>172.5</td>
<td>172.5</td>
</tr>
<tr>
<td>Std</td>
<td>9.47</td>
<td>9.21</td>
<td>9.33</td>
</tr>
<tr>
<td>Median</td>
<td>173.0</td>
<td>173.0</td>
<td>173.0</td>
</tr>
<tr>
<td>Min</td>
<td>147</td>
<td>152</td>
<td>147</td>
</tr>
<tr>
<td>Max</td>
<td>196</td>
<td>198</td>
<td>198</td>
</tr>
<tr>
<td>N</td>
<td>243</td>
<td>232</td>
<td>475</td>
</tr>
<tr>
<td>Mean</td>
<td>1.914</td>
<td>1.891</td>
<td>1.903</td>
</tr>
<tr>
<td>Std</td>
<td>0.2192</td>
<td>0.2074</td>
<td>0.2136</td>
</tr>
<tr>
<td>Median</td>
<td>1.900</td>
<td>1.900</td>
<td>1.900</td>
</tr>
<tr>
<td>Min</td>
<td>1.46</td>
<td>1.40</td>
<td>1.40</td>
</tr>
<tr>
<td>Max</td>
<td>2.79</td>
<td>2.45</td>
<td>2.79</td>
</tr>
</tbody>
</table>

The median age at 1st randomization was 54 years old (range from 19 to 65).

Table 4.2-2 Age by category and sex ratio (FAS)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MALE</td>
<td>156</td>
<td>147</td>
<td>303</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>63</td>
<td>64</td>
</tr>
<tr>
<td>FEMALE</td>
<td>87</td>
<td>87</td>
<td>174</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>37</td>
<td>36</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><40 years</td>
<td>41</td>
<td>32</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>>=40 years</td>
<td>202</td>
<td>202</td>
<td>404</td>
</tr>
<tr>
<td></td>
<td>83</td>
<td>86</td>
<td>85</td>
</tr>
<tr>
<td>Total</td>
<td>243</td>
<td>234</td>
<td>477</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
4.2.2. Initial diagnosis

Table 4.2-3 Time between initial diagnosis and 1st randomization (FAS)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>241</td>
<td>233</td>
<td>474</td>
</tr>
<tr>
<td>Mean</td>
<td>27.1</td>
<td>30.8</td>
<td>28.9</td>
</tr>
<tr>
<td>Std</td>
<td>32.34</td>
<td>40.72</td>
<td>36.70</td>
</tr>
<tr>
<td>Median</td>
<td>14.1</td>
<td>13.8</td>
<td>13.9</td>
</tr>
<tr>
<td>Min</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Max</td>
<td>180</td>
<td>238</td>
<td>238</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time from initial diagnosis to 1st randomization (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>Std</td>
</tr>
<tr>
<td>Median</td>
</tr>
<tr>
<td>Min</td>
</tr>
<tr>
<td>Max</td>
</tr>
</tbody>
</table>

Table 4.2-4 Time between initial diagnosis and 1st randomization by category (FAS)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>242</td>
<td>230</td>
<td>472</td>
</tr>
<tr>
<td>%</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time from initial diagnostic biopsy to 1st randomization</th>
</tr>
</thead>
<tbody>
<tr>
<td><12 months</td>
</tr>
<tr>
<td>>=12 months</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time from Initial Treatment to 1st randomization</th>
</tr>
</thead>
<tbody>
<tr>
<td><12 months</td>
</tr>
<tr>
<td>>=12 months</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>240</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>228</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>468</td>
</tr>
<tr>
<td>100</td>
</tr>
</tbody>
</table>

Table 4.2-5 Characteristics at initial diagnosis (FAS)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>220</td>
<td>212</td>
<td>432</td>
</tr>
<tr>
<td>Performance Status at diagnosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>114</td>
<td>107</td>
<td>221</td>
</tr>
<tr>
<td>%</td>
<td>52</td>
<td>50</td>
<td>51</td>
</tr>
<tr>
<td>1</td>
<td>76</td>
<td>71</td>
<td>147</td>
</tr>
<tr>
<td>%</td>
<td>35</td>
<td>33</td>
<td>34</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>27</td>
<td>47</td>
</tr>
<tr>
<td>%</td>
<td>9</td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>%</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>%</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>220</td>
<td>212</td>
<td>432</td>
</tr>
<tr>
<td>%</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
Table 4.2-6 International Prognostic Index and individual factors at initial diagnosis (FAS)

<table>
<thead>
<tr>
<th></th>
<th>Arm of treatment</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
<td>All</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Ann Arbor Stage at diagnosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAGE 1</td>
<td>37</td>
<td>15</td>
<td>44</td>
<td>19</td>
<td>81</td>
<td>17</td>
</tr>
<tr>
<td>STAGE 2</td>
<td>60</td>
<td>25</td>
<td>57</td>
<td>25</td>
<td>117</td>
<td>25</td>
</tr>
<tr>
<td>STAGE 3</td>
<td>43</td>
<td>18</td>
<td>35</td>
<td>15</td>
<td>78</td>
<td>17</td>
</tr>
<tr>
<td>STAGE 4</td>
<td>99</td>
<td>41</td>
<td>96</td>
<td>41</td>
<td>195</td>
<td>41</td>
</tr>
<tr>
<td>TOTAL</td>
<td>239</td>
<td>100</td>
<td>232</td>
<td>100</td>
<td>471</td>
<td>100</td>
</tr>
<tr>
<td>B Symptom at diagnosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>95</td>
<td>40</td>
<td>99</td>
<td>44</td>
<td>194</td>
<td>42</td>
</tr>
<tr>
<td>No</td>
<td>141</td>
<td>60</td>
<td>125</td>
<td>56</td>
<td>266</td>
<td>58</td>
</tr>
<tr>
<td>TOTAL</td>
<td>236</td>
<td>100</td>
<td>224</td>
<td>100</td>
<td>460</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 4.2-6 International Prognostic Index and individual factors at initial diagnosis (FAS)

<table>
<thead>
<tr>
<th></th>
<th>Arm of treatment</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
<td>All</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Performance Status at diagnosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><2</td>
<td>190</td>
<td>86</td>
<td>178</td>
<td>84</td>
<td>368</td>
<td>85</td>
</tr>
<tr>
<td>>=2</td>
<td>30</td>
<td>14</td>
<td>34</td>
<td>16</td>
<td>64</td>
<td>15</td>
</tr>
<tr>
<td>TOTAL</td>
<td>220</td>
<td>100</td>
<td>212</td>
<td>100</td>
<td>432</td>
<td>100</td>
</tr>
<tr>
<td>Ann Arbor Stage at diagnosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-II</td>
<td>97</td>
<td>41</td>
<td>101</td>
<td>44</td>
<td>198</td>
<td>42</td>
</tr>
<tr>
<td>III-IV</td>
<td>142</td>
<td>59</td>
<td>131</td>
<td>56</td>
<td>273</td>
<td>58</td>
</tr>
<tr>
<td>TOTAL</td>
<td>239</td>
<td>100</td>
<td>232</td>
<td>100</td>
<td>471</td>
<td>100</td>
</tr>
<tr>
<td>LDH at diagnosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>=< 1 N</td>
<td>93</td>
<td>43</td>
<td>97</td>
<td>47</td>
<td>190</td>
<td>45</td>
</tr>
<tr>
<td>> 1 N</td>
<td>123</td>
<td>57</td>
<td>108</td>
<td>53</td>
<td>231</td>
<td>55</td>
</tr>
<tr>
<td>TOTAL</td>
<td>216</td>
<td>100</td>
<td>205</td>
<td>100</td>
<td>421</td>
<td>100</td>
</tr>
<tr>
<td>Age adjusted IPI at initial diagnosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>42</td>
<td>21</td>
<td>42</td>
<td>22</td>
<td>84</td>
<td>21</td>
</tr>
<tr>
<td>1</td>
<td>76</td>
<td>37</td>
<td>78</td>
<td>41</td>
<td>154</td>
<td>39</td>
</tr>
<tr>
<td>2</td>
<td>66</td>
<td>32</td>
<td>49</td>
<td>26</td>
<td>115</td>
<td>29</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>10</td>
<td>21</td>
<td>11</td>
<td>41</td>
<td>10</td>
</tr>
<tr>
<td>Subtotal 0-1</td>
<td>118</td>
<td>58</td>
<td>120</td>
<td>63</td>
<td>238</td>
<td>60</td>
</tr>
<tr>
<td>Subtotal 2-3</td>
<td>86</td>
<td>42</td>
<td>70</td>
<td>37</td>
<td>156</td>
<td>40</td>
</tr>
<tr>
<td>TOTAL</td>
<td>204</td>
<td>100</td>
<td>190</td>
<td>100</td>
<td>394</td>
<td>100</td>
</tr>
<tr>
<td>Nb of extra-nodal sites at initial diagnosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><=1</td>
<td>170</td>
<td>73</td>
<td>174</td>
<td>76</td>
<td>344</td>
<td>74</td>
</tr>
<tr>
<td>>1</td>
<td>64</td>
<td>27</td>
<td>55</td>
<td>24</td>
<td>119</td>
<td>26</td>
</tr>
<tr>
<td>TOTAL</td>
<td>234</td>
<td>100</td>
<td>229</td>
<td>100</td>
<td>463</td>
<td>100</td>
</tr>
<tr>
<td>Arm of treatment</td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
<td>All</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>IPI at initial diagnosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>35</td>
<td>17</td>
<td>34</td>
<td>18</td>
<td>69</td>
<td>18</td>
</tr>
<tr>
<td>1</td>
<td>55</td>
<td>27</td>
<td>64</td>
<td>34</td>
<td>119</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>62</td>
<td>31</td>
<td>41</td>
<td>22</td>
<td>103</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>35</td>
<td>17</td>
<td>35</td>
<td>19</td>
<td>70</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>7</td>
<td>13</td>
<td>7</td>
<td>27</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Subtotal 0-2</td>
<td>152</td>
<td>75</td>
<td>139</td>
<td>74</td>
<td>291</td>
<td>74</td>
</tr>
<tr>
<td>Subtotal 3-5</td>
<td>51</td>
<td>25</td>
<td>50</td>
<td>26</td>
<td>101</td>
<td>26</td>
</tr>
<tr>
<td>TOTAL</td>
<td>203</td>
<td>100</td>
<td>189</td>
<td>100</td>
<td>392</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 4.2-7 p-values of Chi-2 test for individual factors of IPI at initial diagnosis (FAS)

<table>
<thead>
<tr>
<th>Variable/Treatment</th>
<th>P-value (Chi-2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance Status at diagnosis (<2 Vs >=2)</td>
<td>0.4824</td>
</tr>
<tr>
<td>Ann Arbor Stage at diagnosis (I-II Vs III-IV)</td>
<td>0.5169</td>
</tr>
<tr>
<td>LDH at diagnosis (=< 1 N Vs > 1 N)</td>
<td>0.3798</td>
</tr>
<tr>
<td>Age adjusted IPI at diagnosis (0-1 Vs 2-3)</td>
<td>0.2811</td>
</tr>
<tr>
<td>Extra nodal involvement at diagnosis (<=1 Vs >1)</td>
<td>0.4119</td>
</tr>
<tr>
<td>IPI at diagnosis (0-2 Vs 3-5)</td>
<td>0.7632</td>
</tr>
<tr>
<td>B Symptoms at diagnosis (No Vs Yes)</td>
<td>0.3921</td>
</tr>
</tbody>
</table>
Table 4.2-8 Anatomopathological report at initial diagnosis - review (FAS)

<table>
<thead>
<tr>
<th>Histology (review) at initial diagnosis</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Lymphome diffus à grandes cellules B</td>
<td>65</td>
<td>46</td>
<td>63</td>
</tr>
<tr>
<td>Lymphome diffus à grandes cellules B (centroblastique)</td>
<td>25</td>
<td>18</td>
<td>13</td>
</tr>
<tr>
<td>Lymphome à grandes cellules B développé (ou associé) à un Lymphome B folliculaire</td>
<td>9</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>Lymphome diffus à grandes cellules B (immunoblastique)</td>
<td>6</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Lymphome à grandes cellules B thymique</td>
<td>6</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Lymphome diffus à grandes cellules B (B riche en T / histiocytes)</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Insuffisance de matériel</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Lymphome à grandes cellules B développé (ou associé) à un Lymphome B de la zone marginale</td>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Lymphome folliculaire grade 2</td>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Lymphome à grandes cellules B non classable pour raisons techniques</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Lymphome à grandes cellules B développé (ou associé) à un Lymphome B à "petites cellules" sans précision</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Lymphome B agressif non classable</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Lymphome B non classable pour raisons techniques</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Lymphome à grandes cellules non classable</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Hodgkin à prédominance lymphocytaire nodulaire (paragranulome nodulaire)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Lymphome à grandes cellules B plasmoblastique</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Lymphome T périphérique (sans spécificité)</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Lymphome T angio-immunoblastique</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Lymphome T angio-immunoblastique avec progression cytologique B</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Lymphome folliculaire grade 1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Zone grise entre Hodgkin / lymphoprolifération EBV</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Lymphome folliculaire grade 3 B</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Lymphome folliculaire grade 1-2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Lymphome folliculaire grade 3 A</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>140</td>
<td>100</td>
<td>124</td>
</tr>
</tbody>
</table>

Final anatomo-pathological review was done for 264 patients (55%). Considering local diagnosis (only reported for non Gela patients) if review was not done, histology is available for 358 patients (75%).
<table>
<thead>
<tr>
<th>Histology (review if available, otherwise local) at initial diagnosis</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymphome diffus à grandes cellules B</td>
<td>95</td>
<td>51</td>
<td>94</td>
</tr>
<tr>
<td>Lymphome diffus à grandes cellules B (centroblastique)</td>
<td>28</td>
<td>15</td>
<td>19</td>
</tr>
<tr>
<td>Lymphome à grandes cellules B développé (ou associé) à un Lymphome B folliculaire</td>
<td>9</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Lymphome diffus à grandes cellules B (B riche en T / histiocytes)</td>
<td>9</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>Lymphome diffus à grandes cellules B (immunoblastique)</td>
<td>6</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>Lymphome à grandes cellules B thymique</td>
<td>11</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Insuffisance de matériel</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Lymphome à grandes cellules B développé (ou associé) à un Lymphome B de la zone marginale</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Lymphome folliculaire grade 2</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Lymphome à grandes cellules B non classable pour raisons techniques</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Lymphome à grandes cellules B développé (ou associé) à un Lymphome B à "petites cellules" sans précision</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>lymphome B agressif non classable</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Lymphome B non classable pour raisons techniques</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Lymphome à grandes cellules non classable</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Lymphome diffus à grandes cellules B (anaplasique)</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Hodgkin à prédominance lymphocytaire nodulaire (paragranulome nodulaire)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Lymphome à grandes cellules B plasmoblastique</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Lymphome T périphérique (sans spécificité)</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Lymphome T angio-immunoblastique</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Lymphome T angio-immunoblastique avec progression cytologique B</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Lymphome folliculaire probable</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Lymphome folliculaire grade 1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Lymphome folliculaire et diffus</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Zone grise entre Hodgkin / lymphoprolifération EBV</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Lymphome folliculaire grade 3 B</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Lymphome folliculaire grade 1-2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Lymphome folliculaire grade 3 A</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>186</td>
<td>100</td>
<td>172</td>
</tr>
</tbody>
</table>
4.2.3. Initial treatment

Table 4.2-10 Time between initial treatment and 1\(^{st}\) randomization (FAS)

<table>
<thead>
<tr>
<th>Time from initial treatment to 1st randomization (months)</th>
<th>Arm of treatment</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
<td>All</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean 240</td>
<td>228</td>
<td>468</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std 25.9</td>
<td>30.0</td>
<td>27.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Median 31.54</td>
<td>40.83</td>
<td>36.38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Min 13.4</td>
<td>13.1</td>
<td>13.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max 179</td>
<td>238</td>
<td>238</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.2-11 Characteristics of initial treatment (FAS)

<table>
<thead>
<tr>
<th>Chemotherapy regimen</th>
<th>Arm of treatment</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
<td>All</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>CHOP - LIKE</td>
<td>203 84</td>
<td>203 87</td>
<td>406 85</td>
<td></td>
</tr>
<tr>
<td>ACVB - LIKE</td>
<td>32 13</td>
<td>27 12</td>
<td>59 12</td>
<td></td>
</tr>
<tr>
<td>OTHER</td>
<td>7 3</td>
<td>4 2</td>
<td>11 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 0</td>
<td>0 0</td>
<td>1 0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Immunotherapy</th>
<th>Arm of treatment</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
<td>All</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>155 64</td>
<td>151 65</td>
<td>306 64</td>
<td></td>
</tr>
<tr>
<td>UNKNOWN</td>
<td>1 0</td>
<td>1 0</td>
<td>2 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>87 36</td>
<td>82 35</td>
<td>169 35</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Radiotherapy</th>
<th>Arm of treatment</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
<td>All</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>LOCAL</td>
<td>63 26</td>
<td>51 22</td>
<td>114 24</td>
<td></td>
</tr>
<tr>
<td>OTHER</td>
<td>2 1</td>
<td>1 0</td>
<td>3 1</td>
<td></td>
</tr>
<tr>
<td>UNKNOWN</td>
<td>2 1</td>
<td>7 3</td>
<td>9 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>176 72</td>
<td>175 75</td>
<td>351 74</td>
<td></td>
</tr>
</tbody>
</table>

| TOTAL | 243 100 | 234 100 | 477 100 |

Overall 406 patients (85\%) received CHOP-like chemotherapy as initial treatment and 306 patients (64\%) received rituximab.

For patient 5003612501021, immunotherapy was missing, nevertheless as it was declared at randomization that patient previously received rituximab, he/she will be considered with prior rituximab for exploratory analyses.

Details of other chemotherapy regimens and doses of radiotherapy are listed in section §6.2.
Table 4.2-12 Response at 1st line (FAS)

<table>
<thead>
<tr>
<th>Response after first line</th>
<th>Arm of treatment</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>COMPLETE RESPONSE</td>
<td>129</td>
<td>53</td>
</tr>
<tr>
<td>UNCONFIRMED COMPLETE RESPONSE</td>
<td>31</td>
<td>13</td>
</tr>
<tr>
<td>PARTIAL RESPONSE</td>
<td>44</td>
<td>18</td>
</tr>
<tr>
<td>STABLE DISEASE</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>PROGRESSIVE DISEASE</td>
<td>27</td>
<td>11</td>
</tr>
<tr>
<td>NOT EVALUATED</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>242</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 4.2-13 p-value of Chi-2 test for response after 1st line (FAS)

<table>
<thead>
<tr>
<th>Variable/Treatment</th>
<th>P-value (Chi-2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response after first line (CR/CRu vs other)</td>
<td>0.3968</td>
</tr>
</tbody>
</table>

4.2.4. Progression/relapse diagnosis

Table 4.2-14 Time intervals with progression/relapse diagnosis (FAS)

<table>
<thead>
<tr>
<th>Time from 1st treatment to relapse diagnostic biopsy (months)</th>
<th>Arm of treatment</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>Mean</td>
</tr>
<tr>
<td></td>
<td>187</td>
<td>29.6</td>
</tr>
<tr>
<td></td>
<td>174</td>
<td>36.2</td>
</tr>
<tr>
<td></td>
<td>361</td>
<td>32.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time from relapse diagnostic biopsy to 1st randomization (months)</th>
<th>Arm of treatment</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>Mean</td>
</tr>
<tr>
<td></td>
<td>189</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>179</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>368</td>
<td>0.7</td>
</tr>
</tbody>
</table>
The following tables present the number and percentage of patients for baseline clinical assessments:

Table 4.2-15 Characteristics at relapse (FAS)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Performance Status at relapse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>105</td>
<td>43</td>
<td>113</td>
</tr>
<tr>
<td>1</td>
<td>109</td>
<td>45</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>26</td>
<td>11</td>
<td>28</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Ann Arbor stage at relapse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAGE 1</td>
<td>40</td>
<td>17</td>
<td>32</td>
</tr>
<tr>
<td>STAGE 2</td>
<td>53</td>
<td>22</td>
<td>57</td>
</tr>
<tr>
<td>STAGE 3</td>
<td>45</td>
<td>19</td>
<td>33</td>
</tr>
<tr>
<td>STAGE 4</td>
<td>104</td>
<td>43</td>
<td>110</td>
</tr>
<tr>
<td>TOTAL</td>
<td>242</td>
<td>100</td>
<td>232</td>
</tr>
<tr>
<td>B symptoms at relapse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>178</td>
<td>74</td>
<td>176</td>
</tr>
<tr>
<td>Yes</td>
<td>63</td>
<td>26</td>
<td>53</td>
</tr>
<tr>
<td>TOTAL</td>
<td>241</td>
<td>100</td>
<td>229</td>
</tr>
</tbody>
</table>

Table 4.2-16 Number of extra nodal sites at relapse (FAS)

<table>
<thead>
<tr>
<th>Total of extra-nodal sites at relapse</th>
<th>Arm of treatment</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>242</td>
<td>232</td>
<td>474</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>1.1</td>
<td>1.3</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>Std</td>
<td>1.31</td>
<td>1.37</td>
<td>1.34</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>9</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

The median number of extra nodal sites was 1 in both arms.
The details of nodal and extra-nodal involvement are listed in section §6.3.
Table 4.2-17 International Prognostic Index and individual factors at relapse (FAS)

<table>
<thead>
<tr>
<th>Performance Status at relapse</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td><2</td>
<td>214</td>
<td>88</td>
<td>203</td>
</tr>
<tr>
<td>>=2</td>
<td>28</td>
<td>12</td>
<td>29</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ann Arbor stage at relapse</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>I-II</td>
<td>93</td>
<td>38</td>
<td>89</td>
</tr>
<tr>
<td>III-IV</td>
<td>149</td>
<td>62</td>
<td>143</td>
</tr>
<tr>
<td>TOTAL</td>
<td>242</td>
<td>100</td>
<td>232</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LDH at relapse</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td><=Normal</td>
<td>111</td>
<td>47</td>
<td>112</td>
</tr>
<tr>
<td>>Normal</td>
<td>126</td>
<td>53</td>
<td>117</td>
</tr>
<tr>
<td>TOTAL</td>
<td>237</td>
<td>100</td>
<td>229</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age-adjusted IPI at relapse</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>47</td>
<td>20</td>
<td>52</td>
</tr>
<tr>
<td>1</td>
<td>95</td>
<td>40</td>
<td>87</td>
</tr>
<tr>
<td>2</td>
<td>79</td>
<td>34</td>
<td>67</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td>6</td>
<td>21</td>
</tr>
<tr>
<td>Subtotal 0-1</td>
<td>142</td>
<td>60</td>
<td>139</td>
</tr>
<tr>
<td>Subtotal 2-3</td>
<td>93</td>
<td>40</td>
<td>88</td>
</tr>
<tr>
<td>TOTAL</td>
<td>235</td>
<td>100</td>
<td>227</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nb of extra-nodal sites at relapse</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td><=1</td>
<td>175</td>
<td>72</td>
<td>154</td>
</tr>
<tr>
<td>>1</td>
<td>67</td>
<td>28</td>
<td>78</td>
</tr>
<tr>
<td>TOTAL</td>
<td>242</td>
<td>100</td>
<td>232</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IPI at relapse</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>35</td>
<td>15</td>
<td>46</td>
</tr>
<tr>
<td>1</td>
<td>72</td>
<td>31</td>
<td>51</td>
</tr>
<tr>
<td>2</td>
<td>67</td>
<td>29</td>
<td>59</td>
</tr>
<tr>
<td>3</td>
<td>44</td>
<td>19</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>5</td>
<td>26</td>
</tr>
<tr>
<td>Subtotal 0-2</td>
<td>4</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Subtotal 3-5</td>
<td>174</td>
<td>74</td>
<td>156</td>
</tr>
<tr>
<td>TOTAL</td>
<td>60</td>
<td>26</td>
<td>71</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ann Arbor stage at relapse</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>234</td>
<td>100</td>
<td>227</td>
<td>100</td>
</tr>
</tbody>
</table>
Table 4.2-18 p-values of Chi-2 test for individual factors of IPI at progression/relapse diagnosis (FAS)

<table>
<thead>
<tr>
<th>Variable/Treatment</th>
<th>P-value (Chi-2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance Status at baseline (<2 Vs >=2)</td>
<td>0.7557</td>
</tr>
<tr>
<td>Ann Arbor stage at baseline (I-II Vs III-IV)</td>
<td>0.9879</td>
</tr>
<tr>
<td>LDH at baseline (=< 1 N Vs > 1 N)</td>
<td>0.6543</td>
</tr>
<tr>
<td>Age adjusted IPI at baseline (0-1 Vs 2-3)</td>
<td>0.8588</td>
</tr>
<tr>
<td>Total of extra nodal site at baseline (<=1 Vs >1)</td>
<td>0.1610</td>
</tr>
<tr>
<td>B Symptoms at baseline (No Vs Yes)</td>
<td>0.4513</td>
</tr>
<tr>
<td>IPI at baseline (0-2 Vs 3-5)</td>
<td>0.1798</td>
</tr>
</tbody>
</table>

Table 4.2-19 Other characteristics at relapse (FAS)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>beta 2 microglobulin (mg/l)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><3</td>
<td>127</td>
<td>78</td>
<td>124</td>
</tr>
<tr>
<td>>=3</td>
<td>35</td>
<td>22</td>
<td>34</td>
</tr>
<tr>
<td>Total</td>
<td>162</td>
<td>100</td>
<td>158</td>
</tr>
<tr>
<td>Albumin baseline (G/L)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><=35</td>
<td>35</td>
<td>17</td>
<td>40</td>
</tr>
<tr>
<td>>35</td>
<td>171</td>
<td>83</td>
<td>170</td>
</tr>
<tr>
<td>Total</td>
<td>206</td>
<td>100</td>
<td>210</td>
</tr>
</tbody>
</table>

Table 4.2-20 Bone marrow biopsy at relapse (FAS)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Bone marrow Biopsy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not involved</td>
<td>196</td>
<td>81</td>
<td>180</td>
</tr>
<tr>
<td>Involved</td>
<td>21</td>
<td>9</td>
<td>22</td>
</tr>
<tr>
<td>Unspecified</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Not Done</td>
<td>23</td>
<td>9</td>
<td>29</td>
</tr>
<tr>
<td>TOTAL</td>
<td>243</td>
<td>100</td>
<td>233</td>
</tr>
<tr>
<td>If BM involved, type of cells</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LARGE CELLS</td>
<td>14</td>
<td>67</td>
<td>13</td>
</tr>
<tr>
<td>SMALL CELLS</td>
<td>5</td>
<td>24</td>
<td>8</td>
</tr>
<tr>
<td>UNKNOWN</td>
<td>2</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>21</td>
<td>100</td>
<td>22</td>
</tr>
</tbody>
</table>

Overall, 43 patients (9%) presented an involved bone marrow biopsy at baseline, mainly with large cells (63%).
Table 4.2-21 PET scan at relapse (FAS)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>PET Scan at relapse</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>NEGATIVE</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>POSITIVE</td>
<td>85</td>
<td>35</td>
<td>84</td>
</tr>
<tr>
<td>NOT DONE</td>
<td>152</td>
<td>63</td>
<td>145</td>
</tr>
<tr>
<td>Total</td>
<td>240</td>
<td>100</td>
<td>231</td>
</tr>
</tbody>
</table>

PET scan at relapse is available for 174 patients (37%).

Table 4.2-22 Number of sites used for response evaluation at relapse diagnosis (FAS)

<table>
<thead>
<tr>
<th>Number of sites used for evaluation of response per patient</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>243</td>
<td>234</td>
<td>477</td>
</tr>
<tr>
<td>Mean</td>
<td>2.5</td>
<td>2.3</td>
<td>2.4</td>
</tr>
<tr>
<td>Std</td>
<td>1.54</td>
<td>1.43</td>
<td>1.49</td>
</tr>
<tr>
<td>Median</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Min</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Max</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Sum</td>
<td>611</td>
<td>540</td>
<td>1151</td>
</tr>
</tbody>
</table>

The median number of sites used for response evaluation was 2 (range: 1 to 6). The lesions' codification is presented in section §6.3.
<table>
<thead>
<tr>
<th>Histology (review) at relapse</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Lymphome diffus à grandes cellules B</td>
<td>51</td>
<td>41</td>
<td>62</td>
</tr>
<tr>
<td>Lymphome diffus à grandes cellules B (centroblastique)</td>
<td>29</td>
<td>23</td>
<td>26</td>
</tr>
<tr>
<td>Lymphome à grandes cellules B thymique</td>
<td>8</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Lymphome diffus à grandes cellules B (immunoblastique)</td>
<td>5</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Lymphome à grandes cellules B développé (ou associé) à un Lymphome B folliculaire</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Lymphome B non classable pour raisons techniques</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Lymphome à grandes cellules B développé (ou associé) à un Lymphome B de la zone marginale</td>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Lymphome à grandes cellules B non classable pour raisons techniques</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Lymphome agressif non classable</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Lymphome folliculaire grade 2</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Insuffisance de matériel</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Lymphome folliculaire et diffus</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Lymphome diffus à grandes cellules B (B riche en T / histiocytes)</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Lymphome diffus à grandes cellules B (anaplasique)</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Lymphome folliculaire grade 3 B</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Lymphome folliculaire grade 3 A</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Lymphome à grandes cellules B plasmoblastique</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Lymphome folliculaire T périphérique (sans spécificité)</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Hodgkin à prédominance lymphocytaire nodulaire (paragranulome nodulaire)</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Lymphome folliculaire en transformation possible (en L. à grandes cellules B)</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Lymphome à grandes cellules B développé (ou associé) à un Lymphome B à "petites cellules" sans précision</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Lymphome B à "petites cellules" non classable pour raisons techniques</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Lymphome à grandes cellules non classable</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Lymphome folliculaire grade 1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Lymphome folliculaire non gradable</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Zone grise entre Hodgkin / lymphoprolifération EBV</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>125</td>
<td>100</td>
<td>127</td>
</tr>
</tbody>
</table>

Final anatomo-pathological review was done for 252 patients (53%).
Considering local diagnosis (only reported for non Gela patients) if review was not done, histology is available for 315 patients (66%).
Table 4.2-24 Anatomopathological report at relapse – review or if missing, local (MITT)

<table>
<thead>
<tr>
<th>Texte Complet</th>
<th>Arm of treatment</th>
<th>Arm of treatment</th>
<th>Arm of treatment</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Lymphome diffus à grandes cellules B</td>
<td>78 50</td>
<td>90 57</td>
<td>168 53</td>
<td></td>
</tr>
<tr>
<td>Lymphome diffus à grandes cellules B (centroblastique)</td>
<td>29 18</td>
<td>27 17</td>
<td>56 18</td>
<td></td>
</tr>
<tr>
<td>Lymphome à grandes cellules B thymique</td>
<td>9 6</td>
<td>4 3</td>
<td>13 4</td>
<td></td>
</tr>
<tr>
<td>Lymphome diffus à grandes cellules B (immunoblastique)</td>
<td>5 3</td>
<td>6 4</td>
<td>11 3</td>
<td></td>
</tr>
<tr>
<td>Lymphome à grandes cellules B développé (ou associé) à un Lymphome B folliculaire</td>
<td>4 3</td>
<td>4 3</td>
<td>8 3</td>
<td></td>
</tr>
<tr>
<td>Lymphome B non classable pour raisons techniques</td>
<td>2 1</td>
<td>5 3</td>
<td>7 2</td>
<td></td>
</tr>
<tr>
<td>Lymphome à grandes cellules B développé (ou associé) à un Lymphome B de la zone marginale</td>
<td>4 3</td>
<td>1 1</td>
<td>5 2</td>
<td></td>
</tr>
<tr>
<td>Lymphome diffus à grandes cellules B (B riche en T / histiocytes)</td>
<td>2 1</td>
<td>3 2</td>
<td>5 2</td>
<td></td>
</tr>
<tr>
<td>Lymphome à grandes cellules B non classable pour raisons techniques</td>
<td>3 2</td>
<td>1 1</td>
<td>4 1</td>
<td></td>
</tr>
<tr>
<td>Lymphome B agressif non classable</td>
<td>1 1</td>
<td>3 2</td>
<td>4 1</td>
<td></td>
</tr>
<tr>
<td>Lymphome folliculaire grade 2</td>
<td>1 1</td>
<td>3 2</td>
<td>4 1</td>
<td></td>
</tr>
<tr>
<td>Insuffisance de matériel</td>
<td>3 2</td>
<td>1 1</td>
<td>4 1</td>
<td></td>
</tr>
<tr>
<td>Lymphome folliculaire et diffus</td>
<td>1 1</td>
<td>2 1</td>
<td>3 1</td>
<td></td>
</tr>
<tr>
<td>Lymphome à grandes cellules non classable</td>
<td>3 2</td>
<td>0 0</td>
<td>3 1</td>
<td></td>
</tr>
<tr>
<td>Lymphome diffus à grandes cellules B (anaplastique)</td>
<td>2 1</td>
<td>1 1</td>
<td>3 1</td>
<td></td>
</tr>
<tr>
<td>Lymphome folliculaire grade 3 B</td>
<td>1 1</td>
<td>1 1</td>
<td>2 1</td>
<td></td>
</tr>
<tr>
<td>Lymphome folliculaire grade 3 A</td>
<td>1 1</td>
<td>1 1</td>
<td>2 1</td>
<td></td>
</tr>
<tr>
<td>Lymphome folliculaire grade 1</td>
<td>2 1</td>
<td>0 0</td>
<td>2 1</td>
<td></td>
</tr>
<tr>
<td>Lymphome à grandes cellules B plasmoblastique</td>
<td>1 1</td>
<td>1 1</td>
<td>2 1</td>
<td></td>
</tr>
<tr>
<td>Lymphome T périphérique (sans spécificité)</td>
<td>1 1</td>
<td>0 0</td>
<td>1 0</td>
<td></td>
</tr>
<tr>
<td>Hodgkin à prédominance lymphocytaire nodulaire (paragranulome nodulaire)</td>
<td>1 1</td>
<td>0 0</td>
<td>1 0</td>
<td></td>
</tr>
<tr>
<td>Lymphome folliculaire en transformation possible (en L. à grandes cellules B)</td>
<td>1 1</td>
<td>0 0</td>
<td>1 0</td>
<td></td>
</tr>
<tr>
<td>Lymphome à grandes cellules B développé (ou associé) à un Lymphome B à "petites cellules" sans précision</td>
<td>0 0</td>
<td>1 1</td>
<td>1 0</td>
<td></td>
</tr>
<tr>
<td>Lymphome B à "petites cellules" non classable pour raisons techniques</td>
<td>0 0</td>
<td>1 1</td>
<td>1 0</td>
<td></td>
</tr>
<tr>
<td>Lymphome folliculaire non gradable</td>
<td>0 0</td>
<td>1 1</td>
<td>1 0</td>
<td></td>
</tr>
<tr>
<td>Zone grise entre Hodgkin / lymphoprolifération EBV</td>
<td>1 1</td>
<td>0 0</td>
<td>1 0</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>157 100</td>
<td>158 100</td>
<td>315 100</td>
<td></td>
</tr>
</tbody>
</table>
4.2.5. Medical history

343 patients (72%) presented with medical relevant history and 266 patients (56%) presented at least one persisting disease at baseline.

Table 4.2-25 Medical history (FAS)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Medical relevant history</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>178</td>
<td>73</td>
<td>165</td>
</tr>
<tr>
<td>No</td>
<td>65</td>
<td>27</td>
<td>69</td>
</tr>
<tr>
<td>At least one persisting disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>132</td>
<td>54</td>
<td>134</td>
</tr>
<tr>
<td>No</td>
<td>111</td>
<td>46</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>243</td>
<td>100</td>
<td>234</td>
</tr>
</tbody>
</table>

4.2.6. Concomitant treatments

294 patients (62%) presented at least one concomitant treatment at inclusion and 106 patients (22%) presented at least one prescription due to lymphoma.

Table 4.2-26 Concomitant treatments (FAS)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Concomitant treatment at randomization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>146</td>
<td>60</td>
<td>148</td>
</tr>
<tr>
<td>No</td>
<td>97</td>
<td>40</td>
<td>86</td>
</tr>
<tr>
<td>At least one due to symptoms related to lymphoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>50</td>
<td>21</td>
<td>56</td>
</tr>
<tr>
<td>No</td>
<td>193</td>
<td>79</td>
<td>178</td>
</tr>
<tr>
<td>Total</td>
<td>243</td>
<td>100</td>
<td>234</td>
</tr>
</tbody>
</table>
4.3. Evaluation after induction treatment

Table 4.3-1 Induction – Bone marrow biopsy (induction ITT)

<table>
<thead>
<tr>
<th>Bone marrow biopsy after induction</th>
<th>Arm of treatment</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
<td>All</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NHL negative</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>10</td>
<td>27</td>
<td>12</td>
<td>50</td>
</tr>
<tr>
<td>NHL positive</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Indeterminate</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Not Done</td>
<td>199</td>
<td>88</td>
<td>188</td>
<td>86</td>
<td>387</td>
</tr>
<tr>
<td>TOTAL</td>
<td>226</td>
<td>100</td>
<td>218</td>
<td>100</td>
<td>444</td>
</tr>
</tbody>
</table>

Table 4.3-2 Induction – PET scan (induction ITT)

<table>
<thead>
<tr>
<th>PET scan after induction</th>
<th>Arm of treatment</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
<td>All</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEGATIVE</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>16</td>
<td>37</td>
<td>17</td>
<td>72</td>
</tr>
<tr>
<td>POSITIVE</td>
<td>38</td>
<td>17</td>
<td>42</td>
<td>20</td>
<td>80</td>
</tr>
<tr>
<td>NOT DONE</td>
<td>149</td>
<td>67</td>
<td>135</td>
<td>63</td>
<td>284</td>
</tr>
<tr>
<td>TOTAL</td>
<td>222</td>
<td>100</td>
<td>214</td>
<td>100</td>
<td>436</td>
</tr>
</tbody>
</table>

Table 4.3-3 Induction - Number of sites used for response evaluation (induction ITT)

<table>
<thead>
<tr>
<th>Number of sites used for evaluation of response per patient</th>
<th>Arm of treatment</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
<td>All</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>230</td>
<td>221</td>
<td>451</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>2.5</td>
<td>2.4</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>Std</td>
<td>1.53</td>
<td>1.45</td>
<td>1.49</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td>575</td>
<td>525</td>
<td>1100</td>
<td></td>
</tr>
</tbody>
</table>

On the 451 patients with reported sites, the median number of sites used for response evaluation was 2 (range: 1 to 6).

The lesions’ codifications are presented in section §6.4.
4.4. Follow-up

Stopping date was set to June 1, 2010 since last event occurred on this date. 90% of patients had a date of last contact after September 1, 2009.

Table 4.4-1 Stopping date (induction ITT)

<table>
<thead>
<tr>
<th>Date of last contact earlier than 01/06/2010 (stopping date)</th>
<th>Arm of treatment</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>140</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td></td>
<td>59%</td>
<td>61%</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>99</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>41%</td>
<td>39%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>239</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>Date of last contact earlier than 01/09/2009</td>
<td>No</td>
<td>209</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>87%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>13%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>239</td>
<td>230</td>
<td></td>
</tr>
</tbody>
</table>

The list of the 52 patients with a date of contact earlier than September 1, 2009 is presented in section §6.5.

Table 4.4-2 Follow-up duration (induction ITT)

<table>
<thead>
<tr>
<th>Follow-up (months)</th>
<th>Arm of treatment</th>
<th>N</th>
<th>Median</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Follow-up (months)</td>
<td>ALL</td>
<td>469</td>
<td>45</td>
<td>0</td>
<td>79</td>
</tr>
<tr>
<td>Follow-up (months)</td>
<td>ARM A / R-ICE</td>
<td>239</td>
<td>45</td>
<td>0</td>
<td>77</td>
</tr>
<tr>
<td>Follow-up (months)</td>
<td>ARM B / R-DHAP</td>
<td>230</td>
<td>45</td>
<td>0</td>
<td>79</td>
</tr>
</tbody>
</table>

With date of last contact censored at the stopping date, the median duration of follow-up for the induction ITT population (calculated from date of 1st randomization) is 45 months (range from 0 to 77 months).
4.5. Efficacy results

4.5.1. Primary criterion

The primary criterion for the 1st randomization part of the study is the mobilization adjusted response rate, i.e overall response rate (ORR) (Complete Response CR/CRu and Partial Response PR) adjusted with successful mobilization at the end of 2 and/or 3 cycles of induction chemotherapy treatment before high-dose chemotherapy and autologous transplantation.

Thus, response rate after induction treatment needs to be first described.

24 patients (13 in R-ICE arm and 11 in R-DHAP arm) presented with no response (not evaluated or missing) at the end of induction. Out of them, 10 were because of death (5 in both arms) and 2 in R-ICE arm due to patient voluntary withdrawal. The list of these patients is shown in section §6.6.1.

Including deaths in response evaluation only for patients with no response, the results are the following ones:

Table 4.5-1 Primary criterion – Response after induction treatment (induction ITT)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>Response after complete induction (including deaths for not evaluated patients)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>57</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>239</td>
</tr>
</tbody>
</table>

Table 4.5-2 Primary criterion – Overall Response rate after induction treatment (induction ITT)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>Nb patients</th>
<th>Nb responders (CR/CRu/PR)</th>
<th>OR rate (%)</th>
<th>95% CI lower</th>
<th>95% CI upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM A / R-ICE</td>
<td>239</td>
<td>153</td>
<td>64.0</td>
<td>57.6</td>
<td>70.1</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>230</td>
<td>148</td>
<td>64.3</td>
<td>57.8</td>
<td>70.5</td>
</tr>
</tbody>
</table>

Table 4.5-3 Primary criterion – Difference between OR rates after induction treatment (induction ITT)

<table>
<thead>
<tr>
<th>Difference between OR rates (%)</th>
<th>95% CI lower</th>
<th>95% CI upper</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-ICE vs R-DHAP</td>
<td>-0.3</td>
<td>-9.0</td>
<td>8.3</td>
</tr>
</tbody>
</table>
Table 4.5-4 Primary criterion – Complete Response rate after induction treatment (induction ITT)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>Nb patients</th>
<th>Nb responders (CR/CRu)</th>
<th>CR rate (%)</th>
<th>95% CI lower</th>
<th>95% CI upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM A / R-ICE</td>
<td>239</td>
<td>88</td>
<td>36.8</td>
<td>30.7</td>
<td>43.3</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>230</td>
<td>85</td>
<td>37.0</td>
<td>30.7</td>
<td>43.5</td>
</tr>
</tbody>
</table>

Table 4.5-5 Primary criterion – Difference between CR rates after induction treatment (induction ITT)

<table>
<thead>
<tr>
<th></th>
<th>Difference between CR rates (%)</th>
<th>95% CI lower</th>
<th>95% CI upper</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-ICE vs R-DHAP</td>
<td>-0.1</td>
<td>-8.9</td>
<td>8.6</td>
<td>0.9756</td>
</tr>
</tbody>
</table>

Considering deaths during induction phase even if patients had a response after induction treatment, 8 additional patients died:

- 2 patients in R-ICE arm: 1 received one cycle and was then in progressive disease and one was in CRu after complete induction but died of concurrent illness.
- 6 patients in R-DHAP arm: 5 were in progressive disease (4 received one cycle and one received 3 cycles) and one was in stable disease after complete induction but died of toxicity of study treatment.

The list of the 18 patients who died during treatment phase (7 in R-ICE arm and 11 in R-DHAP arm) is shown in section §6.6.1. Including these deaths, the results are the following ones:

Table 4.5-6 Primary criterion – Response after induction treatment including deaths for all patients (induction ITT)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb patients</td>
<td>Nb %</td>
<td>Nb patients</td>
<td>Nb %</td>
<td>Nb patients</td>
<td>Nb %</td>
<td></td>
</tr>
<tr>
<td>COMPLETE RESPONSE</td>
<td>57 24</td>
<td>60 26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNCONFIRMED COMPLETE RESPONSE</td>
<td>30 13</td>
<td>25 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARTIAL RESPONSE</td>
<td>65 27</td>
<td>63 27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STABLE DISEASE</td>
<td>26 11</td>
<td>26 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROGRESSIVE DISEASE</td>
<td>46 19</td>
<td>39 17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEATH</td>
<td>7 3</td>
<td>11 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOT EVALUATED</td>
<td>5 2</td>
<td>4 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>3 1</td>
<td>2 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>239 100</td>
<td>230 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4.5-7 Primary criterion – Overall Response rate after induction treatment including deaths for all patients (induction ITT)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>Nb patients</th>
<th>Nb responders (CR/CRu/PR)</th>
<th>OR rate (%)</th>
<th>95% CI lower</th>
<th>95% CI upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM A / R-ICE</td>
<td>239</td>
<td>152</td>
<td>63.6</td>
<td>57.2</td>
<td>69.7</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>230</td>
<td>148</td>
<td>64.3</td>
<td>57.8</td>
<td>70.5</td>
</tr>
</tbody>
</table>
Table 4.5-8 Primary criterion – Difference between OR after induction treatment including deaths for all patients (induction ITT)

<table>
<thead>
<tr>
<th></th>
<th>Difference between OR rates (%)</th>
<th>95% CI lower</th>
<th>95% CI upper</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-ICE vs R-DHAP</td>
<td>-0.7</td>
<td>-9.4</td>
<td>7.9</td>
<td>0.8658</td>
</tr>
</tbody>
</table>

Table 4.5-9 Primary criterion – Complete Response rate after induction treatment including deaths for all patients (induction ITT)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>Nb patients</th>
<th>Nb responders (CR/CRu)</th>
<th>CR rate (%)</th>
<th>95% CI lower</th>
<th>95% CI upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM A / R-ICE</td>
<td>239</td>
<td>87</td>
<td>36.4</td>
<td>30.3</td>
<td>42.8</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>230</td>
<td>85</td>
<td>37.0</td>
<td>30.7</td>
<td>43.5</td>
</tr>
</tbody>
</table>

Table 4.5-10 Primary criterion – Difference between CR rates after induction treatment including deaths for all patients (induction ITT)

<table>
<thead>
<tr>
<th></th>
<th>Difference between CR rates (%)</th>
<th>95% CI lower</th>
<th>95% CI upper</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-ICE vs R-DHAP</td>
<td>-0.6</td>
<td>-9.3</td>
<td>8.2</td>
<td>0.9008</td>
</tr>
</tbody>
</table>

To evaluate mobilization adjusted response rate, collection failure needs to be described.

Table 4.5-11 Primary criterion – Collection failure (induction ITT)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>N</th>
<th>%</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM A / R-ICE</td>
<td>159</td>
<td>65</td>
<td>167</td>
<td>71</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>37</td>
<td>15</td>
<td>24</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>243</td>
<td>100</td>
<td>234</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 4.5-12 Primary criterion – Reason of collection failure (induction ITT)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>N</th>
<th>%</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM A / R-ICE</td>
<td>29</td>
<td>78</td>
<td>20</td>
<td>83</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>6</td>
<td>16</td>
<td>4</td>
<td>17</td>
</tr>
<tr>
<td>Total</td>
<td>30</td>
<td>100</td>
<td>24</td>
<td>100</td>
</tr>
</tbody>
</table>

List of other reason of collection failure are described in section §6.6.1, 5 were due to no collection according to protocol rules since previous one available.
Table 4.5-13 Primary criterion – Overall Response Rate adjusted with successful mobilization (induction ITT)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>Collection failure</th>
<th>CR/CRu/PR</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM A / R-ICE</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>123</td>
<td>51</td>
<td>130</td>
</tr>
<tr>
<td>Yes</td>
<td>26</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>Missing</td>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>No</td>
<td>36</td>
<td>15</td>
<td>37</td>
</tr>
<tr>
<td>Yes</td>
<td>11</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>Missing</td>
<td>39</td>
<td>16</td>
<td>36</td>
</tr>
<tr>
<td>Total</td>
<td>239</td>
<td>100</td>
<td>230</td>
</tr>
</tbody>
</table>

Table 4.5-14 Primary criterion – Mobilization Adjusted Response Rate (induction ITT)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>Nb patients</th>
<th>Nb responders with successful mobilization</th>
<th>MARR (%)</th>
<th>95% CI lower</th>
<th>95% CI upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM A / R-ICE</td>
<td>239</td>
<td>123</td>
<td>51.5</td>
<td>42.0</td>
<td>55.1</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>230</td>
<td>130</td>
<td>56.5</td>
<td>37.0</td>
<td>50.2</td>
</tr>
</tbody>
</table>

Table 4.5-15 Primary criterion – Difference between Mobilization Adjusted Response Rates (induction ITT)

<table>
<thead>
<tr>
<th>Difference between MARR (%)</th>
<th>95% CI lower</th>
<th>95% CI upper</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-ICE vs R-DHAP</td>
<td>-5.1</td>
<td>-14.1</td>
<td>4.0</td>
</tr>
</tbody>
</table>

The mobilization adjusted response rate is 51.5% in R-ICE arm vs 56.5% in R-DHAP arm (p=0.27).

If mobilization adjusted response rate is calculated for patients in complete response (CR/CRu) and no collection failure, results are shown in section §6.6.1.
4.5.2. Secondary criteria

4.5.2.1. Mobilization

Table 4.5-16 Mobilization – Collected cells (induction ITT)

<table>
<thead>
<tr>
<th>Collection failure</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>157</td>
<td>166</td>
</tr>
<tr>
<td>Mean</td>
<td>9.490</td>
<td>16.542</td>
</tr>
<tr>
<td>Std</td>
<td>40.2192</td>
<td>69.8178</td>
</tr>
<tr>
<td>Median</td>
<td>5.300</td>
<td>5.230</td>
</tr>
<tr>
<td>Min</td>
<td>1.14</td>
<td>1.20</td>
</tr>
<tr>
<td>Max</td>
<td>507.15</td>
<td>629.00</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>19</td>
<td>13</td>
</tr>
<tr>
<td>Mean</td>
<td>1.486</td>
<td>2.647</td>
</tr>
<tr>
<td>Std</td>
<td>3.4004</td>
<td>3.3759</td>
</tr>
<tr>
<td>Median</td>
<td>0.520</td>
<td>0.900</td>
</tr>
<tr>
<td>Min</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Max</td>
<td>15.09</td>
<td>9.42</td>
</tr>
<tr>
<td>All</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>176</td>
<td>179</td>
</tr>
<tr>
<td>Mean</td>
<td>8.626</td>
<td>15.533</td>
</tr>
<tr>
<td>Std</td>
<td>38.0704</td>
<td>67.3229</td>
</tr>
<tr>
<td>Median</td>
<td>4.865</td>
<td>5.100</td>
</tr>
<tr>
<td>Min</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Max</td>
<td>507.15</td>
<td>629.00</td>
</tr>
</tbody>
</table>

Table 4.5-17 Mobilization – Number of collections (induction ITT)

<table>
<thead>
<tr>
<th>Collection failure</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>158</td>
<td>167</td>
</tr>
<tr>
<td>Mean</td>
<td>1.9</td>
<td>1.6</td>
</tr>
<tr>
<td>Std</td>
<td>1.02</td>
<td>0.78</td>
</tr>
<tr>
<td>Median</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Min</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Max</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>26</td>
<td>17</td>
</tr>
<tr>
<td>Mean</td>
<td>1.7</td>
<td>1.5</td>
</tr>
<tr>
<td>Std</td>
<td>1.71</td>
<td>1.01</td>
</tr>
<tr>
<td>Median</td>
<td>1.5</td>
<td>2.0</td>
</tr>
<tr>
<td>Min</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Max</td>
<td>7</td>
<td>3</td>
</tr>
</tbody>
</table>
Table 4.5-18 Mobilization – Source of stem cells (induction ITT)

<table>
<thead>
<tr>
<th>Source of Stem Cells</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Peripheral source</td>
<td>184</td>
<td>97</td>
</tr>
<tr>
<td>Bone marrow</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Peripheral source + Bone marrow</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>190</td>
<td>100</td>
</tr>
</tbody>
</table>

4.5.2.2. Consolidation treatment: BEAM+ASCT

All patients who received BEAM regimen underwent autologous stem cell transplantation. Thus, 123 patients (51%) in R-ICE arm and 132 patients (57%) in R-DHAP arm received ASCT.

Table 4.5-19 Consolidation – Patients with BEAM and ASCT (induction ITT)

<table>
<thead>
<tr>
<th></th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Consolidation treatment (BEAM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>123</td>
<td>51</td>
</tr>
<tr>
<td>No</td>
<td>116</td>
<td>49</td>
</tr>
<tr>
<td>Transplantation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>123</td>
<td>51</td>
</tr>
<tr>
<td>No</td>
<td>116</td>
<td>49</td>
</tr>
<tr>
<td>Total</td>
<td>239</td>
<td>100</td>
</tr>
</tbody>
</table>

14 patients who where eligible to transplantation (responders and no collection failure) did not receive ASCT (7 in both arms).

On the other hand, 9 patients who where not eligible to transplantation received ASCT: 7 were in stable disease after induction (1 in R-ICE arm and 6 in R-DHAP arm) and 2 (one in both arms) had a missing response. 8 of them was then randomized in maintenance part.

These patients are described in section §6.6.2.

3 patients received also ASCT with collected CD34+ cells less than 2.10^6/kg (2 in R-ICE arm and one in RDHAP arm).
Table 4.5-20 Consolidation – Time intervals with collection and transplantation (induction ITT)

<table>
<thead>
<tr>
<th>Time from C3 to 1st collection date (days)</th>
<th>Arm of treatment</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>177</td>
<td>179</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>5.6</td>
<td>-0.4</td>
<td></td>
</tr>
<tr>
<td>Std</td>
<td>41.15</td>
<td>86.02</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>13.0</td>
<td>13.0</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>-413</td>
<td>-966</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>122</td>
<td>56</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time from 1st collection date to 1st administration of BEAM (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>Std</td>
</tr>
<tr>
<td>Median</td>
</tr>
<tr>
<td>Min</td>
</tr>
<tr>
<td>Max</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time from 1st collection date to transplantation (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>Std</td>
</tr>
<tr>
<td>Median</td>
</tr>
<tr>
<td>Min</td>
</tr>
<tr>
<td>Max</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time from 1st administration of BEAM to transplantation (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>Std</td>
</tr>
<tr>
<td>Median</td>
</tr>
<tr>
<td>Min</td>
</tr>
<tr>
<td>Max</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time from transplantation to 2nd randomization date (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>Std</td>
</tr>
<tr>
<td>Median</td>
</tr>
<tr>
<td>Min</td>
</tr>
<tr>
<td>Max</td>
</tr>
</tbody>
</table>
Table 4.5-21 Consolidation – Period of collection (induction ITT)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Period of collection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before C1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>C1-C2</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>C2-C3</td>
<td>34</td>
<td>19</td>
</tr>
<tr>
<td>After C3</td>
<td>134</td>
<td>76</td>
</tr>
<tr>
<td>Total</td>
<td>177</td>
<td>100</td>
</tr>
</tbody>
</table>

4.5.2.3. Event-Free Survival

According to the definition of events, 323 patients (69%) presented with an event: 67 (14%) with a new treatment out of progression, 226 (48%) with progression/relapse and 30 (6%) with death without progression.

Table 4.5-22 Secondary criteria – Events for survival analysis (induction ITT)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Events</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No event</td>
<td>69</td>
<td>29</td>
</tr>
<tr>
<td>New treatment out of progression</td>
<td>36</td>
<td>15</td>
</tr>
<tr>
<td>Progression/relapse</td>
<td>119</td>
<td>50</td>
</tr>
<tr>
<td>Death without progression</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>TOTAL</td>
<td>239</td>
<td>100</td>
</tr>
</tbody>
</table>

170 patients in the R-ICE arm and 153 patients in the R-DHAP arm presented with an event (respectively 71% and 67%): 36 and 31 (respectively 15% and 13%) with a new treatment out of progression, 119 and 107 (respectively 50% and 47%) with progression/relapse, and 15 and 15 (respectively 6% and 7%) with death without progression.

Event-Free survival is measured from date of 1st randomization to date of 1st event.
Figure 4.5-1 Secondary criteria – Event-Free Survival (induction ITT)

![Graph showing survival probability over time with survival rate data points.]

Table 4.5-23 Secondary criteria – Duration of Event-Free Survival (induction ITT)

<table>
<thead>
<tr>
<th>EFS (months)</th>
<th>N</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>469</td>
<td>7</td>
<td>6</td>
<td>10</td>
<td>0</td>
<td>79</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.5-24 Secondary criteria – Kaplan-Meier estimates for Event-Free Survival (induction ITT)

<table>
<thead>
<tr>
<th>Time Point (months)</th>
<th>EFS (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>41.9</td>
<td>37.4</td>
<td>46.4</td>
<td>190</td>
</tr>
<tr>
<td>24</td>
<td>35.5</td>
<td>31.1</td>
<td>39.9</td>
<td>150</td>
</tr>
<tr>
<td>36</td>
<td>30.5</td>
<td>26.2</td>
<td>34.8</td>
<td>102</td>
</tr>
<tr>
<td>48</td>
<td>30.2</td>
<td>25.9</td>
<td>34.5</td>
<td>67</td>
</tr>
<tr>
<td>60</td>
<td>29.7</td>
<td>25.4</td>
<td>34.1</td>
<td>33</td>
</tr>
<tr>
<td>72</td>
<td>24.4</td>
<td>19.0</td>
<td>30.1</td>
<td>8</td>
</tr>
</tbody>
</table>
Figure 4.5-2 Secondary criteria – Event-Free Survival according to treatment arm (induction ITT)

![Event-Free Survival graph](image)

Logrank p=0.2672

Table 4.5-25 Secondary criteria – Duration of Event-Free Survival according to treatment arm (induction ITT)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>Time Point (months)</th>
<th>EFS (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM A / R-ICE</td>
<td>12</td>
<td>39.8</td>
<td>33.4</td>
<td>46.0</td>
<td>91</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>24</td>
<td>33.5</td>
<td>27.5</td>
<td>39.6</td>
<td>70</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>36</td>
<td>26.2</td>
<td>20.5</td>
<td>32.2</td>
<td>43</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>48</td>
<td>26.2</td>
<td>20.5</td>
<td>32.2</td>
<td>23</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>60</td>
<td>26.2</td>
<td>20.5</td>
<td>32.2</td>
<td>11</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>72</td>
<td>20.9</td>
<td>13.4</td>
<td>29.5</td>
<td>1</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>12</td>
<td>44.1</td>
<td>37.6</td>
<td>50.4</td>
<td>99</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>24</td>
<td>37.4</td>
<td>31.1</td>
<td>43.7</td>
<td>80</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>36</td>
<td>34.8</td>
<td>28.6</td>
<td>41.0</td>
<td>59</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>48</td>
<td>34.2</td>
<td>28.0</td>
<td>40.5</td>
<td>44</td>
</tr>
</tbody>
</table>

Table 4.5-26 Secondary criteria – Kaplan-Meier estimates for Event-Free Survival according to treatment arm (induction ITT)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>Time Point (months)</th>
<th>EFS (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Median Survival (95% CL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM A / R-ICE</td>
<td>12</td>
<td>71% (170)</td>
<td>29% (69)</td>
<td>6.51 (4.99 - 9.92)</td>
<td></td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>24</td>
<td>67% (153)</td>
<td>33% (77)</td>
<td>7.49 (5.82 - 12.71)</td>
<td></td>
</tr>
</tbody>
</table>

No. of Subjects | Event | Censored |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM A / R-ICE</td>
<td>239</td>
<td>71%</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>230</td>
<td>67%</td>
</tr>
</tbody>
</table>

Table 4.5-24 Secondary criteria – Event-Free Survival according to treatment arm (induction ITT)
Table 4.5-27 Secondary criteria – Hazard ratio of R-ICE arm for Event-Free Survival (induction ITT)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>p-value</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-ICE</td>
<td>0.2687</td>
<td>1.131</td>
<td>0.909, 1.408</td>
</tr>
</tbody>
</table>

4.5.2.4. Progression-Free Survival

Progression-Free survival is measured from date of randomization to date of progression/relapse or death from any cause.

115 events in the R-ICE arm and 103 events in the R-DHAP arm were taken into account for Progression-Free Survival.

Table 4.5-28 Secondary criteria – Duration of Progression-Free Survival (induction ITT)

<table>
<thead>
<tr>
<th>PFS (months)</th>
<th>N</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFS (months)</td>
<td>469</td>
<td>13</td>
<td>10</td>
<td>21</td>
<td>0</td>
<td>79</td>
</tr>
</tbody>
</table>
Table 4.5-29 Secondary criteria – Kaplan-Meier estimates for Progression-Free Survival (induction ITT)

<table>
<thead>
<tr>
<th>Time Point (months)</th>
<th>PFS (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>51.7</td>
<td>47.0</td>
<td>56.1</td>
<td>233</td>
</tr>
<tr>
<td>24</td>
<td>43.4</td>
<td>38.8</td>
<td>47.9</td>
<td>181</td>
</tr>
<tr>
<td>36</td>
<td>37.7</td>
<td>33.1</td>
<td>42.2</td>
<td>123</td>
</tr>
<tr>
<td>48</td>
<td>37.4</td>
<td>32.8</td>
<td>41.9</td>
<td>79</td>
</tr>
<tr>
<td>60</td>
<td>35.7</td>
<td>31.0</td>
<td>40.4</td>
<td>38</td>
</tr>
<tr>
<td>72</td>
<td>30.2</td>
<td>24.3</td>
<td>36.3</td>
<td>9</td>
</tr>
</tbody>
</table>

Figure 4.5-4 Secondary criteria – Progression-Free Survival according to treatment arm (induction ITT)

Table 4.5-30 Secondary criteria – Duration of Progression-Free Survival according to treatment arm (induction ITT)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>N</th>
<th>Median</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFS (months)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>239</td>
<td>13</td>
<td>9</td>
<td>23</td>
<td>0</td>
<td>77</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>230</td>
<td>14</td>
<td>10</td>
<td>24</td>
<td>0</td>
<td>79</td>
</tr>
</tbody>
</table>
Table 4.5-31 Secondary criteria – Kaplan-Meier estimates for Progression-Free Survival according to treatment arm (induction ITT)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>Time Point (months)</th>
<th>PFS (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM A / R-ICE</td>
<td>12</td>
<td>50.9</td>
<td>44.3</td>
<td>57.2</td>
<td>116</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>24</td>
<td>42.9</td>
<td>36.4</td>
<td>49.2</td>
<td>89</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>36</td>
<td>34.2</td>
<td>27.9</td>
<td>40.6</td>
<td>54</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>48</td>
<td>34.2</td>
<td>27.9</td>
<td>40.6</td>
<td>31</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>60</td>
<td>31.5</td>
<td>24.8</td>
<td>38.5</td>
<td>15</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>72</td>
<td>27.0</td>
<td>19.1</td>
<td>35.5</td>
<td>2</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>12</td>
<td>52.3</td>
<td>45.7</td>
<td>58.6</td>
<td>117</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>24</td>
<td>43.8</td>
<td>37.3</td>
<td>50.2</td>
<td>92</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>36</td>
<td>41.2</td>
<td>34.6</td>
<td>47.5</td>
<td>69</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>48</td>
<td>40.6</td>
<td>34.0</td>
<td>47.0</td>
<td>48</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>60</td>
<td>39.6</td>
<td>33.0</td>
<td>46.1</td>
<td>23</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>72</td>
<td>33.4</td>
<td>25.0</td>
<td>42.1</td>
<td>7</td>
</tr>
</tbody>
</table>

Table 4.5-32 Secondary criteria – Hazard ratio of R-ICE arm for Progression-Free Survival (induction ITT)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>p-value</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-ICE</td>
<td>0.4109</td>
<td>1.102</td>
<td>0.875 1.387</td>
</tr>
</tbody>
</table>

4.5.2.5. Overall Survival

Overall survival is measured from date of randomization to date of death from any cause.

125 deaths in the R-ICE arm and 112 deaths in the R-DHAP arm were taken into account for Overall Survival.
Figure 4.5-5 Secondary criteria – Overall Survival (induction ITT)

Table 4.5-33 Secondary criteria – Duration of Overall Survival (induction ITT)

<table>
<thead>
<tr>
<th>N</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS (months)</td>
<td>469</td>
<td>37</td>
<td>27</td>
<td>61</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 4.5-34 Secondary criteria – Kaplan-Meier estimates for Overall Survival (induction ITT)

<table>
<thead>
<tr>
<th>Time Point (months)</th>
<th>OS (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>70.1</td>
<td>65.6</td>
<td>74.0</td>
<td>315</td>
</tr>
<tr>
<td>24</td>
<td>56.1</td>
<td>51.4</td>
<td>60.5</td>
<td>228</td>
</tr>
<tr>
<td>36</td>
<td>50.2</td>
<td>45.4</td>
<td>54.8</td>
<td>162</td>
</tr>
<tr>
<td>48</td>
<td>47.5</td>
<td>42.5</td>
<td>52.3</td>
<td>100</td>
</tr>
<tr>
<td>60</td>
<td>44.9</td>
<td>39.5</td>
<td>50.1</td>
<td>48</td>
</tr>
<tr>
<td>72</td>
<td>38.3</td>
<td>31.6</td>
<td>45.0</td>
<td>11</td>
</tr>
</tbody>
</table>
Table 4.5-35 Secondary criteria – Duration of Overall Survival according to treatment arm (induction ITT)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>Time Point (months)</th>
<th>OS (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM A / R-ICE</td>
<td>12</td>
<td>68.7</td>
<td>62.2</td>
<td>74.2</td>
<td>155</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>24</td>
<td>56.1</td>
<td>49.3</td>
<td>62.2</td>
<td>114</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>36</td>
<td>48.9</td>
<td>42.0</td>
<td>55.4</td>
<td>79</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>48</td>
<td>43.4</td>
<td>36.2</td>
<td>50.4</td>
<td>43</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>60</td>
<td>40.9</td>
<td>33.4</td>
<td>48.3</td>
<td>20</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>72</td>
<td>34.0</td>
<td>24.6</td>
<td>43.6</td>
<td>4</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>12</td>
<td>71.4</td>
<td>65.1</td>
<td>76.9</td>
<td>160</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>24</td>
<td>56.1</td>
<td>49.4</td>
<td>62.3</td>
<td>114</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>36</td>
<td>51.6</td>
<td>44.7</td>
<td>58.0</td>
<td>83</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>48</td>
<td>51.6</td>
<td>44.7</td>
<td>58.0</td>
<td>57</td>
</tr>
</tbody>
</table>
Table 4.5-37 Secondary criteria – Hazard ratio of R-ICE arm for Overall Survival (induction ITT)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>p-value</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-ICE</td>
<td>0.3389</td>
<td>1.133</td>
<td>0.878 1.462</td>
</tr>
</tbody>
</table>

4.5.2.6. Event-Free Survival of patients submitted to ASCT

Event-Free Survival of patients submitted to ASCT is measured from date of transplantation.

![Graph showing Event-Free Survival](image)

Table 4.5-38 Secondary criteria – Duration of Event-Free Survival (patients with ASCT)

<table>
<thead>
<tr>
<th>EFS (months)</th>
<th>N</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFS (months)</td>
<td>255</td>
<td>57</td>
<td>26</td>
<td>-</td>
<td>0</td>
<td>76</td>
</tr>
</tbody>
</table>
Table 4.5-39 Secondary criteria – Kaplan-Meier estimates for Event-Free Survival (patients with ASCT)

<table>
<thead>
<tr>
<th>Time Point (months)</th>
<th>EFS (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>66.5</td>
<td>60.3</td>
<td>72.0</td>
<td>165</td>
</tr>
<tr>
<td>24</td>
<td>58.1</td>
<td>51.7</td>
<td>64.0</td>
<td>124</td>
</tr>
<tr>
<td>36</td>
<td>52.0</td>
<td>45.5</td>
<td>58.2</td>
<td>90</td>
</tr>
<tr>
<td>48</td>
<td>52.0</td>
<td>45.5</td>
<td>58.2</td>
<td>55</td>
</tr>
<tr>
<td>60</td>
<td>46.1</td>
<td>38.0</td>
<td>53.9</td>
<td>25</td>
</tr>
<tr>
<td>72</td>
<td>43.8</td>
<td>35.0</td>
<td>52.4</td>
<td>6</td>
</tr>
</tbody>
</table>

Figure 4.5-8 Secondary criteria – Event-Free Survival according to treatment arm (patients with ASCT)

Table 4.5-40 Secondary criteria – Duration of Event-Free Survival according to treatment arm (patients with ASCT)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>No. of Subjects</th>
<th>Event</th>
<th>Censored</th>
<th>Median Survival (95% CL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM A / R-ICE</td>
<td>123</td>
<td>52%</td>
<td>48%</td>
<td>27.66 (21.06 NA)</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>132</td>
<td>43%</td>
<td>57%</td>
<td>31.77 (NA)</td>
</tr>
</tbody>
</table>

Table 4.5-40 Secondary criteria – Duration of Event-Free Survival according to treatment arm (patients with ASCT)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>N</th>
<th>Median</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFS (months)</td>
<td>123</td>
<td>28</td>
<td>21</td>
<td>-</td>
<td>0</td>
<td>74</td>
</tr>
<tr>
<td>EFS (months)</td>
<td>132</td>
<td>-</td>
<td>32</td>
<td>-</td>
<td>0</td>
<td>76</td>
</tr>
</tbody>
</table>
Table 4.5-41 Secondary criteria – Kaplan-Meier estimates for Event-Free Survival according to treatment arm (patients with ASCT)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>Time Point (months)</th>
<th>EFS (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM A / R-ICE</td>
<td>12</td>
<td>64.5</td>
<td>55.3</td>
<td>72.3</td>
<td>77</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>24</td>
<td>55.5</td>
<td>46.1</td>
<td>63.9</td>
<td>59</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>36</td>
<td>46.4</td>
<td>36.9</td>
<td>55.3</td>
<td>37</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>48</td>
<td>46.4</td>
<td>36.9</td>
<td>55.3</td>
<td>19</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>60</td>
<td>42.2</td>
<td>30.5</td>
<td>53.3</td>
<td>10</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>72</td>
<td>36.1</td>
<td>21.9</td>
<td>50.6</td>
<td>1</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>12</td>
<td>68.4</td>
<td>59.7</td>
<td>75.7</td>
<td>88</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>24</td>
<td>60.4</td>
<td>51.4</td>
<td>68.3</td>
<td>65</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>36</td>
<td>57.4</td>
<td>48.2</td>
<td>65.5</td>
<td>53</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>48</td>
<td>57.4</td>
<td>48.2</td>
<td>65.5</td>
<td>36</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>60</td>
<td>50.3</td>
<td>39.1</td>
<td>60.6</td>
<td>15</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>72</td>
<td>50.3</td>
<td>39.1</td>
<td>60.6</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 4.5-42 Secondary criteria – Hazard ratio of R-ICE arm for Event-Free Survival (patients with ASCT)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>p-value</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-ICE</td>
<td>0.1612</td>
<td>1.291</td>
<td>0.903 1.846</td>
</tr>
</tbody>
</table>
4.5.2.7. Progression-Free Survival of patients submitted to ASCT

Progression-Free Survival for patients submitted to ASCT is measured from date of transplantation to date of progression/relapse or death from any cause.

Table 4.5-43 Secondary criteria – Duration of Progression-Free Survival (patients with ASCT)

<table>
<thead>
<tr>
<th>PFS (months)</th>
<th>N</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>255</td>
<td>59</td>
<td>32</td>
<td>-</td>
<td>0</td>
<td>76</td>
</tr>
</tbody>
</table>

Table 4.5-44 Secondary criteria – Kaplan-Meier estimates for Progression-Free Survival (patients with ASCT)

<table>
<thead>
<tr>
<th>Time Point (months)</th>
<th>PFS (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>69.3</td>
<td>63.2</td>
<td>74.6</td>
<td>172</td>
</tr>
<tr>
<td>24</td>
<td>60.9</td>
<td>54.5</td>
<td>66.6</td>
<td>128</td>
</tr>
<tr>
<td>36</td>
<td>54.7</td>
<td>48.1</td>
<td>60.9</td>
<td>92</td>
</tr>
<tr>
<td>48</td>
<td>54.7</td>
<td>48.1</td>
<td>60.9</td>
<td>56</td>
</tr>
<tr>
<td>60</td>
<td>48.7</td>
<td>40.4</td>
<td>56.5</td>
<td>26</td>
</tr>
<tr>
<td>72</td>
<td>46.4</td>
<td>37.3</td>
<td>54.9</td>
<td>6</td>
</tr>
</tbody>
</table>
Figure 4.5-10 Secondary criteria – Progression-Free Survival according to treatment arm (patients with ASCT)

Table 4.5-45 Secondary criteria – Duration of Progression-Free Survival according to treatment arm (patients with ASCT)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>N</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFS (months)</td>
<td>ARM A / R-ICE</td>
<td>123</td>
<td>32</td>
<td>23</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>ARM B / R-DHAP</td>
<td>132</td>
<td>-</td>
<td>57</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 4.5-46 Secondary criteria – Kaplan-Meier estimates for Progression-Free Survival according to treatment arm (patients with ASCT)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>Time Point (months)</th>
<th>PFS (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM A / R-ICE</td>
<td>12</td>
<td>66.1</td>
<td>57.0</td>
<td>73.8</td>
<td>79</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>24</td>
<td>57.2</td>
<td>47.7</td>
<td>65.5</td>
<td>61</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>36</td>
<td>48.1</td>
<td>38.6</td>
<td>57.0</td>
<td>38</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>48</td>
<td>48.1</td>
<td>38.6</td>
<td>57.0</td>
<td>20</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>60</td>
<td>44.1</td>
<td>32.6</td>
<td>55.0</td>
<td>11</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>72</td>
<td>38.6</td>
<td>24.6</td>
<td>52.3</td>
<td>1</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>12</td>
<td>72.3</td>
<td>63.7</td>
<td>79.1</td>
<td>93</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>24</td>
<td>64.2</td>
<td>55.2</td>
<td>71.8</td>
<td>67</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>36</td>
<td>61.1</td>
<td>51.6</td>
<td>69.1</td>
<td>54</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>48</td>
<td>61.1</td>
<td>51.8</td>
<td>69.1</td>
<td>36</td>
</tr>
<tr>
<td>Arm of treatment</td>
<td>Time Point (months)</td>
<td>PFS (%)</td>
<td>95% CI Lower</td>
<td>95% CI Upper</td>
<td>Patients at risk</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------</td>
<td>---------</td>
<td>--------------</td>
<td>--------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>60</td>
<td>53.6</td>
<td>41.8</td>
<td>64.0</td>
<td>15</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>72</td>
<td>53.6</td>
<td>41.8</td>
<td>64.0</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 4.5-47 Secondary criteria – Hazard ratio of R-ICE arm for Progression-Free Survival (patients with ASCT)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>p-value</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-ICE</td>
<td>0.0850</td>
<td>1.383</td>
<td>0.956 2.000</td>
</tr>
</tbody>
</table>

4.5.2.8. Overall Survival of patients submitted to ASCT

Overall survival for patients submitted to ASCT is measured from date of transplantation to date of death from any cause.

Figure 4.5-11 Secondary criteria – Overall Survival (patients with ASCT)

Table 4.5-48 Secondary criteria – Duration of Overall Survival (patients with ASCT)

<table>
<thead>
<tr>
<th>OS (months)</th>
<th>N</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS (months)</td>
<td>255</td>
<td>-</td>
<td>58</td>
<td>-</td>
<td>0</td>
<td>76</td>
</tr>
</tbody>
</table>
Table 4.5-49 Secondary criteria – Kaplan-Meier estimates for Overall Survival (patients with ASCT)

<table>
<thead>
<tr>
<th>Time Point (months)</th>
<th>OS (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>84.5</td>
<td>79.3</td>
<td>88.4</td>
<td>210</td>
</tr>
<tr>
<td>24</td>
<td>74.9</td>
<td>68.9</td>
<td>79.8</td>
<td>157</td>
</tr>
<tr>
<td>36</td>
<td>67.6</td>
<td>61.0</td>
<td>73.3</td>
<td>112</td>
</tr>
<tr>
<td>48</td>
<td>64.2</td>
<td>57.3</td>
<td>70.3</td>
<td>68</td>
</tr>
<tr>
<td>60</td>
<td>55.2</td>
<td>45.9</td>
<td>63.5</td>
<td>30</td>
</tr>
<tr>
<td>72</td>
<td>52.1</td>
<td>41.5</td>
<td>61.7</td>
<td>6</td>
</tr>
</tbody>
</table>

Figure 4.5-12 Secondary criteria – Overall Survival according to treatment arm (patients with ASCT)

Table 4.5-50 Secondary criteria – Duration of Overall Survival according to treatment arm (patients with ASCT)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>N</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS (months) ARM A / R-ICE</td>
<td>123</td>
<td>59</td>
<td>39</td>
<td>-</td>
<td>0</td>
<td>74</td>
</tr>
<tr>
<td>OS (months) ARM B / R-DHAP</td>
<td>132</td>
<td>-</td>
<td>58</td>
<td>-</td>
<td>0</td>
<td>76</td>
</tr>
</tbody>
</table>
Table 4.5-51 Secondary criteria – Kaplan-Meier estimates for Overall Survival according to treatment arm (patients with ASCT)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>Time Point (months)</th>
<th>OS (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM A / R-ICE</td>
<td>12</td>
<td>81.0</td>
<td>72.8</td>
<td>87.0</td>
<td>97</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>24</td>
<td>71.4</td>
<td>62.3</td>
<td>78.6</td>
<td>77</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>36</td>
<td>63.1</td>
<td>53.3</td>
<td>71.3</td>
<td>51</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>48</td>
<td>56.4</td>
<td>46.0</td>
<td>65.5</td>
<td>27</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>60</td>
<td>48.8</td>
<td>35.5</td>
<td>60.9</td>
<td>13</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>72</td>
<td>41.9</td>
<td>25.1</td>
<td>57.7</td>
<td>1</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>12</td>
<td>87.7</td>
<td>80.7</td>
<td>92.3</td>
<td>113</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>24</td>
<td>78.1</td>
<td>69.9</td>
<td>84.4</td>
<td>80</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>36</td>
<td>71.9</td>
<td>62.8</td>
<td>79.2</td>
<td>61</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>48</td>
<td>71.9</td>
<td>62.8</td>
<td>79.2</td>
<td>41</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>60</td>
<td>61.5</td>
<td>48.5</td>
<td>72.2</td>
<td>17</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>72</td>
<td>61.5</td>
<td>48.5</td>
<td>72.2</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 4.5-52 Secondary criteria – Hazard ratio of R-ICE arm for Overall Survival (patients with ASCT)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>p-value</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-ICE</td>
<td>0.0625</td>
<td>1.494</td>
<td>0.979</td>
</tr>
</tbody>
</table>
4.5.3. **Exploratory analyses**

The prognostic impact of the two stratifications factors (prior treatment with rituximab and failure from diagnosis) is analysed on the induction ITT population.

Table 4.5-53 Exploratory analyses – Stratification factors (induction ITT)

<table>
<thead>
<tr>
<th>Prior treatment with Rituximab</th>
<th>Failure from diagnosis</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>12 months</td>
<td>94</td>
<td>39</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>145</td>
<td>61</td>
<td>276</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>239</td>
<td>100</td>
<td>469</td>
</tr>
</tbody>
</table>

Table 4.5-54 Exploratory analyses – p-values of Chi-2 test for stratification factors (induction ITT)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>P-value (Chi-2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior Rituximab according to arm</td>
<td>0.9842</td>
</tr>
<tr>
<td>Failure from diagnosis according to arm</td>
<td>0.4140</td>
</tr>
<tr>
<td>Failure from diagnosis according to prior rituximab</td>
<td><.0001</td>
</tr>
</tbody>
</table>
4.5.3.1. According to prior rituximab

Table 4.5-55 Exploratory analyses – Characteristics at initial diagnosis according to prior rituximab (induction ITT)

<table>
<thead>
<tr>
<th>Performance Status at diagnosis</th>
<th>Prior treatment with Rituximab</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td><2</td>
<td>126</td>
<td>89</td>
<td>237</td>
<td>83</td>
</tr>
<tr>
<td>>=2</td>
<td>15</td>
<td>11</td>
<td>48</td>
<td>17</td>
</tr>
<tr>
<td>TOTAL</td>
<td>141</td>
<td>100</td>
<td>285</td>
<td>100</td>
</tr>
<tr>
<td>Ann Arbor Stage at diagnosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-II</td>
<td>97</td>
<td>60</td>
<td>99</td>
<td>33</td>
</tr>
<tr>
<td>III-IV</td>
<td>65</td>
<td>40</td>
<td>202</td>
<td>67</td>
</tr>
<tr>
<td>TOTAL</td>
<td>162</td>
<td>100</td>
<td>301</td>
<td>100</td>
</tr>
<tr>
<td>LDH at diagnosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><= 1 N</td>
<td>87</td>
<td>63</td>
<td>99</td>
<td>36</td>
</tr>
<tr>
<td>> 1 N</td>
<td>52</td>
<td>37</td>
<td>177</td>
<td>64</td>
</tr>
<tr>
<td>TOTAL</td>
<td>139</td>
<td>100</td>
<td>276</td>
<td>100</td>
</tr>
<tr>
<td>Age adjusted IPI at initial diagnosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>54</td>
<td>43</td>
<td>30</td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td>38</td>
<td>30</td>
<td>111</td>
<td>42</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>20</td>
<td>89</td>
<td>34</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>6</td>
<td>33</td>
<td>13</td>
</tr>
<tr>
<td>Subtotal 0-1</td>
<td>92</td>
<td>74</td>
<td>141</td>
<td>54</td>
</tr>
<tr>
<td>Subtotal 2-3</td>
<td>33</td>
<td>26</td>
<td>122</td>
<td>46</td>
</tr>
<tr>
<td>TOTAL</td>
<td>125</td>
<td>100</td>
<td>263</td>
<td>100</td>
</tr>
<tr>
<td>Nb of extra nodal sites at diagnosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><=1</td>
<td>142</td>
<td>89</td>
<td>197</td>
<td>67</td>
</tr>
<tr>
<td>>1</td>
<td>18</td>
<td>11</td>
<td>99</td>
<td>33</td>
</tr>
<tr>
<td>TOTAL</td>
<td>160</td>
<td>100</td>
<td>296</td>
<td>100</td>
</tr>
<tr>
<td>IPI at initial diagnosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>51</td>
<td>41</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>35</td>
<td>28</td>
<td>82</td>
<td>31</td>
</tr>
<tr>
<td>2</td>
<td>24</td>
<td>19</td>
<td>76</td>
<td>29</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>9</td>
<td>59</td>
<td>23</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>3</td>
<td>23</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Subtotal 0-2</td>
<td>110</td>
<td>88</td>
<td>176</td>
<td>67</td>
</tr>
<tr>
<td>Subtotal 3-5</td>
<td>15</td>
<td>12</td>
<td>86</td>
<td>33</td>
</tr>
<tr>
<td>TOTAL</td>
<td>125</td>
<td>100</td>
<td>262</td>
<td>100</td>
</tr>
<tr>
<td>B Symptom at diagnosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>111</td>
<td>71</td>
<td>153</td>
<td>52</td>
</tr>
</tbody>
</table>
Prior treatment with Rituximab

<table>
<thead>
<tr>
<th>Prior treatment with Rituximab</th>
<th>No</th>
<th>%</th>
<th>Yes</th>
<th>%</th>
<th>All</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>45</td>
<td>29</td>
<td>144</td>
<td>48</td>
<td>189</td>
<td>42</td>
</tr>
<tr>
<td>TOTAL</td>
<td>156</td>
<td>100</td>
<td>297</td>
<td>100</td>
<td>453</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 4.5-56 Exploratory analyses – p-value of Chi-2 test for characteristics at initial diagnosis according to prior rituximab (induction ITT)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>P-value (Chi-2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance Status at diagnosis (<2 Vs ≥2)</td>
<td>0.0896</td>
</tr>
<tr>
<td>Ann Arbor Stage at diagnosis (I-II Vs III-IV)</td>
<td><.0001</td>
</tr>
<tr>
<td>LDH at diagnosis (=< N Vs > 1 N)</td>
<td><.0001</td>
</tr>
<tr>
<td>Age adjusted IPI at diagnosis (0-1 Vs 2-3)</td>
<td>0.0002</td>
</tr>
<tr>
<td>Nb of extra nodal sites at diagnosis (≤1 Vs >1)</td>
<td><.0001</td>
</tr>
<tr>
<td>IPI at diagnosis (0-2 Vs 3-5)</td>
<td><.0001</td>
</tr>
<tr>
<td>B Symptoms at diagnosis (No Vs Yes)</td>
<td><.0001</td>
</tr>
</tbody>
</table>

Table 4.5-57 Exploratory analyses – Characteristics at progression/relapse diagnosis according to prior rituximab (induction ITT)

<table>
<thead>
<tr>
<th>Prior treatment with Rituximab</th>
<th>No</th>
<th>%</th>
<th>Yes</th>
<th>%</th>
<th>All</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><40 years</td>
<td>23</td>
<td>14</td>
<td>50</td>
<td>17</td>
<td>73</td>
<td>16</td>
</tr>
<tr>
<td>>=40 years</td>
<td>144</td>
<td>86</td>
<td>252</td>
<td>83</td>
<td>396</td>
<td>84</td>
</tr>
<tr>
<td>Total</td>
<td>167</td>
<td>100</td>
<td>302</td>
<td>100</td>
<td>469</td>
<td>100</td>
</tr>
<tr>
<td>Performance Status at relapse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><2</td>
<td>155</td>
<td>93</td>
<td>257</td>
<td>86</td>
<td>412</td>
<td>88</td>
</tr>
<tr>
<td>>=2</td>
<td>11</td>
<td>7</td>
<td>43</td>
<td>14</td>
<td>54</td>
<td>12</td>
</tr>
<tr>
<td>TOTAL</td>
<td>166</td>
<td>100</td>
<td>300</td>
<td>100</td>
<td>466</td>
<td>100</td>
</tr>
<tr>
<td>Ann Arbor stage at relapse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-II</td>
<td>69</td>
<td>42</td>
<td>110</td>
<td>37</td>
<td>179</td>
<td>38</td>
</tr>
<tr>
<td>III-IV</td>
<td>97</td>
<td>58</td>
<td>190</td>
<td>63</td>
<td>287</td>
<td>62</td>
</tr>
<tr>
<td>TOTAL</td>
<td>166</td>
<td>100</td>
<td>300</td>
<td>100</td>
<td>466</td>
<td>100</td>
</tr>
<tr>
<td>LDH relapse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤Normal</td>
<td>83</td>
<td>51</td>
<td>137</td>
<td>46</td>
<td>220</td>
<td>48</td>
</tr>
<tr>
<td>>Normal</td>
<td>81</td>
<td>49</td>
<td>158</td>
<td>54</td>
<td>239</td>
<td>52</td>
</tr>
<tr>
<td>TOTAL</td>
<td>164</td>
<td>100</td>
<td>295</td>
<td>100</td>
<td>459</td>
<td>100</td>
</tr>
<tr>
<td>Age-adjusted IPI at relapse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>34</td>
<td>21</td>
<td>63</td>
<td>22</td>
<td>97</td>
<td>21</td>
</tr>
<tr>
<td>1</td>
<td>78</td>
<td>48</td>
<td>103</td>
<td>35</td>
<td>181</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>45</td>
<td>28</td>
<td>99</td>
<td>34</td>
<td>144</td>
<td>32</td>
</tr>
</tbody>
</table>
Table 4.5-58 Exploratory analyses: p-value of Chi-2 test for characteristics at progression/relapse diagnosis according to prior rituximab (induction ITT)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>P-value (Chi-2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (<40y vs >=40y)</td>
<td>0.4259</td>
</tr>
<tr>
<td>Performance Status at baseline (<2 Vs >=2)</td>
<td>0.0128</td>
</tr>
<tr>
<td>Ann Arbor stage at baseline (I-II Vs III-IV)</td>
<td>0.2977</td>
</tr>
<tr>
<td>LDH at baseline (=< 1 N Vs > 1 N)</td>
<td>0.3916</td>
</tr>
<tr>
<td>Age adjusted IPI at baseline (0-1 Vs 2-3)</td>
<td>0.0128</td>
</tr>
<tr>
<td>Nb of extra nodal sites at baseline (=<1 Vs >1)</td>
<td>0.0520</td>
</tr>
<tr>
<td>B Symptoms at baseline (No Vs Yes)</td>
<td>0.2655</td>
</tr>
<tr>
<td>IPI at baseline (0-2 Vs 3-5)</td>
<td>0.0060</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prior treatment with Rituximab</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No</td>
<td>%</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>4</td>
<td>27</td>
</tr>
<tr>
<td>Subtotal 0-1</td>
<td>112</td>
<td>69</td>
<td>166</td>
</tr>
<tr>
<td>Subtotal 2-3</td>
<td>51</td>
<td>31</td>
<td>126</td>
</tr>
<tr>
<td>TOTAL</td>
<td>163</td>
<td>100</td>
<td>292</td>
</tr>
<tr>
<td>Nb of extra nodal sites at relapse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><=1</td>
<td>125</td>
<td>75</td>
<td>200</td>
</tr>
<tr>
<td>>1</td>
<td>41</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>TOTAL</td>
<td>166</td>
<td>100</td>
<td>300</td>
</tr>
<tr>
<td>IPI at relapse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>30</td>
<td>18</td>
<td>49</td>
</tr>
<tr>
<td>1</td>
<td>50</td>
<td>31</td>
<td>72</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>31</td>
<td>76</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td>15</td>
<td>58</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>4</td>
<td>29</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Subtotal 0-2</td>
<td>130</td>
<td>80</td>
<td>197</td>
</tr>
<tr>
<td>Subtotal 3-5</td>
<td>33</td>
<td>20</td>
<td>94</td>
</tr>
<tr>
<td>TOTAL</td>
<td>163</td>
<td>100</td>
<td>291</td>
</tr>
<tr>
<td>B symptoms at relapse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>130</td>
<td>79</td>
<td>221</td>
</tr>
<tr>
<td>Yes</td>
<td>35</td>
<td>21</td>
<td>77</td>
</tr>
<tr>
<td>TOTAL</td>
<td>165</td>
<td>100</td>
<td>298</td>
</tr>
</tbody>
</table>
Table 4.5-59 Exploratory analyses – Overall response rate according to prior rituximab (induction ITT)

<table>
<thead>
<tr>
<th>Prior treatment with Rituximab</th>
<th>No</th>
<th>%</th>
<th>Yes</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response after complete induction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR/CRu/PR</td>
<td>137</td>
<td>82</td>
<td>164</td>
<td>54</td>
</tr>
<tr>
<td>Other</td>
<td>30</td>
<td>18</td>
<td>138</td>
<td>46</td>
</tr>
<tr>
<td>Total</td>
<td>167</td>
<td>100</td>
<td>302</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 4.5-60 Exploratory analyses – Complete response rate according to prior rituximab (induction ITT)

<table>
<thead>
<tr>
<th>Prior treatment with Rituximab</th>
<th>No</th>
<th>%</th>
<th>Yes</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response after complete induction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR/CRu</td>
<td>84</td>
<td>50</td>
<td>89</td>
<td>29</td>
</tr>
<tr>
<td>Other</td>
<td>83</td>
<td>50</td>
<td>213</td>
<td>71</td>
</tr>
<tr>
<td>Total</td>
<td>167</td>
<td>100</td>
<td>302</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 4.5-61 Exploratory analyses – Mobilization adjusted response rate according to prior rituximab (induction ITT)

<table>
<thead>
<tr>
<th>Prior treatment with Rituximab</th>
<th>No</th>
<th>%</th>
<th>Yes</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobilization adjusted overall response rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>44</td>
<td>26</td>
<td>172</td>
<td>57</td>
</tr>
<tr>
<td>Yes</td>
<td>123</td>
<td>74</td>
<td>130</td>
<td>43</td>
</tr>
<tr>
<td>Total</td>
<td>167</td>
<td>100</td>
<td>302</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 4.5-62 Exploratory analyses – Univariate analysis for response rates according to prior rituximab (induction ITT)

<table>
<thead>
<tr>
<th>Prior rituximab: No</th>
<th>p-value (Wald Chi-2)</th>
<th>Odds ratio estimates</th>
<th>95% Wald confidence limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response to induction CR/CRu/PR</td>
<td><.0001</td>
<td>3.843</td>
<td>2.437</td>
</tr>
<tr>
<td>Response to induction CR/CRu</td>
<td><.0001</td>
<td>2.422</td>
<td>1.637</td>
</tr>
<tr>
<td>Mobilization adjusted response rate</td>
<td><.0001</td>
<td>0.270</td>
<td>0.179</td>
</tr>
</tbody>
</table>
Figure 4.5-13 Exploratory analyses – Event-Free Survival according to prior rituximab (induction ITT)

![Graph showing event-free survival probability over time for patients with and without prior rituximab treatment. The graph includes Kaplan-Meier estimates for survival with log-rank p-value of 0.0001.]

Table 4.5-63 Exploratory analyses – Duration of Event-Free Survival according to prior rituximab (induction ITT)

<table>
<thead>
<tr>
<th>Prior treatment with Rituximab</th>
<th>N</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>167</td>
<td>31</td>
<td>23</td>
<td>62</td>
<td>1</td>
<td>79</td>
</tr>
<tr>
<td>Yes</td>
<td>302</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td>0</td>
<td>78</td>
</tr>
</tbody>
</table>

Table 4.5-64 Exploratory analyses – Kaplan-Meier estimates for Event-Free Survival according to prior rituximab (induction ITT)

<table>
<thead>
<tr>
<th>Prior treatment with Rituximab</th>
<th>Time Point (years)</th>
<th>Survival (%)</th>
<th>95% CI lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>12</td>
<td>65.4</td>
<td>57.6</td>
<td>72.1</td>
<td>105</td>
</tr>
<tr>
<td>No</td>
<td>24</td>
<td>57.2</td>
<td>49.2</td>
<td>64.4</td>
<td>87</td>
</tr>
<tr>
<td>No</td>
<td>36</td>
<td>47.8</td>
<td>39.8</td>
<td>55.5</td>
<td>59</td>
</tr>
<tr>
<td>No</td>
<td>48</td>
<td>47.0</td>
<td>38.9</td>
<td>54.7</td>
<td>46</td>
</tr>
<tr>
<td>No</td>
<td>60</td>
<td>45.9</td>
<td>37.7</td>
<td>53.7</td>
<td>24</td>
</tr>
<tr>
<td>No</td>
<td>72</td>
<td>37.4</td>
<td>27.4</td>
<td>47.3</td>
<td>7</td>
</tr>
<tr>
<td>Yes</td>
<td>12</td>
<td>28.9</td>
<td>23.9</td>
<td>34.2</td>
<td>85</td>
</tr>
<tr>
<td>Yes</td>
<td>24</td>
<td>23.5</td>
<td>18.8</td>
<td>28.4</td>
<td>63</td>
</tr>
<tr>
<td>Yes</td>
<td>36</td>
<td>20.9</td>
<td>16.4</td>
<td>25.8</td>
<td>43</td>
</tr>
<tr>
<td>Yes</td>
<td>48</td>
<td>20.9</td>
<td>16.4</td>
<td>25.8</td>
<td>21</td>
</tr>
<tr>
<td>Yes</td>
<td>60</td>
<td>20.9</td>
<td>16.4</td>
<td>25.8</td>
<td>9</td>
</tr>
<tr>
<td>Yes</td>
<td>72</td>
<td>17.4</td>
<td>10.8</td>
<td>25.4</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 4.5-65 Exploratory analyses – Hazard ratio of prior rituximab for Event-Free Survival (induction ITT)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>p-value</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior rituximab: No</td>
<td><.0001</td>
<td>0.439</td>
<td>0.343 0.561</td>
</tr>
</tbody>
</table>

Figure 4.5-14 Exploratory analyses – Progression-Free Survival according to prior rituximab (induction ITT)

Table 4.5-66 Exploratory analyses – Duration of Progression-Free Survival according to prior rituximab (induction ITT)

<table>
<thead>
<tr>
<th>Prior treatment with Rituximab</th>
<th>N</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>167</td>
<td>61</td>
<td>31</td>
<td>-</td>
<td>1</td>
<td>79</td>
</tr>
<tr>
<td>Yes</td>
<td>302</td>
<td>7</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>78</td>
</tr>
</tbody>
</table>

Table 4.5-67 Exploratory analyses – Kaplan-Meier estimates for Progression-Free Survival according to prior rituximab (induction ITT)

<table>
<thead>
<tr>
<th>Prior treatment with Rituximab</th>
<th>Time Point (years)</th>
<th>Survival (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>12</td>
<td>75.1</td>
<td>67.7</td>
<td>81.0</td>
<td>121</td>
</tr>
<tr>
<td>No</td>
<td>24</td>
<td>63.8</td>
<td>55.9</td>
<td>70.7</td>
<td>97</td>
</tr>
<tr>
<td>No</td>
<td>36</td>
<td>53.5</td>
<td>45.3</td>
<td>61.1</td>
<td>65</td>
</tr>
<tr>
<td>No</td>
<td>48</td>
<td>52.7</td>
<td>44.4</td>
<td>60.3</td>
<td>51</td>
</tr>
<tr>
<td>No</td>
<td>60</td>
<td>50.1</td>
<td>41.4</td>
<td>58.1</td>
<td>26</td>
</tr>
<tr>
<td>No</td>
<td>72</td>
<td>41.4</td>
<td>30.9</td>
<td>51.6</td>
<td>7</td>
</tr>
<tr>
<td>Yes</td>
<td>12</td>
<td>38.6</td>
<td>33.0</td>
<td>44.1</td>
<td>112</td>
</tr>
<tr>
<td>Yes</td>
<td>24</td>
<td>32.0</td>
<td>26.7</td>
<td>37.4</td>
<td>84</td>
</tr>
<tr>
<td>Prior treatment with Rituximab</td>
<td>Time Point (years)</td>
<td>Survival (%)</td>
<td>95% CI Lower</td>
<td>95% CI Upper</td>
<td>Patients at risk</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Yes</td>
<td>36</td>
<td>28.9</td>
<td>23.7</td>
<td>34.3</td>
<td>58</td>
</tr>
<tr>
<td>Yes</td>
<td>48</td>
<td>28.9</td>
<td>23.7</td>
<td>34.3</td>
<td>28</td>
</tr>
<tr>
<td>Yes</td>
<td>60</td>
<td>27.8</td>
<td>22.4</td>
<td>33.4</td>
<td>12</td>
</tr>
<tr>
<td>Yes</td>
<td>72</td>
<td>24.7</td>
<td>17.5</td>
<td>32.5</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 4.5-68 Exploratory analyses – Hazard ratio of prior rituximab for Progression-Free Survival (induction ITT)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>p-value</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior rituximab: No</td>
<td><.0001</td>
<td>0.455</td>
<td>0.351 0.589</td>
</tr>
</tbody>
</table>

Figure 4.5-15 Exploratory analyses – Overall Survival according to prior rituximab (induction ITT)

Table 4.5-69 Exploratory analyses – Duration of Overall Survival according to prior rituximab (induction ITT)

<table>
<thead>
<tr>
<th>Prior treatment with Rituximab</th>
<th>N</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>167</td>
<td>62</td>
<td>54</td>
<td>-</td>
<td>2</td>
<td>79</td>
</tr>
<tr>
<td>Yes</td>
<td>302</td>
<td>17</td>
<td>14</td>
<td>27</td>
<td>0</td>
<td>78</td>
</tr>
</tbody>
</table>
Table 4.5-70 Exploratory analyses – Kaplan-Meier estimates for Overall Survival according to prior rituximab (induction ITT)

<table>
<thead>
<tr>
<th>Prior treatment with Rituximab</th>
<th>Time Point (years)</th>
<th>Survival (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>12</td>
<td>86.6</td>
<td>80.3</td>
<td>90.9</td>
<td>140</td>
</tr>
<tr>
<td>No</td>
<td>24</td>
<td>74.7</td>
<td>67.2</td>
<td>80.7</td>
<td>114</td>
</tr>
<tr>
<td>No</td>
<td>36</td>
<td>67.3</td>
<td>59.2</td>
<td>74.1</td>
<td>83</td>
</tr>
<tr>
<td>No</td>
<td>48</td>
<td>62.0</td>
<td>53.4</td>
<td>69.4</td>
<td>62</td>
</tr>
<tr>
<td>No</td>
<td>60</td>
<td>56.4</td>
<td>46.9</td>
<td>64.9</td>
<td>30</td>
</tr>
<tr>
<td>No</td>
<td>72</td>
<td>46.5</td>
<td>35.3</td>
<td>56.9</td>
<td>8</td>
</tr>
<tr>
<td>Yes</td>
<td>12</td>
<td>60.8</td>
<td>55.0</td>
<td>66.2</td>
<td>175</td>
</tr>
<tr>
<td>Yes</td>
<td>24</td>
<td>45.7</td>
<td>39.9</td>
<td>51.4</td>
<td>114</td>
</tr>
<tr>
<td>Yes</td>
<td>36</td>
<td>40.6</td>
<td>34.8</td>
<td>46.4</td>
<td>79</td>
</tr>
<tr>
<td>Yes</td>
<td>48</td>
<td>39.8</td>
<td>33.8</td>
<td>45.7</td>
<td>38</td>
</tr>
<tr>
<td>Yes</td>
<td>60</td>
<td>39.8</td>
<td>33.8</td>
<td>45.7</td>
<td>18</td>
</tr>
<tr>
<td>Yes</td>
<td>72</td>
<td>36.2</td>
<td>27.6</td>
<td>44.8</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 4.5-71 Exploratory analyses – Hazard ratio of prior rituximab for Overall Survival (induction ITT)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>p-value</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior rituximab: No</td>
<td><.0001</td>
<td>0.485</td>
<td>0.364 0.646</td>
</tr>
</tbody>
</table>

4.5.3.2. According to failure from diagnosis

Table 4.5-72 Exploratory analyses – Characteristics at initial diagnosis according to failure from diagnosis (induction ITT)

<table>
<thead>
<tr>
<th></th>
<th>Failure from diagnosis</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 12 months</td>
<td>>= 12 months</td>
</tr>
<tr>
<td>Performance Status at diagnosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td><2</td>
<td>211</td>
<td>152</td>
</tr>
<tr>
<td>>=2</td>
<td>47</td>
<td>16</td>
</tr>
<tr>
<td>TOTAL</td>
<td>258</td>
<td>168</td>
</tr>
<tr>
<td>Ann Arbor Stage at diagnosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-II</td>
<td>97</td>
<td>99</td>
</tr>
<tr>
<td>III-IV</td>
<td>178</td>
<td>89</td>
</tr>
<tr>
<td>TOTAL</td>
<td>275</td>
<td>188</td>
</tr>
<tr>
<td>LDH at diagnosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td><= 1 N</td>
<td>79</td>
<td>107</td>
</tr>
<tr>
<td>> 1 N</td>
<td>171</td>
<td>58</td>
</tr>
<tr>
<td>TOTAL</td>
<td>250</td>
<td>165</td>
</tr>
<tr>
<td>Age adjusted IPI at initial diagnosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>29</td>
<td>55</td>
</tr>
<tr>
<td>1</td>
<td>87</td>
<td>62</td>
</tr>
<tr>
<td>2</td>
<td>87</td>
<td>27</td>
</tr>
</tbody>
</table>
Table 4.5-73 Exploratory analyses – p-value of Chi-2 test for characteristics at initial diagnosis according to failure from diagnosis (induction ITT)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>P-value (Chi-2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance Status at diagnosis (<2 Vs >=2)</td>
<td>0.0135</td>
</tr>
<tr>
<td>Ann Arbor Stage at diagnosis (I-II Vs III-IV)</td>
<td>0.0002</td>
</tr>
<tr>
<td>LDH at diagnosis (=< 1 N Vs > 1 N)</td>
<td><.0001</td>
</tr>
<tr>
<td>Age adjusted IPI at diagnosis (0-1 Vs 2-3)</td>
<td><.0001</td>
</tr>
<tr>
<td>Nb of extra nodal sites at diagnosis (<=1 Vs >1)</td>
<td>0.1030</td>
</tr>
<tr>
<td>IPI at diagnosis (0-2 Vs 3-5)</td>
<td><.0001</td>
</tr>
<tr>
<td>B Symptoms at diagnosis (No Vs Yes)</td>
<td>0.0005</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Failure from diagnosis</th>
<th>< 12 months</th>
<th>>= 12 months</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>3</td>
<td>33</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>Subtotal 0-1</td>
<td>116</td>
<td>49</td>
<td>117</td>
</tr>
<tr>
<td>Subtotal 2-3</td>
<td>120</td>
<td>51</td>
<td>35</td>
</tr>
<tr>
<td>TOTAL</td>
<td>236</td>
<td>100</td>
<td>152</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nb of extra nodal sites at diagnosis</th>
<th><=1</th>
<th>>1</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>194</td>
<td>77</td>
<td>271</td>
</tr>
<tr>
<td>%</td>
<td>72</td>
<td>28</td>
<td>100</td>
</tr>
<tr>
<td>145</td>
<td>78</td>
<td>22</td>
<td>117</td>
</tr>
<tr>
<td>77</td>
<td>339</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>117</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>339</td>
<td>74</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IPI at initial diagnosis</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>21</td>
<td>68</td>
<td>65</td>
<td>53</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>29</td>
<td>28</td>
<td>23</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>49</td>
<td>35</td>
<td>17</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>32</td>
<td>23</td>
<td>11</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>69</td>
<td>117</td>
<td>100</td>
<td>70</td>
<td>27</td>
<td>4</td>
</tr>
<tr>
<td>Subtotal 0-2</td>
<td>154</td>
<td>66</td>
<td>132</td>
<td>87</td>
<td>286</td>
<td>74</td>
</tr>
<tr>
<td>Subtotal 3-5</td>
<td>81</td>
<td>34</td>
<td>20</td>
<td>13</td>
<td>101</td>
<td>26</td>
</tr>
<tr>
<td>TOTAL</td>
<td>235</td>
<td>100</td>
<td>152</td>
<td>100</td>
<td>387</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B Symptom at diagnosis</th>
<th>No</th>
<th>Yes</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>140</td>
<td>131</td>
<td>271</td>
</tr>
<tr>
<td></td>
<td>52</td>
<td>48</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>124</td>
<td>58</td>
<td>182</td>
</tr>
<tr>
<td></td>
<td>68</td>
<td>32</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>264</td>
<td>189</td>
<td>453</td>
</tr>
<tr>
<td></td>
<td>58</td>
<td>42</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 4.5-73 Exploratory analyses – p-value of Chi-2 test for characteristics at initial diagnosis according to failure from diagnosis (induction ITT)
Table 4.5-74 Exploratory analyses – Characteristics at progression/relapse diagnosis according to failure from diagnosis (induction ITT)

<table>
<thead>
<tr>
<th>Failure from diagnosis</th>
<th>< 12 months</th>
<th>>= 12 months</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><40 years</td>
<td>57</td>
<td>21</td>
<td>16</td>
</tr>
<tr>
<td>>=40 years</td>
<td>219</td>
<td>79</td>
<td>177</td>
</tr>
<tr>
<td>Total</td>
<td>276</td>
<td>100</td>
<td>193</td>
</tr>
<tr>
<td>Performance Status at relapse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><2</td>
<td>232</td>
<td>85</td>
<td>180</td>
</tr>
<tr>
<td>>=2</td>
<td>42</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>TOTAL</td>
<td>274</td>
<td>100</td>
<td>192</td>
</tr>
<tr>
<td>Ann Arbor stage at relapse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-II</td>
<td>106</td>
<td>39</td>
<td>73</td>
</tr>
<tr>
<td>III-IV</td>
<td>169</td>
<td>61</td>
<td>118</td>
</tr>
<tr>
<td>TOTAL</td>
<td>275</td>
<td>100</td>
<td>191</td>
</tr>
<tr>
<td>LDH at relapse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><=Normal</td>
<td>114</td>
<td>42</td>
<td>106</td>
</tr>
<tr>
<td>>Normal</td>
<td>155</td>
<td>58</td>
<td>84</td>
</tr>
<tr>
<td>TOTAL</td>
<td>269</td>
<td>100</td>
<td>190</td>
</tr>
<tr>
<td>Age-adjusted IPI at relapse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>53</td>
<td>20</td>
<td>44</td>
</tr>
<tr>
<td>1</td>
<td>97</td>
<td>36</td>
<td>84</td>
</tr>
<tr>
<td>2</td>
<td>90</td>
<td>34</td>
<td>54</td>
</tr>
<tr>
<td>3</td>
<td>27</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Subtotal 0-1</td>
<td>150</td>
<td>56</td>
<td>128</td>
</tr>
<tr>
<td>Subtotal 2-3</td>
<td>117</td>
<td>44</td>
<td>60</td>
</tr>
<tr>
<td>TOTAL</td>
<td>267</td>
<td>100</td>
<td>188</td>
</tr>
<tr>
<td>Nb of extra nodal sites at relapse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><=1</td>
<td>187</td>
<td>68</td>
<td>138</td>
</tr>
<tr>
<td>>1</td>
<td>87</td>
<td>32</td>
<td>54</td>
</tr>
<tr>
<td>TOTAL</td>
<td>274</td>
<td>100</td>
<td>192</td>
</tr>
<tr>
<td>IPI at relapse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>41</td>
<td>15</td>
<td>38</td>
</tr>
<tr>
<td>1</td>
<td>72</td>
<td>27</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>71</td>
<td>27</td>
<td>55</td>
</tr>
<tr>
<td>3</td>
<td>49</td>
<td>18</td>
<td>34</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Subtotal 0-2</td>
<td>184</td>
<td>69</td>
<td>143</td>
</tr>
<tr>
<td>Subtotal 3-5</td>
<td>82</td>
<td>31</td>
<td>45</td>
</tr>
<tr>
<td>TOTAL</td>
<td>266</td>
<td>100</td>
<td>188</td>
</tr>
<tr>
<td>Parameter</td>
<td>Failure from diagnosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------------------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>< 12 months</td>
<td>>= 12 months</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>B symptoms at relapse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>201</td>
<td>74%</td>
<td>150</td>
</tr>
<tr>
<td>Yes</td>
<td>71</td>
<td>26%</td>
<td>41</td>
</tr>
<tr>
<td>TOTAL</td>
<td>272</td>
<td>100%</td>
<td>191</td>
</tr>
</tbody>
</table>

Table 4.5-75 Exploratory analyses – p-value of Chi-2 test for characteristics at progression/relapse diagnosis according to failure from diagnosis (induction ITT)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>P-value (Chi-2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (<40y vs >=40y)</td>
<td>0.0003</td>
</tr>
<tr>
<td>Performance Status at baseline (<2 Vs >=2)</td>
<td>0.0026</td>
</tr>
<tr>
<td>Ann Arbor stage at baseline (I-II Vs III-IV)</td>
<td>0.9433</td>
</tr>
<tr>
<td>LDH at baseline (=< 1 N Vs > 1 N)</td>
<td>0.0046</td>
</tr>
<tr>
<td>Age adjusted IPI at baseline (0-1 Vs 2-3)</td>
<td>0.0103</td>
</tr>
<tr>
<td>Nb of extra nodal sites at baseline (<=1 Vs >1)</td>
<td>0.4015</td>
</tr>
<tr>
<td>B Symptoms at baseline (No Vs Yes)</td>
<td>0.2514</td>
</tr>
<tr>
<td>IPI at baseline (0-2 Vs 3-5)</td>
<td>0.1071</td>
</tr>
</tbody>
</table>

Table 4.5-76 Exploratory analyses – Overall response rate according to failure from diagnosis (induction ITT)

<table>
<thead>
<tr>
<th>Response after complete induction</th>
<th>Failure from diagnosis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 12 months</td>
<td>>= 12 months</td>
<td>All</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR/CRu/PR</td>
<td>135</td>
<td>49%</td>
<td>166</td>
<td>86%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>141</td>
<td>51%</td>
<td>27</td>
<td>14%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>276</td>
<td>100%</td>
<td>193</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4.5-77 Exploratory analyses – Complete response rate according to failure from diagnosis (induction ITT)

<table>
<thead>
<tr>
<th>Response after complete induction</th>
<th>Failure from diagnosis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 12 months</td>
<td>>= 12 months</td>
<td>All</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR/CRu</td>
<td>66</td>
<td>24%</td>
<td>107</td>
<td>55%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>210</td>
<td>76%</td>
<td>86</td>
<td>45%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>276</td>
<td>100%</td>
<td>193</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4.5-78 Exploratory analyses – Mobilization adjusted response rate according to failure from diagnosis (induction ITT)

<table>
<thead>
<tr>
<th>Failure from diagnosis (Randomization)</th>
<th>< 12 months</th>
<th>>= 12 months</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Mobilization adjusted overall response rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>163</td>
<td>59</td>
</tr>
<tr>
<td>Yes</td>
<td>113</td>
<td>41</td>
</tr>
<tr>
<td>Total</td>
<td>276</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 4.5-79 Exploratory analyses – Univariate analysis for response rates according to failure from diagnosis (induction ITT)

<table>
<thead>
<tr>
<th>Failure from diagnosis < 12 months</th>
<th>p-value (Wald Chi-2)</th>
<th>Odds ratio estimates</th>
<th>95% Wald confidence limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response to induction CR/CRu/PR</td>
<td><.0001</td>
<td>0.156</td>
<td>0.097 0.249</td>
</tr>
<tr>
<td>Response to induction CR/CRu</td>
<td><.0001</td>
<td>0.253</td>
<td>0.170 0.375</td>
</tr>
<tr>
<td>Mobilization adjusted response rate</td>
<td><.0001</td>
<td>3.810</td>
<td>2.562 5.666</td>
</tr>
</tbody>
</table>

Figure 4.5-16 Exploratory analyses – Event-Free Survival according to failure from diagnosis (induction ITT)
Table 4.5-80 Exploratory analyses – Duration of Event-Free Survival according to failure from diagnosis (induction ITT)

<table>
<thead>
<tr>
<th>Failure from diagnosis</th>
<th>N</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 12 months</td>
<td>276</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>78</td>
</tr>
<tr>
<td>>= 12 months</td>
<td>193</td>
<td>28</td>
<td>21</td>
<td>61</td>
<td>1</td>
<td>79</td>
</tr>
</tbody>
</table>

Table 4.5-81 Exploratory analyses – Kaplan-Meier estimates for Event-Free Survival according to failure from diagnosis (induction ITT)

<table>
<thead>
<tr>
<th>Failure from diagnosis</th>
<th>Time Point (years)</th>
<th>Survival (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 12 months</td>
<td>12</td>
<td>26.1</td>
<td>21.0</td>
<td>31.4</td>
<td>68</td>
</tr>
<tr>
<td>< 12 months</td>
<td>24</td>
<td>21.8</td>
<td>17.1</td>
<td>27.0</td>
<td>54</td>
</tr>
<tr>
<td>< 12 months</td>
<td>36</td>
<td>19.5</td>
<td>14.9</td>
<td>24.5</td>
<td>39</td>
</tr>
<tr>
<td>< 12 months</td>
<td>48</td>
<td>19.5</td>
<td>14.9</td>
<td>24.5</td>
<td>30</td>
</tr>
<tr>
<td>< 12 months</td>
<td>60</td>
<td>19.5</td>
<td>14.9</td>
<td>24.5</td>
<td>15</td>
</tr>
<tr>
<td>< 12 months</td>
<td>72</td>
<td>16.4</td>
<td>11.1</td>
<td>22.5</td>
<td>3</td>
</tr>
<tr>
<td>>= 12 months</td>
<td>12</td>
<td>64.3</td>
<td>57.1</td>
<td>70.7</td>
<td>122</td>
</tr>
<tr>
<td>>= 12 months</td>
<td>24</td>
<td>54.7</td>
<td>47.3</td>
<td>61.5</td>
<td>96</td>
</tr>
<tr>
<td>>= 12 months</td>
<td>36</td>
<td>46.0</td>
<td>38.5</td>
<td>53.1</td>
<td>63</td>
</tr>
<tr>
<td>>= 12 months</td>
<td>48</td>
<td>45.2</td>
<td>37.8</td>
<td>52.4</td>
<td>37</td>
</tr>
<tr>
<td>>= 12 months</td>
<td>60</td>
<td>43.9</td>
<td>36.2</td>
<td>51.3</td>
<td>18</td>
</tr>
<tr>
<td>>= 12 months</td>
<td>72</td>
<td>35.6</td>
<td>25.3</td>
<td>46.0</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 4.5-82 Exploratory analyses – Hazard ratio of failure from diagnosis for Event-Free Survival (induction ITT)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>p-value</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure from diagnosis < 12 months</td>
<td><.0001</td>
<td>2.450</td>
<td>1.936</td>
</tr>
</tbody>
</table>
Figure 4.5-17 Exploratory analyses – Progression-Free Survival according to failure from diagnosis (induction ITT)

![Progression-Free Survival Graph](image)

Logrank p<0.0001

Table 4.5-83 Exploratory analyses – Duration of Progression-Free Survival according to failure from diagnosis (induction ITT)

<table>
<thead>
<tr>
<th>Failure from diagnosis</th>
<th>N</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 12 months</td>
<td>276</td>
<td>5</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>78</td>
</tr>
<tr>
<td>>= 12 months</td>
<td>193</td>
<td>51</td>
<td>29</td>
<td>66</td>
<td>1</td>
<td>79</td>
</tr>
</tbody>
</table>

Table 4.5-84 Exploratory analyses – Kaplan-Meier estimates for Progression-Free Survival according to failure from diagnosis (induction ITT)

<table>
<thead>
<tr>
<th>Failure from diagnosis</th>
<th>Time Point (years)</th>
<th>Survival (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 12 months</td>
<td>12</td>
<td>35.6</td>
<td>29.9</td>
<td>41.3</td>
<td>92</td>
</tr>
<tr>
<td>< 12 months</td>
<td>24</td>
<td>29.8</td>
<td>24.4</td>
<td>35.3</td>
<td>72</td>
</tr>
<tr>
<td>< 12 months</td>
<td>36</td>
<td>27.3</td>
<td>22.0</td>
<td>32.8</td>
<td>52</td>
</tr>
<tr>
<td>< 12 months</td>
<td>48</td>
<td>27.3</td>
<td>22.0</td>
<td>32.8</td>
<td>38</td>
</tr>
<tr>
<td>< 12 months</td>
<td>60</td>
<td>27.3</td>
<td>22.0</td>
<td>32.8</td>
<td>19</td>
</tr>
<tr>
<td>< 12 months</td>
<td>72</td>
<td>24.0</td>
<td>17.8</td>
<td>30.7</td>
<td>4</td>
</tr>
<tr>
<td>>= 12 months</td>
<td>12</td>
<td>74.3</td>
<td>67.5</td>
<td>79.9</td>
<td>141</td>
</tr>
<tr>
<td>>= 12 months</td>
<td>24</td>
<td>62.5</td>
<td>55.2</td>
<td>69.0</td>
<td>109</td>
</tr>
<tr>
<td>>= 12 months</td>
<td>36</td>
<td>52.3</td>
<td>44.7</td>
<td>59.4</td>
<td>71</td>
</tr>
<tr>
<td>>= 12 months</td>
<td>48</td>
<td>51.6</td>
<td>43.9</td>
<td>58.7</td>
<td>41</td>
</tr>
<tr>
<td>>= 12 months</td>
<td>60</td>
<td>47.1</td>
<td>38.6</td>
<td>55.2</td>
<td>19</td>
</tr>
<tr>
<td>>= 12 months</td>
<td>72</td>
<td>38.5</td>
<td>27.4</td>
<td>49.6</td>
<td>5</td>
</tr>
</tbody>
</table>
Table 4.5-85 Exploratory analyses – Hazard ratio of failure from diagnosis for Progression-Free Survival (induction ITT)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>p-value</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure from diagnosis < 12 months</td>
<td><.0001</td>
<td>2.319</td>
<td>1.810 2.970</td>
</tr>
</tbody>
</table>

Figure 4.5-18 Exploratory analyses – Overall Survival according to failure from diagnosis (induction ITT)

Table 4.5-86 Exploratory analyses – Duration of Overall Survival according to failure from diagnosis (induction ITT)

<table>
<thead>
<tr>
<th>Failure from diagnosis</th>
<th>N</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 12 months</td>
<td>276</td>
<td>14</td>
<td>12</td>
<td>22</td>
<td>0</td>
<td>78</td>
</tr>
<tr>
<td>>= 12 months</td>
<td>193</td>
<td>62</td>
<td>59</td>
<td>-</td>
<td>1</td>
<td>79</td>
</tr>
</tbody>
</table>
Table 4.5-87 Exploratory analyses – Kaplan-Meier estimates for Overall Survival according to failure from diagnosis (induction ITT)

<table>
<thead>
<tr>
<th>Failure from diagnosis</th>
<th>Time Point (years)</th>
<th>Survival (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 12 months</td>
<td>12</td>
<td>55.7</td>
<td>49.5</td>
<td>61.5</td>
<td>144</td>
</tr>
<tr>
<td>< 12 months</td>
<td>24</td>
<td>42.1</td>
<td>36.0</td>
<td>48.0</td>
<td>100</td>
</tr>
<tr>
<td>< 12 months</td>
<td>36</td>
<td>37.6</td>
<td>31.6</td>
<td>43.6</td>
<td>71</td>
</tr>
<tr>
<td>< 12 months</td>
<td>48</td>
<td>36.2</td>
<td>30.1</td>
<td>42.3</td>
<td>47</td>
</tr>
<tr>
<td>< 12 months</td>
<td>60</td>
<td>36.2</td>
<td>30.1</td>
<td>42.3</td>
<td>24</td>
</tr>
<tr>
<td>< 12 months</td>
<td>72</td>
<td>32.0</td>
<td>24.3</td>
<td>39.9</td>
<td>4</td>
</tr>
<tr>
<td>>= 12 months</td>
<td>12</td>
<td>90.0</td>
<td>84.8</td>
<td>93.5</td>
<td>171</td>
</tr>
<tr>
<td>>= 12 months</td>
<td>24</td>
<td>75.6</td>
<td>68.7</td>
<td>81.1</td>
<td>128</td>
</tr>
<tr>
<td>>= 12 months</td>
<td>36</td>
<td>67.6</td>
<td>60.1</td>
<td>74.0</td>
<td>91</td>
</tr>
<tr>
<td>>= 12 months</td>
<td>48</td>
<td>63.3</td>
<td>55.3</td>
<td>70.3</td>
<td>53</td>
</tr>
<tr>
<td>>= 12 months</td>
<td>60</td>
<td>56.8</td>
<td>47.1</td>
<td>65.4</td>
<td>24</td>
</tr>
<tr>
<td>>= 12 months</td>
<td>72</td>
<td>46.6</td>
<td>34.4</td>
<td>57.8</td>
<td>7</td>
</tr>
</tbody>
</table>

Table 4.5-88 Exploratory analyses – Hazard ratio of failure from diagnosis for Overall Survival (induction ITT)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>p-value</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure from diagnosis < 12 months</td>
<td><.0001</td>
<td>2.391</td>
<td>1.808</td>
</tr>
</tbody>
</table>
4.5.3.3. According to prior rituximab and failure from diagnosis

Table 4.5-89 Exploratory analyses – Overall response rate according to prior rituximab and failure from diagnosis (induction ITT)

<table>
<thead>
<tr>
<th>Prior treatment with Rituximab</th>
<th>No Failure from diagnosis</th>
<th>Yes Failure from diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 12 months</td>
<td>>= 12 months</td>
</tr>
<tr>
<td>Response after complete induction</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>CR/CRu/PR</td>
<td>28</td>
<td>64</td>
</tr>
<tr>
<td>Other</td>
<td>16</td>
<td>36</td>
</tr>
<tr>
<td>Total</td>
<td>44</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 4.5-90 Exploratory analyses – Complete response rate according to prior rituximab and failure from diagnosis (induction ITT)

<table>
<thead>
<tr>
<th>Prior treatment with Rituximab</th>
<th>No Failure from diagnosis</th>
<th>Yes Failure from diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 12 months</td>
<td>>= 12 months</td>
</tr>
<tr>
<td>Response after complete induction</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>14</td>
<td>32</td>
</tr>
<tr>
<td>Other</td>
<td>30</td>
<td>68</td>
</tr>
<tr>
<td>Total</td>
<td>44</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 4.5-91 Exploratory analyses – Mobilization adjusted response rate according to prior rituximab and failure from diagnosis (induction ITT)

<table>
<thead>
<tr>
<th>Prior treatment with Rituximab</th>
<th>No Failure from diagnosis</th>
<th>Yes Failure from diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 12 months</td>
<td>>= 12 months</td>
</tr>
<tr>
<td>Mobilization adjusted overall response rate</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>No</td>
<td>18</td>
<td>41</td>
</tr>
<tr>
<td>Yes</td>
<td>26</td>
<td>59</td>
</tr>
<tr>
<td>Total</td>
<td>44</td>
<td>100</td>
</tr>
</tbody>
</table>
Figure 4.5-19 Exploratory analyses – Event-Free Survival according to prior rituximab by failure from diagnosis
(induction ITT)

Failure from diagnosis <= 12 months

Logrank p=0.0023

<table>
<thead>
<tr>
<th>No. of Subjects</th>
<th>Event</th>
<th>Censored</th>
<th>Median Survival (95% CL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior rituximab: No</td>
<td>44</td>
<td>59% (26)</td>
<td>41% (18) 5.19 (3.76 NA)</td>
</tr>
<tr>
<td>Prior rituximab: Yes</td>
<td>232</td>
<td>83% (192)</td>
<td>17% (40) 3.36 (3.06 4.14)</td>
</tr>
</tbody>
</table>

Failure from diagnosis => 12 months

Logrank p=0.0518

<table>
<thead>
<tr>
<th>No. of Subjects</th>
<th>Event</th>
<th>Censored</th>
<th>Median Survival (95% CL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior rituximab: No</td>
<td>123</td>
<td>51% (63)</td>
<td>49% (60) 36.17 (25.56 65.54)</td>
</tr>
<tr>
<td>Prior rituximab: Yes</td>
<td>70</td>
<td>60% (42)</td>
<td>40% (28) 15.41 (8.21 NA)</td>
</tr>
</tbody>
</table>
Figure 4.5-20 Exploratory analyses – Event-Free Survival according to failure from diagnosis by prior rituximab (induction ITT)

Prior treatment with Rituximab=Yes

Prior treatment with Rituximab=No
Table 4.5-92 Exploratory analyses – Duration of Event-Free Survival according to prior rituximab and failure from diagnosis (induction ITT)

<table>
<thead>
<tr>
<th>Prior treatment with Rituximab</th>
<th>Failure from diagnosis (Randomization)</th>
<th>(N)</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFS (months)</td>
<td>No</td>
<td>< 12 months</td>
<td>44</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>74</td>
</tr>
<tr>
<td>EFS (months)</td>
<td>No</td>
<td>>= 12 months</td>
<td>123</td>
<td>36</td>
<td>26</td>
<td>66</td>
<td>79</td>
</tr>
<tr>
<td>EFS (months)</td>
<td>Yes</td>
<td>< 12 months</td>
<td>232</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>78</td>
</tr>
<tr>
<td>EFS (months)</td>
<td>Yes</td>
<td>>= 12 months</td>
<td>70</td>
<td>15</td>
<td>8</td>
<td>-</td>
<td>66</td>
</tr>
</tbody>
</table>

Table 4.5-93 Exploratory analyses – Kaplan-Meier estimates for Event-Free Survival according to prior rituximab and failure from diagnosis (induction ITT)

<table>
<thead>
<tr>
<th>Prior treatment with Rituximab</th>
<th>Failure from diagnosis</th>
<th>Time Point (months)</th>
<th>EFS (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>< 12 months</td>
<td>12</td>
<td>48.6</td>
<td>33.0</td>
<td>62.6</td>
<td>19</td>
</tr>
<tr>
<td>No</td>
<td>< 12 months</td>
<td>24</td>
<td>43.5</td>
<td>28.3</td>
<td>57.7</td>
<td>17</td>
</tr>
<tr>
<td>No</td>
<td>< 12 months</td>
<td>36</td>
<td>40.8</td>
<td>25.9</td>
<td>55.2</td>
<td>15</td>
</tr>
<tr>
<td>No</td>
<td>< 12 months</td>
<td>48</td>
<td>40.8</td>
<td>25.9</td>
<td>55.2</td>
<td>15</td>
</tr>
<tr>
<td>No</td>
<td>< 12 months</td>
<td>60</td>
<td>40.8</td>
<td>25.9</td>
<td>55.2</td>
<td>9</td>
</tr>
<tr>
<td>No</td>
<td>< 12 months</td>
<td>72</td>
<td>36.3</td>
<td>21.1</td>
<td>51.6</td>
<td>2</td>
</tr>
<tr>
<td>No</td>
<td>>= 12 months</td>
<td>12</td>
<td>71.3</td>
<td>62.3</td>
<td>78.4</td>
<td>86</td>
</tr>
<tr>
<td>No</td>
<td>>= 12 months</td>
<td>24</td>
<td>62.0</td>
<td>52.7</td>
<td>70.0</td>
<td>70</td>
</tr>
<tr>
<td>No</td>
<td>>= 12 months</td>
<td>36</td>
<td>50.2</td>
<td>40.6</td>
<td>59.0</td>
<td>44</td>
</tr>
<tr>
<td>No</td>
<td>>= 12 months</td>
<td>48</td>
<td>49.1</td>
<td>39.5</td>
<td>58.0</td>
<td>31</td>
</tr>
<tr>
<td>No</td>
<td>>= 12 months</td>
<td>60</td>
<td>47.2</td>
<td>37.4</td>
<td>56.5</td>
<td>15</td>
</tr>
<tr>
<td>No</td>
<td>>= 12 months</td>
<td>72</td>
<td>37.2</td>
<td>24.8</td>
<td>49.6</td>
<td>5</td>
</tr>
<tr>
<td>Yes</td>
<td>< 12 months</td>
<td>12</td>
<td>21.9</td>
<td>16.7</td>
<td>27.5</td>
<td>49</td>
</tr>
<tr>
<td>Yes</td>
<td>< 12 months</td>
<td>24</td>
<td>17.8</td>
<td>13.2</td>
<td>23.1</td>
<td>37</td>
</tr>
<tr>
<td>Yes</td>
<td>< 12 months</td>
<td>36</td>
<td>15.5</td>
<td>11.0</td>
<td>20.7</td>
<td>24</td>
</tr>
<tr>
<td>Yes</td>
<td>< 12 months</td>
<td>48</td>
<td>15.5</td>
<td>11.0</td>
<td>20.7</td>
<td>15</td>
</tr>
<tr>
<td>Yes</td>
<td>< 12 months</td>
<td>60</td>
<td>15.5</td>
<td>11.0</td>
<td>20.7</td>
<td>6</td>
</tr>
<tr>
<td>Yes</td>
<td>< 12 months</td>
<td>72</td>
<td>12.4</td>
<td>6.7</td>
<td>19.9</td>
<td>1</td>
</tr>
<tr>
<td>Yes</td>
<td>>= 12 months</td>
<td>12</td>
<td>52.2</td>
<td>39.9</td>
<td>63.2</td>
<td>36</td>
</tr>
<tr>
<td>Yes</td>
<td>>= 12 months</td>
<td>24</td>
<td>42.0</td>
<td>30.2</td>
<td>53.2</td>
<td>26</td>
</tr>
<tr>
<td>Yes</td>
<td>>= 12 months</td>
<td>36</td>
<td>38.6</td>
<td>27.1</td>
<td>50.0</td>
<td>19</td>
</tr>
<tr>
<td>Yes</td>
<td>>= 12 months</td>
<td>48</td>
<td>38.6</td>
<td>27.1</td>
<td>50.0</td>
<td>6</td>
</tr>
<tr>
<td>Yes</td>
<td>>= 12 months</td>
<td>60</td>
<td>38.6</td>
<td>27.1</td>
<td>50.0</td>
<td>3</td>
</tr>
<tr>
<td>Yes</td>
<td>>= 12 months</td>
<td>72</td>
<td>38.6</td>
<td>27.1</td>
<td>50.0</td>
<td>0</td>
</tr>
</tbody>
</table>
Figure 4.5-21 Exploratory analyses – Progression-Free Survival according to prior rituximab by failure from diagnosis (induction ITT)

Prior treatment with Rituximab=Yes

![Graph showing Progression-Free Survival for patients with prior rituximab treatment](image1)

<table>
<thead>
<tr>
<th>No. of Subjects</th>
<th>Event</th>
<th>Censored</th>
<th>Median Survival (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure from diagnosis <12 months</td>
<td>232</td>
<td>75% (173)</td>
<td>25% (59)</td>
</tr>
<tr>
<td>Failure from diagnosis ≥12 months</td>
<td>70</td>
<td>53% (37)</td>
<td>47% (33)</td>
</tr>
</tbody>
</table>

Prior treatment with Rituximab=No

![Graph showing Progression-Free Survival for patients without prior rituximab treatment](image2)

<table>
<thead>
<tr>
<th>No. of Subjects</th>
<th>Event</th>
<th>Censored</th>
<th>Median Survival (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure from diagnosis <12 months</td>
<td>44</td>
<td>52% (23)</td>
<td>48% (21)</td>
</tr>
<tr>
<td>Failure from diagnosis ≥12 months</td>
<td>123</td>
<td>46% (57)</td>
<td>54% (66)</td>
</tr>
</tbody>
</table>
Figure 4.5-22 Exploratory analyses – Progression-Free Survival according to failure from diagnosis by prior rituximab (induction ITT)

Failure from diagnosis =< 12 months

Logrank p=0.0029

No. of Subjects Event Censored Median Survival (95% CL)
Prior rituximab: No 44 52% (23) 48% (21) 34.69 (6.54 NA)
Prior rituximab: Yes 232 75% (173) 25% (59) 4.67 (3.84 6.11)

Failure from diagnosis = >= 12 months

Logrank p=0.1064

No. of Subjects Event Censored Median Survival (95% CL)
Prior rituximab: No 123 46% (57) 54% (66) 60.68 (30.88 NA)
Prior rituximab: Yes 70 53% (37) 47% (33) 28.52 (15.54 NA)
Table 4.5-94 Exploratory analyses – Duration of Progression-Free Survival according to prior rituximab and failure from diagnosis (induction ITT)

<table>
<thead>
<tr>
<th>Prior treatment with Rituximab</th>
<th>Failure from diagnosis (Randomization)</th>
<th>N</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFS (months)</td>
<td>No</td>
<td>44</td>
<td>35</td>
<td>7</td>
<td>-</td>
<td>1</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>123</td>
<td>61</td>
<td>31</td>
<td>-</td>
<td>1</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>232</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>70</td>
<td>29</td>
<td>16</td>
<td>-</td>
<td>1</td>
<td>66</td>
</tr>
</tbody>
</table>

Table 4.5-95 Exploratory analyses – Kaplan-Meier estimates for Progression-Free Survival according to prior rituximab and failure from diagnosis (induction ITT)

<table>
<thead>
<tr>
<th>Prior treatment with Rituximab</th>
<th>Failure from diagnosis</th>
<th>Time Point (months)</th>
<th>PFS (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>< 12 months</td>
<td>12</td>
<td>62.8</td>
<td>46.6</td>
<td>75.3</td>
<td>25</td>
</tr>
<tr>
<td>No</td>
<td>< 12 months</td>
<td>24</td>
<td>50.2</td>
<td>34.3</td>
<td>64.2</td>
<td>20</td>
</tr>
<tr>
<td>No</td>
<td>< 12 months</td>
<td>36</td>
<td>47.4</td>
<td>31.7</td>
<td>61.7</td>
<td>17</td>
</tr>
<tr>
<td>No</td>
<td>< 12 months</td>
<td>48</td>
<td>47.4</td>
<td>31.7</td>
<td>61.7</td>
<td>17</td>
</tr>
<tr>
<td>No</td>
<td>< 12 months</td>
<td>60</td>
<td>47.4</td>
<td>31.7</td>
<td>61.7</td>
<td>10</td>
</tr>
<tr>
<td>No</td>
<td>< 12 months</td>
<td>72</td>
<td>42.7</td>
<td>26.3</td>
<td>58.1</td>
<td>2</td>
</tr>
<tr>
<td>No</td>
<td>>= 12 months</td>
<td>12</td>
<td>79.4</td>
<td>71.1</td>
<td>85.6</td>
<td>96</td>
</tr>
<tr>
<td>No</td>
<td>>= 12 months</td>
<td>24</td>
<td>68.5</td>
<td>59.4</td>
<td>76.0</td>
<td>77</td>
</tr>
<tr>
<td>No</td>
<td>>= 12 months</td>
<td>36</td>
<td>55.4</td>
<td>45.7</td>
<td>64.2</td>
<td>48</td>
</tr>
<tr>
<td>No</td>
<td>>= 12 months</td>
<td>48</td>
<td>54.3</td>
<td>44.5</td>
<td>63.1</td>
<td>34</td>
</tr>
<tr>
<td>No</td>
<td>>= 12 months</td>
<td>60</td>
<td>50.2</td>
<td>39.6</td>
<td>59.9</td>
<td>16</td>
</tr>
<tr>
<td>No</td>
<td>>= 12 months</td>
<td>72</td>
<td>40.0</td>
<td>26.7</td>
<td>52.8</td>
<td>5</td>
</tr>
<tr>
<td>Yes</td>
<td>< 12 months</td>
<td>12</td>
<td>30.5</td>
<td>24.6</td>
<td>36.6</td>
<td>67</td>
</tr>
<tr>
<td>Yes</td>
<td>< 12 months</td>
<td>24</td>
<td>25.9</td>
<td>20.4</td>
<td>31.8</td>
<td>52</td>
</tr>
<tr>
<td>Yes</td>
<td>< 12 months</td>
<td>36</td>
<td>23.5</td>
<td>18.0</td>
<td>29.3</td>
<td>35</td>
</tr>
<tr>
<td>Yes</td>
<td>< 12 months</td>
<td>48</td>
<td>23.5</td>
<td>18.0</td>
<td>29.3</td>
<td>21</td>
</tr>
<tr>
<td>Yes</td>
<td>< 12 months</td>
<td>60</td>
<td>23.5</td>
<td>18.0</td>
<td>29.3</td>
<td>9</td>
</tr>
<tr>
<td>Yes</td>
<td>< 12 months</td>
<td>72</td>
<td>20.5</td>
<td>13.7</td>
<td>28.2</td>
<td>2</td>
</tr>
<tr>
<td>Yes</td>
<td>>= 12 months</td>
<td>12</td>
<td>65.3</td>
<td>52.8</td>
<td>75.2</td>
<td>45</td>
</tr>
<tr>
<td>Yes</td>
<td>>= 12 months</td>
<td>24</td>
<td>52.1</td>
<td>39.7</td>
<td>63.1</td>
<td>32</td>
</tr>
<tr>
<td>Yes</td>
<td>>= 12 months</td>
<td>36</td>
<td>46.8</td>
<td>34.5</td>
<td>58.2</td>
<td>23</td>
</tr>
<tr>
<td>Yes</td>
<td>>= 12 months</td>
<td>48</td>
<td>46.8</td>
<td>34.5</td>
<td>58.2</td>
<td>7</td>
</tr>
<tr>
<td>Yes</td>
<td>>= 12 months</td>
<td>60</td>
<td>40.2</td>
<td>24.4</td>
<td>55.4</td>
<td>3</td>
</tr>
<tr>
<td>Yes</td>
<td>>= 12 months</td>
<td>72</td>
<td>40.2</td>
<td>24.4</td>
<td>55.4</td>
<td>0</td>
</tr>
</tbody>
</table>
Figure 4.5-23 Exploratory analyses – Overall Survival according to prior rituximab by failure from diagnosis (induction ITT)

Failure from diagnosis =< 12 months

![Graph showing survival probability over OS (months) for patients with and without prior rituximab, divided by failure from diagnosis.](image)

<table>
<thead>
<tr>
<th>Prior rituximab: No</th>
<th>Prior rituximab: Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Subjects</td>
<td>44</td>
</tr>
<tr>
<td>Event</td>
<td>52% (23)</td>
</tr>
<tr>
<td>Censored</td>
<td>48% (21)</td>
</tr>
<tr>
<td>Median Survival (95% CL)</td>
<td>34.69 (14.49 NA)</td>
</tr>
</tbody>
</table>

Logrank p = 0.0812

Failure from diagnosis = >= 12 months

![Graph showing survival probability over OS (months) for patients with and without prior rituximab, divided by failure from diagnosis.](image)

<table>
<thead>
<tr>
<th>Prior rituximab: No</th>
<th>Prior rituximab: Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Subjects</td>
<td>123</td>
</tr>
<tr>
<td>Event</td>
<td>35% (43)</td>
</tr>
<tr>
<td>Censored</td>
<td>65% (80)</td>
</tr>
<tr>
<td>Median Survival (95% CL)</td>
<td>64.89 (56.97 NA)</td>
</tr>
</tbody>
</table>

Logrank p = 0.0762
Figure 4.5-24 Exploratory analyses – Overall Survival according to failure from diagnosis by prior rituximab (induction ITT)

Prior treatment with Rituximab=Yes

Prior treatment with Rituximab=No
Table 4.5-96 Exploratory analyses – Duration of Overall Survival according to prior rituximab and failure from diagnosis (induction ITT)

<table>
<thead>
<tr>
<th>Prior treatment with Rituximab</th>
<th>Failure from diagnosis (Randomization)</th>
<th>N</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS (months)</td>
<td>No < 12 months</td>
<td>44</td>
<td>35</td>
<td>14</td>
<td>-</td>
<td>3</td>
<td>74</td>
</tr>
<tr>
<td>OS (months)</td>
<td>No >= 12 months</td>
<td>123</td>
<td>65</td>
<td>59</td>
<td>-</td>
<td>2</td>
<td>79</td>
</tr>
<tr>
<td>OS (months)</td>
<td>Yes < 12 months</td>
<td>232</td>
<td>13</td>
<td>11</td>
<td>17</td>
<td>0</td>
<td>78</td>
</tr>
<tr>
<td>OS (months)</td>
<td>Yes >= 12 months</td>
<td>70</td>
<td>-</td>
<td>28</td>
<td>-</td>
<td>1</td>
<td>73</td>
</tr>
</tbody>
</table>

Table 4.5-97 Exploratory analyses – Kaplan-Meier estimates for Overall Survival according to prior rituximab and failure from diagnosis (induction ITT)

<table>
<thead>
<tr>
<th>Prior treatment with Rituximab</th>
<th>Failure from diagnosis</th>
<th>Time Point (months)</th>
<th>OS (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>< 12 months</td>
<td>12</td>
<td>69.2</td>
<td>52.9</td>
<td>80.8</td>
<td>28</td>
</tr>
<tr>
<td>No</td>
<td>< 12 months</td>
<td>24</td>
<td>54.3</td>
<td>38.1</td>
<td>68.0</td>
<td>22</td>
</tr>
<tr>
<td>No</td>
<td>< 12 months</td>
<td>36</td>
<td>49.0</td>
<td>33.1</td>
<td>63.2</td>
<td>18</td>
</tr>
<tr>
<td>No</td>
<td>< 12 months</td>
<td>48</td>
<td>46.3</td>
<td>30.5</td>
<td>60.7</td>
<td>17</td>
</tr>
<tr>
<td>No</td>
<td>< 12 months</td>
<td>60</td>
<td>46.3</td>
<td>30.5</td>
<td>60.7</td>
<td>10</td>
</tr>
<tr>
<td>No</td>
<td>< 12 months</td>
<td>72</td>
<td>41.7</td>
<td>25.4</td>
<td>57.2</td>
<td>7</td>
</tr>
<tr>
<td>No</td>
<td>>= 12 months</td>
<td>12</td>
<td>92.6</td>
<td>86.3</td>
<td>96.1</td>
<td>112</td>
</tr>
<tr>
<td>No</td>
<td>>= 12 months</td>
<td>24</td>
<td>81.6</td>
<td>73.5</td>
<td>87.5</td>
<td>92</td>
</tr>
<tr>
<td>No</td>
<td>>= 12 months</td>
<td>36</td>
<td>73.6</td>
<td>64.3</td>
<td>80.8</td>
<td>65</td>
</tr>
<tr>
<td>No</td>
<td>>= 12 months</td>
<td>48</td>
<td>67.5</td>
<td>57.4</td>
<td>75.6</td>
<td>45</td>
</tr>
<tr>
<td>No</td>
<td>>= 12 months</td>
<td>60</td>
<td>59.0</td>
<td>46.9</td>
<td>69.3</td>
<td>20</td>
</tr>
<tr>
<td>No</td>
<td>>= 12 months</td>
<td>72</td>
<td>46.8</td>
<td>32.5</td>
<td>59.9</td>
<td>6</td>
</tr>
<tr>
<td>Yes</td>
<td>< 12 months</td>
<td>12</td>
<td>53.2</td>
<td>46.4</td>
<td>59.5</td>
<td>116</td>
</tr>
<tr>
<td>Yes</td>
<td>< 12 months</td>
<td>24</td>
<td>39.8</td>
<td>33.3</td>
<td>46.2</td>
<td>78</td>
</tr>
<tr>
<td>Yes</td>
<td>< 12 months</td>
<td>36</td>
<td>35.5</td>
<td>29.1</td>
<td>42.0</td>
<td>53</td>
</tr>
<tr>
<td>Yes</td>
<td>< 12 months</td>
<td>48</td>
<td>34.5</td>
<td>27.9</td>
<td>41.1</td>
<td>30</td>
</tr>
<tr>
<td>Yes</td>
<td>< 12 months</td>
<td>60</td>
<td>34.5</td>
<td>27.9</td>
<td>41.1</td>
<td>14</td>
</tr>
<tr>
<td>Yes</td>
<td>< 12 months</td>
<td>72</td>
<td>30.7</td>
<td>21.8</td>
<td>40.0</td>
<td>2</td>
</tr>
<tr>
<td>Yes</td>
<td>>= 12 months</td>
<td>12</td>
<td>85.5</td>
<td>74.8</td>
<td>91.9</td>
<td>59</td>
</tr>
<tr>
<td>Yes</td>
<td>>= 12 months</td>
<td>24</td>
<td>65.0</td>
<td>52.4</td>
<td>75.0</td>
<td>36</td>
</tr>
<tr>
<td>Yes</td>
<td>>= 12 months</td>
<td>36</td>
<td>57.2</td>
<td>44.0</td>
<td>68.4</td>
<td>26</td>
</tr>
<tr>
<td>Yes</td>
<td>>= 12 months</td>
<td>48</td>
<td>57.2</td>
<td>44.0</td>
<td>68.4</td>
<td>8</td>
</tr>
<tr>
<td>Yes</td>
<td>>= 12 months</td>
<td>60</td>
<td>57.2</td>
<td>44.0</td>
<td>68.4</td>
<td>4</td>
</tr>
<tr>
<td>Yes</td>
<td>>= 12 months</td>
<td>72</td>
<td>57.2</td>
<td>44.0</td>
<td>68.4</td>
<td>1</td>
</tr>
</tbody>
</table>
4.5.3.4. **According to age-adjusted IPI**

Table 4.5-98 Exploratory analyses – Overall response rate according to age adjusted IPI (induction ITT)

<table>
<thead>
<tr>
<th>Age-adjusted IPI</th>
<th><2</th>
<th>%</th>
<th>>=2</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response after complete induction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR/CRu/PR</td>
<td>198</td>
<td>71</td>
<td>95</td>
<td>54</td>
</tr>
<tr>
<td>Other</td>
<td>80</td>
<td>29</td>
<td>82</td>
<td>46</td>
</tr>
<tr>
<td>Total</td>
<td>278</td>
<td>100</td>
<td>177</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 4.5-99 Exploratory analyses – Complete response rate according to age adjusted IPI (induction ITT)

<table>
<thead>
<tr>
<th>Age-adjusted IPI</th>
<th><2</th>
<th>%</th>
<th>>=2</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response after complete induction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR/CRu</td>
<td>119</td>
<td>43</td>
<td>52</td>
<td>29</td>
</tr>
<tr>
<td>Other</td>
<td>159</td>
<td>57</td>
<td>125</td>
<td>71</td>
</tr>
<tr>
<td>Total</td>
<td>278</td>
<td>100</td>
<td>177</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 4.5-100 Exploratory analyses – Mobilization adjusted response rate according to age adjusted IPI (induction ITT)

<table>
<thead>
<tr>
<th>Age-adjusted IPI</th>
<th><2</th>
<th>%</th>
<th>>=2</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobilization adjusted overall response rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>108</td>
<td>39</td>
<td>100</td>
<td>56</td>
</tr>
<tr>
<td>Yes</td>
<td>170</td>
<td>61</td>
<td>77</td>
<td>44</td>
</tr>
<tr>
<td>Total</td>
<td>278</td>
<td>100</td>
<td>177</td>
<td>100</td>
</tr>
</tbody>
</table>
Table 4.5-101 Exploratory analyses – Univariate analysis for response rates according to age adjusted IPI (induction ITT)

<table>
<thead>
<tr>
<th>Age adjusted IPI 0-1</th>
<th>p-value (Wald Chi-2)</th>
<th>Odds ratio estimates</th>
<th>95% Wald confidence limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response to induction CR/CRu/PR</td>
<td>0.0002</td>
<td>2.136</td>
<td>1.442</td>
</tr>
<tr>
<td>Response to induction CR/CRu</td>
<td>0.0041</td>
<td>1.799</td>
<td>1.204</td>
</tr>
<tr>
<td>Mobilization adjusted response rate</td>
<td>0.0003</td>
<td>0.489</td>
<td>0.334</td>
</tr>
</tbody>
</table>

Figure 4.5-25 Exploratory analyses – Event-Free Survival according to age adjusted IPI (induction ITT)

Table 4.5-102 Exploratory analyses – Duration of Event-Free Survival according to age adjusted IPI (induction ITT)

<table>
<thead>
<tr>
<th>Age-adjusted IPI</th>
<th>N</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>278</td>
<td>13</td>
<td>9</td>
<td>24</td>
<td>0</td>
<td>79</td>
</tr>
<tr>
<td>2-3</td>
<td>177</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td>0</td>
<td>74</td>
</tr>
</tbody>
</table>
Table 4.5-103 Exploratory analyses – Kaplan-Meier estimates for Event-Free Survival according to age adjusted IPI (induction ITT)

<table>
<thead>
<tr>
<th>Age-adjusted IPI</th>
<th>Time Point (years)</th>
<th>Survival (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>12</td>
<td>51.8</td>
<td>45.7</td>
<td>57.5</td>
<td>140</td>
</tr>
<tr>
<td>0-1</td>
<td>24</td>
<td>44.7</td>
<td>38.7</td>
<td>50.5</td>
<td>112</td>
</tr>
<tr>
<td>0-1</td>
<td>36</td>
<td>39.9</td>
<td>33.9</td>
<td>45.7</td>
<td>78</td>
</tr>
<tr>
<td>0-1</td>
<td>48</td>
<td>39.4</td>
<td>33.4</td>
<td>45.3</td>
<td>51</td>
</tr>
<tr>
<td>0-1</td>
<td>60</td>
<td>39.4</td>
<td>33.4</td>
<td>45.3</td>
<td>24</td>
</tr>
<tr>
<td>0-1</td>
<td>72</td>
<td>31.7</td>
<td>23.6</td>
<td>40.1</td>
<td>7</td>
</tr>
<tr>
<td>2-3</td>
<td>12</td>
<td>28.4</td>
<td>21.9</td>
<td>35.2</td>
<td>48</td>
</tr>
<tr>
<td>2-3</td>
<td>24</td>
<td>22.4</td>
<td>16.5</td>
<td>28.9</td>
<td>37</td>
</tr>
<tr>
<td>2-3</td>
<td>36</td>
<td>17.7</td>
<td>12.3</td>
<td>23.9</td>
<td>24</td>
</tr>
<tr>
<td>2-3</td>
<td>48</td>
<td>17.7</td>
<td>12.3</td>
<td>23.9</td>
<td>16</td>
</tr>
<tr>
<td>2-3</td>
<td>60</td>
<td>16.4</td>
<td>10.9</td>
<td>22.8</td>
<td>9</td>
</tr>
<tr>
<td>2-3</td>
<td>72</td>
<td>14.3</td>
<td>8.6</td>
<td>21.4</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 4.5-104 Exploratory analyses – Hazard ratio of age adjusted IPI for Event-Free Survival (induction ITT)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>p-value</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age adjusted IPI 0-1</td>
<td><.0001</td>
<td>0.538</td>
<td>0.430 0.673</td>
</tr>
</tbody>
</table>

Figure 4.5-26 Exploratory analyses – Progression-Free Survival according to age adjusted IPI (induction ITT)
Table 4.5-105 Exploratory analyses – Duration of Progression-Free Survival according to age adjusted IPI (induction ITT)

<table>
<thead>
<tr>
<th>Age-adjusted IPI</th>
<th>N</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>278</td>
<td>29</td>
<td>16</td>
<td>62</td>
<td>0</td>
<td>79</td>
</tr>
<tr>
<td>2-3</td>
<td>177</td>
<td>6</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>74</td>
</tr>
</tbody>
</table>

Table 4.5-106 Exploratory analyses – Kaplan-Meier estimates for Progression-Free Survival according to age adjusted IPI (induction ITT)

<table>
<thead>
<tr>
<th>Age-adjusted IPI</th>
<th>Time Point (years)</th>
<th>Survival (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>12</td>
<td>61.6</td>
<td>55.6</td>
<td>67.1</td>
<td>166</td>
</tr>
<tr>
<td>0-1</td>
<td>24</td>
<td>52.7</td>
<td>46.5</td>
<td>58.4</td>
<td>131</td>
</tr>
<tr>
<td>0-1</td>
<td>36</td>
<td>47.3</td>
<td>41.1</td>
<td>53.2</td>
<td>92</td>
</tr>
<tr>
<td>0-1</td>
<td>48</td>
<td>46.7</td>
<td>40.6</td>
<td>52.7</td>
<td>59</td>
</tr>
<tr>
<td>0-1</td>
<td>60</td>
<td>44.8</td>
<td>38.3</td>
<td>51.1</td>
<td>27</td>
</tr>
<tr>
<td>0-1</td>
<td>72</td>
<td>37.0</td>
<td>28.3</td>
<td>45.8</td>
<td>8</td>
</tr>
<tr>
<td>2-3</td>
<td>12</td>
<td>38.1</td>
<td>30.9</td>
<td>45.2</td>
<td>64</td>
</tr>
<tr>
<td>2-3</td>
<td>24</td>
<td>30.2</td>
<td>23.5</td>
<td>37.2</td>
<td>48</td>
</tr>
<tr>
<td>2-3</td>
<td>36</td>
<td>24.5</td>
<td>18.1</td>
<td>31.3</td>
<td>30</td>
</tr>
<tr>
<td>2-3</td>
<td>48</td>
<td>24.5</td>
<td>18.1</td>
<td>31.3</td>
<td>19</td>
</tr>
<tr>
<td>2-3</td>
<td>60</td>
<td>22.9</td>
<td>16.4</td>
<td>30.1</td>
<td>10</td>
</tr>
<tr>
<td>2-3</td>
<td>72</td>
<td>20.4</td>
<td>13.3</td>
<td>28.5</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 4.5-107 Exploratory analyses – Hazard ratio of age adjusted IPI for Progression-Free Survival (induction ITT)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>p-value</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age adjusted IPI 0-1</td>
<td><.0001</td>
<td>0.532</td>
<td>0.420</td>
</tr>
</tbody>
</table>
Figure 4.5-27 Exploratory analyses – Overall Survival according to age adjusted IPI (induction ITT)

![Survival Probability](image)

Logrank p<0.0001

Table 4.5-108 Exploratory analyses – Duration of Overall Survival according to age adjusted IPI (induction ITT)

<table>
<thead>
<tr>
<th>Age-adjusted IPI</th>
<th>N</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>278</td>
<td>66</td>
<td>61</td>
<td>-</td>
<td>0</td>
<td>79</td>
</tr>
<tr>
<td>2-3</td>
<td>177</td>
<td>14</td>
<td>11</td>
<td>22</td>
<td>0</td>
<td>74</td>
</tr>
</tbody>
</table>

Table 4.5-109 Exploratory analyses – Kaplan-Meier estimates for Overall Survival according to age adjusted IPI (induction ITT)

<table>
<thead>
<tr>
<th>Age-adjusted IPI</th>
<th>Time Point (years)</th>
<th>Survival (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>12</td>
<td>80.9</td>
<td>75.7</td>
<td>85.1</td>
<td>219</td>
</tr>
<tr>
<td>0-1</td>
<td>24</td>
<td>66.7</td>
<td>60.7</td>
<td>72.0</td>
<td>163</td>
</tr>
<tr>
<td>0-1</td>
<td>36</td>
<td>61.6</td>
<td>55.4</td>
<td>67.3</td>
<td>121</td>
</tr>
<tr>
<td>0-1</td>
<td>48</td>
<td>58.6</td>
<td>52.1</td>
<td>64.5</td>
<td>75</td>
</tr>
<tr>
<td>0-1</td>
<td>60</td>
<td>56.6</td>
<td>49.8</td>
<td>62.9</td>
<td>35</td>
</tr>
<tr>
<td>0-1</td>
<td>72</td>
<td>49.3</td>
<td>40.2</td>
<td>57.9</td>
<td>10</td>
</tr>
<tr>
<td>2-3</td>
<td>12</td>
<td>55.2</td>
<td>47.5</td>
<td>62.3</td>
<td>91</td>
</tr>
<tr>
<td>2-3</td>
<td>24</td>
<td>41.0</td>
<td>33.5</td>
<td>48.4</td>
<td>62</td>
</tr>
<tr>
<td>2-3</td>
<td>36</td>
<td>34.1</td>
<td>26.7</td>
<td>41.6</td>
<td>40</td>
</tr>
<tr>
<td>2-3</td>
<td>48</td>
<td>31.7</td>
<td>24.2</td>
<td>39.4</td>
<td>24</td>
</tr>
<tr>
<td>Age-adjusted IPI</td>
<td>Time Point (years)</td>
<td>Survival (%)</td>
<td>95% CI Lower</td>
<td>95% CI Upper</td>
<td>Patients at risk</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2-3</td>
<td>60</td>
<td>28.0</td>
<td>20.0</td>
<td>36.5</td>
<td>12</td>
</tr>
<tr>
<td>2-3</td>
<td>72</td>
<td>21.8</td>
<td>12.7</td>
<td>32.6</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 4.5-110 Exploratory analyses – Hazard ratio of age adjusted IPI for Overall Survival (induction ITT)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>p-value</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age adjusted IPI 0-1</td>
<td><.0001</td>
<td>0.438</td>
<td>0.337</td>
</tr>
</tbody>
</table>

4.5.3.5. Multivariate models

Table 4.5-111 Exploratory analyses – Multivariate logistic model for overall response rate (induction ITT)

<table>
<thead>
<tr>
<th>Response to induction CR/CRu/PR</th>
<th>p-value (Wald Chi-2)</th>
<th>Odds ratio estimates</th>
<th>95% Wald confidence limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior rituximab: No</td>
<td>0.0386</td>
<td>1.744</td>
<td>1.030</td>
</tr>
<tr>
<td>Failure from diagnosis < 12 months</td>
<td><.0001</td>
<td>0.204</td>
<td>0.121</td>
</tr>
<tr>
<td>Age adjusted IPI 0-1</td>
<td>0.0036</td>
<td>1.886</td>
<td>1.231</td>
</tr>
<tr>
<td>Treatment arm: R-ICE</td>
<td>0.9242</td>
<td>0.980</td>
<td>0.642</td>
</tr>
</tbody>
</table>

Table 4.5-112 Exploratory analyses – Multivariate logistic model for complete response rate (induction ITT)

<table>
<thead>
<tr>
<th>Response to induction CR/CRu</th>
<th>p-value (Wald Chi-2)</th>
<th>Odds ratio estimates</th>
<th>95% Wald confidence limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior rituximab: No</td>
<td>0.3718</td>
<td>1.236</td>
<td>0.776</td>
</tr>
<tr>
<td>Failure from diagnosis < 12 months</td>
<td><.0001</td>
<td>0.298</td>
<td>0.189</td>
</tr>
<tr>
<td>Age adjusted IPI 0-1</td>
<td>0.0325</td>
<td>1.585</td>
<td>1.039</td>
</tr>
<tr>
<td>Treatment arm: R-ICE</td>
<td>0.8947</td>
<td>1.028</td>
<td>0.687</td>
</tr>
</tbody>
</table>

Table 4.5-113 Exploratory analyses – Multivariate logistic model for mobilization adjusted response rate (induction ITT)

<table>
<thead>
<tr>
<th>Mobilization adjusted response rate</th>
<th>p-value (Wald Chi-2)</th>
<th>Odds ratio estimates</th>
<th>95% Wald confidence limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior rituximab: No</td>
<td>0.0012</td>
<td>0.459</td>
<td>0.287</td>
</tr>
<tr>
<td>Failure from diagnosis < 12 months</td>
<td><.0001</td>
<td>2.506</td>
<td>1.595</td>
</tr>
<tr>
<td>Age adjusted IPI 0-1</td>
<td>0.0042</td>
<td>0.553</td>
<td>0.369</td>
</tr>
<tr>
<td>Treatment arm: R-ICE</td>
<td>0.2848</td>
<td>1.242</td>
<td>0.835</td>
</tr>
</tbody>
</table>

Table 4.5-114 Exploratory analyses – Multivariate Cox model for Event-Free Survival (induction ITT)

<table>
<thead>
<tr>
<th>Event-Free Survival</th>
<th>p-value</th>
<th>Hazard ratio</th>
<th>95% Hazard ratio confidence limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior rituximab: No</td>
<td>0.0011</td>
<td>0.627</td>
<td>0.475</td>
</tr>
<tr>
<td>Failure from diagnosis < 12 months</td>
<td><.0001</td>
<td>1.911</td>
<td>1.465</td>
</tr>
<tr>
<td>Age adjusted IPI 0-1</td>
<td><.0001</td>
<td>1.633</td>
<td>1.303</td>
</tr>
<tr>
<td>Treatment arm: R-ICE</td>
<td>0.3020</td>
<td>1.125</td>
<td>0.900</td>
</tr>
</tbody>
</table>
Table 4.5-115 Exploratory analyses – Multivariate Cox model for Progression-Free Survival (induction ITT)

<table>
<thead>
<tr>
<th></th>
<th>p-value</th>
<th>Hazard ratio</th>
<th>95% Hazard ratio confidence limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior rituximab: No</td>
<td>0.0046</td>
<td>0.656</td>
<td>0.490 0.878</td>
</tr>
<tr>
<td>Failure from diagnosis < 12 months</td>
<td><.0001</td>
<td>1.873</td>
<td>1.415 2.479</td>
</tr>
<tr>
<td>Age adjusted IPI 0-1</td>
<td><.0001</td>
<td>1.677</td>
<td>1.322 2.128</td>
</tr>
<tr>
<td>Treatment arm: R-ICE</td>
<td>0.3554</td>
<td>1.117</td>
<td>0.883 1.414</td>
</tr>
</tbody>
</table>

Table 4.5-116 Exploratory analyses – Multivariate Cox model for Overall Survival (induction ITT)

<table>
<thead>
<tr>
<th></th>
<th>p-value</th>
<th>Hazard ratio</th>
<th>95% Hazard ratio confidence limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior rituximab: No</td>
<td>0.0765</td>
<td>0.746</td>
<td>0.539 1.032</td>
</tr>
<tr>
<td>Failure from diagnosis < 12 months</td>
<td><.0001</td>
<td>2.011</td>
<td>1.461 2.768</td>
</tr>
<tr>
<td>Age adjusted IPI 0-1</td>
<td><.0001</td>
<td>2.153</td>
<td>1.656 2.799</td>
</tr>
<tr>
<td>Treatment arm: R-ICE</td>
<td>0.2504</td>
<td>1.165</td>
<td>0.898 1.513</td>
</tr>
</tbody>
</table>

4.5.3.6. According to response to induction (CR/CRu vs PR)

Figure 4.5-28 Exploratory analyses – Event-Free Survival according to response to induction (induction ITT)

![Graph showing Event-Free Survival](image)
Table 4.5-117 Exploratory analyses – Duration of Event-Free Survival according to response to induction (induction ITT)

<table>
<thead>
<tr>
<th>Response after complete induction (including deaths for all patients)</th>
<th>N</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFS (months) CR/CRu</td>
<td>172</td>
<td>61</td>
<td>25</td>
<td>-</td>
<td>2</td>
<td>77</td>
</tr>
<tr>
<td>EFS (months) PR</td>
<td>128</td>
<td>13</td>
<td>9</td>
<td>29</td>
<td>2</td>
<td>79</td>
</tr>
</tbody>
</table>

Table 4.5-118 Exploratory analyses – Kaplan-Meier estimates for Event-Free Survival according to response to induction (induction ITT)

<table>
<thead>
<tr>
<th>Response after complete induction (including deaths for all patients)</th>
<th>Time Point (months)</th>
<th>EFS (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR/CRu</td>
<td>12</td>
<td>69.5</td>
<td>61.9</td>
<td>75.8</td>
<td>117</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>24</td>
<td>59.9</td>
<td>52.1</td>
<td>66.8</td>
<td>96</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>36</td>
<td>52.4</td>
<td>44.4</td>
<td>59.7</td>
<td>70</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>48</td>
<td>51.6</td>
<td>43.7</td>
<td>59.0</td>
<td>45</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>60</td>
<td>50.4</td>
<td>42.3</td>
<td>58.0</td>
<td>22</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>72</td>
<td>42.5</td>
<td>31.6</td>
<td>52.9</td>
<td>4</td>
</tr>
<tr>
<td>PR</td>
<td>12</td>
<td>50.6</td>
<td>41.5</td>
<td>58.9</td>
<td>63</td>
</tr>
<tr>
<td>PR</td>
<td>24</td>
<td>44.0</td>
<td>35.2</td>
<td>52.5</td>
<td>51</td>
</tr>
<tr>
<td>PR</td>
<td>36</td>
<td>36.1</td>
<td>27.4</td>
<td>44.8</td>
<td>31</td>
</tr>
<tr>
<td>PR</td>
<td>48</td>
<td>36.1</td>
<td>27.4</td>
<td>44.8</td>
<td>22</td>
</tr>
<tr>
<td>PR</td>
<td>60</td>
<td>36.1</td>
<td>27.4</td>
<td>44.8</td>
<td>11</td>
</tr>
<tr>
<td>PR</td>
<td>72</td>
<td>28.1</td>
<td>16.8</td>
<td>40.5</td>
<td>4</td>
</tr>
</tbody>
</table>
Figure 4.5-29 Exploratory analyses – Progression-Free Survival according to response to induction (induction ITT)

![Survival Probability Graph]

Table 4.5-119 Exploratory analyses – Duration of Progression-Free Survival according to response to induction (induction ITT)

<table>
<thead>
<tr>
<th>Response after complete induction (including deaths for all patients)</th>
<th>N</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFS (months) CR/CRu</td>
<td>172</td>
<td>61</td>
<td>34</td>
<td>-</td>
<td>2</td>
<td>77</td>
</tr>
<tr>
<td>PFS (months) PR</td>
<td>128</td>
<td>35</td>
<td>21</td>
<td>-</td>
<td>2</td>
<td>79</td>
</tr>
</tbody>
</table>

Table 4.5-120 Exploratory analyses – Kaplan-Meier estimates for Progression-Free Survival according to response to induction (induction ITT)

<table>
<thead>
<tr>
<th>Response after complete induction (including deaths for all patients)</th>
<th>Time Point (months)</th>
<th>PFS (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR/CRu</td>
<td>12</td>
<td>75.9</td>
<td>68.7</td>
<td>81.6</td>
<td>128</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>24</td>
<td>65.2</td>
<td>57.5</td>
<td>71.8</td>
<td>105</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>36</td>
<td>56.3</td>
<td>48.3</td>
<td>63.6</td>
<td>77</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>48</td>
<td>55.6</td>
<td>47.6</td>
<td>62.9</td>
<td>47</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>60</td>
<td>53.1</td>
<td>44.7</td>
<td>60.8</td>
<td>23</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>72</td>
<td>45.2</td>
<td>34.1</td>
<td>55.6</td>
<td>4</td>
</tr>
<tr>
<td>PR</td>
<td>12</td>
<td>64.7</td>
<td>55.6</td>
<td>72.4</td>
<td>79</td>
</tr>
</tbody>
</table>
Table 4.5-121 Exploratory analyses – Duration of Overall Survival according to response to induction (induction ITT)

<table>
<thead>
<tr>
<th>Response after complete induction (including deaths for all patients)</th>
<th>N</th>
<th>Median</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS (months) CR/CRu</td>
<td>172</td>
<td>-</td>
<td>61</td>
<td>-</td>
<td>2</td>
<td>77</td>
</tr>
<tr>
<td>OS (months) PR</td>
<td>128</td>
<td>62</td>
<td>35</td>
<td>-</td>
<td>2</td>
<td>79</td>
</tr>
</tbody>
</table>
Table 4.5-122 Exploratory analyses – Kaplan-Meier estimates for Overall Survival according to response to induction (induction ITT)

<table>
<thead>
<tr>
<th>Response after complete induction (including deaths for all patients)</th>
<th>Time Point (months)</th>
<th>OS (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR/CRu</td>
<td>12</td>
<td>90.6</td>
<td>85.1</td>
<td>94.1</td>
<td>153</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>24</td>
<td>76.9</td>
<td>69.8</td>
<td>82.5</td>
<td>124</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>36</td>
<td>69.3</td>
<td>61.5</td>
<td>75.8</td>
<td>96</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>48</td>
<td>65.1</td>
<td>56.9</td>
<td>72.1</td>
<td>58</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>60</td>
<td>60.5</td>
<td>51.1</td>
<td>68.7</td>
<td>27</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>72</td>
<td>50.3</td>
<td>37.9</td>
<td>61.4</td>
<td>5</td>
</tr>
<tr>
<td>PR</td>
<td>12</td>
<td>83.8</td>
<td>76.0</td>
<td>89.2</td>
<td>102</td>
</tr>
<tr>
<td>PR</td>
<td>24</td>
<td>68.0</td>
<td>58.9</td>
<td>75.5</td>
<td>73</td>
</tr>
<tr>
<td>PR</td>
<td>36</td>
<td>58.0</td>
<td>48.1</td>
<td>66.7</td>
<td>45</td>
</tr>
<tr>
<td>PR</td>
<td>48</td>
<td>56.3</td>
<td>46.2</td>
<td>65.3</td>
<td>32</td>
</tr>
<tr>
<td>PR</td>
<td>60</td>
<td>53.7</td>
<td>42.6</td>
<td>63.5</td>
<td>14</td>
</tr>
<tr>
<td>PR</td>
<td>72</td>
<td>49.8</td>
<td>37.2</td>
<td>61.2</td>
<td>5</td>
</tr>
</tbody>
</table>
4.5.3.7. According to PET after induction

Figure 4.5-31 Exploratory analyses – Event-Free Survival according to PET after induction (induction ITT)

Table 4.5-123 Exploratory analyses – Duration of Event-Free Survival according to PET after induction (induction ITT)

<table>
<thead>
<tr>
<th>Pet scan after induction</th>
<th>N</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFS (months)</td>
<td>PET -</td>
<td>72</td>
<td>31</td>
<td>15</td>
<td>2</td>
<td>71</td>
</tr>
<tr>
<td>EFS (months)</td>
<td>PET +</td>
<td>80</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>75</td>
</tr>
</tbody>
</table>

Table 4.5-124 Exploratory analyses – Kaplan-Meier estimates for Event-Free Survival according to PET after induction (induction ITT)

<table>
<thead>
<tr>
<th>Pet scan after induction</th>
<th>Time Point (months)</th>
<th>EFS (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>PET -</td>
<td>12</td>
<td>69.4</td>
<td>57.4</td>
<td>78.7</td>
<td>49</td>
</tr>
<tr>
<td>PET -</td>
<td>24</td>
<td>58.0</td>
<td>45.7</td>
<td>68.5</td>
<td>40</td>
</tr>
<tr>
<td>PET -</td>
<td>36</td>
<td>46.3</td>
<td>34.0</td>
<td>57.7</td>
<td>25</td>
</tr>
<tr>
<td>PET -</td>
<td>48</td>
<td>46.3</td>
<td>34.0</td>
<td>57.7</td>
<td>11</td>
</tr>
<tr>
<td>PET -</td>
<td>60</td>
<td>46.3</td>
<td>34.0</td>
<td>57.7</td>
<td>5</td>
</tr>
<tr>
<td>PET -</td>
<td>72</td>
<td>46.3</td>
<td>34.0</td>
<td>57.7</td>
<td>0</td>
</tr>
<tr>
<td>PET +</td>
<td>12</td>
<td>23.2</td>
<td>14.4</td>
<td>33.2</td>
<td>17</td>
</tr>
<tr>
<td>PET +</td>
<td>24</td>
<td>23.2</td>
<td>14.4</td>
<td>33.2</td>
<td>15</td>
</tr>
<tr>
<td>PET +</td>
<td>36</td>
<td>18.1</td>
<td>10.2</td>
<td>27.9</td>
<td>9</td>
</tr>
</tbody>
</table>
Table 4.5-125 Exploratory analyses – Duration of Progression-Free Survival according to PET after induction (induction ITT)

<table>
<thead>
<tr>
<th>Time Point (months)</th>
<th>PFS (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>PET - 12</td>
<td>76.4</td>
<td>64.8</td>
<td>84.6</td>
<td>54</td>
</tr>
<tr>
<td>PET - 24</td>
<td>63.5</td>
<td>51.2</td>
<td>73.5</td>
<td>44</td>
</tr>
<tr>
<td>PET - 36</td>
<td>52.0</td>
<td>39.5</td>
<td>63.2</td>
<td>29</td>
</tr>
<tr>
<td>PET - 48</td>
<td>52.0</td>
<td>39.5</td>
<td>63.2</td>
<td>13</td>
</tr>
</tbody>
</table>

Table 4.5-126 Exploratory analyses – Kaplan-Meier estimates for Progression-Free Survival according to PET after induction (induction ITT)

<table>
<thead>
<tr>
<th>Time Point (months)</th>
<th>PFS (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>PET - 12</td>
<td>76.4</td>
<td>64.8</td>
<td>84.6</td>
<td>54</td>
</tr>
<tr>
<td>PET - 24</td>
<td>63.5</td>
<td>51.2</td>
<td>73.5</td>
<td>44</td>
</tr>
<tr>
<td>PET - 36</td>
<td>52.0</td>
<td>39.5</td>
<td>63.2</td>
<td>29</td>
</tr>
<tr>
<td>PET - 48</td>
<td>52.0</td>
<td>39.5</td>
<td>63.2</td>
<td>13</td>
</tr>
<tr>
<td>Pet scan after induction</td>
<td>Time Point (months)</td>
<td>PFS (%)</td>
<td>95% CI Lower</td>
<td>95% CI Upper</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------------</td>
<td>---------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>PET -</td>
<td>60</td>
<td>47.3</td>
<td>32.9</td>
<td>60.5</td>
</tr>
<tr>
<td>PET -</td>
<td>72</td>
<td>47.3</td>
<td>32.9</td>
<td>60.5</td>
</tr>
<tr>
<td>PET +</td>
<td>12</td>
<td>38.9</td>
<td>28.0</td>
<td>49.7</td>
</tr>
<tr>
<td>PET +</td>
<td>24</td>
<td>36.1</td>
<td>25.4</td>
<td>46.9</td>
</tr>
<tr>
<td>PET +</td>
<td>36</td>
<td>30.5</td>
<td>20.1</td>
<td>41.5</td>
</tr>
<tr>
<td>PET +</td>
<td>48</td>
<td>30.5</td>
<td>20.1</td>
<td>41.5</td>
</tr>
<tr>
<td>PET +</td>
<td>60</td>
<td>30.5</td>
<td>20.1</td>
<td>41.5</td>
</tr>
<tr>
<td>PET +</td>
<td>72</td>
<td>30.5</td>
<td>20.1</td>
<td>41.5</td>
</tr>
</tbody>
</table>

Figure 4.5-33 Exploratory analyses – Overall Survival according to PET after induction (induction ITT)

![Graph showing survival probability over time for PET + and PET - groups](image)

Logrank p=0.0383

<table>
<thead>
<tr>
<th>No. of Subjects</th>
<th>Event</th>
<th>Censored</th>
<th>Median Survival (95% CL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PET +</td>
<td>80</td>
<td>48% (36)</td>
<td>53% (42)</td>
</tr>
<tr>
<td>PET -</td>
<td>72</td>
<td>40% (29)</td>
<td>60% (43)</td>
</tr>
</tbody>
</table>

Table 4.5-127 Exploratory analyses – Duration of Overall Survival according to PET after induction (induction ITT)

<table>
<thead>
<tr>
<th>Pet scan after induction</th>
<th>N</th>
<th>Median</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS (months)</td>
<td>PET -</td>
<td>72</td>
<td>61</td>
<td>41</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>OS (months)</td>
<td>PET +</td>
<td>80</td>
<td>48</td>
<td>13</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>
Table 4.5-128 Exploratory analyses – Kaplan-Meier estimates for Overall Survival according to PET after induction (induction ITT)

<table>
<thead>
<tr>
<th>Pet scan after induction</th>
<th>Time Point (months)</th>
<th>OS (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>PET -</td>
<td>12</td>
<td>88.9</td>
<td>79.0</td>
<td>94.3</td>
<td>63</td>
</tr>
<tr>
<td>PET -</td>
<td>24</td>
<td>71.8</td>
<td>59.7</td>
<td>80.8</td>
<td>50</td>
</tr>
<tr>
<td>PET -</td>
<td>36</td>
<td>65.2</td>
<td>52.6</td>
<td>75.2</td>
<td>38</td>
</tr>
<tr>
<td>PET -</td>
<td>48</td>
<td>59.0</td>
<td>45.7</td>
<td>70.1</td>
<td>19</td>
</tr>
<tr>
<td>PET -</td>
<td>60</td>
<td>52.4</td>
<td>35.2</td>
<td>67.1</td>
<td>8</td>
</tr>
<tr>
<td>PET -</td>
<td>72</td>
<td>45.9</td>
<td>26.9</td>
<td>63.0</td>
<td>1</td>
</tr>
<tr>
<td>PET +</td>
<td>12</td>
<td>61.6</td>
<td>49.6</td>
<td>71.5</td>
<td>46</td>
</tr>
<tr>
<td>PET +</td>
<td>24</td>
<td>50.8</td>
<td>39.0</td>
<td>61.4</td>
<td>33</td>
</tr>
<tr>
<td>PET +</td>
<td>36</td>
<td>50.8</td>
<td>39.0</td>
<td>61.4</td>
<td>23</td>
</tr>
<tr>
<td>PET +</td>
<td>48</td>
<td>47.4</td>
<td>34.7</td>
<td>59.1</td>
<td>14</td>
</tr>
<tr>
<td>PET +</td>
<td>60</td>
<td>47.4</td>
<td>34.7</td>
<td>59.1</td>
<td>7</td>
</tr>
<tr>
<td>PET +</td>
<td>72</td>
<td>47.4</td>
<td>34.7</td>
<td>59.1</td>
<td>2</td>
</tr>
</tbody>
</table>
4.5.4. Non study or new treatment out of progression

36 patients (15%) in R-ICE arm and 31 patients (13%) in R-DHAP arm presented a new treatment out of progression (corresponding to the 67 events due to change of therapy for Event-Free survival of induction ITT population).

Table 4.5-129 Patients with non study or new treatment out of progression (induction ITT)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>New treatment out of progression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>36</td>
<td>15</td>
</tr>
<tr>
<td>No</td>
<td>203</td>
<td>85</td>
</tr>
<tr>
<td>Total</td>
<td>239</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 4.5-130 Type of non study or new treatment out of progression (induction ITT)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Chemotherapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>21</td>
<td>58</td>
</tr>
<tr>
<td>No</td>
<td>15</td>
<td>42</td>
</tr>
<tr>
<td>Radiotherapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>29</td>
<td>81</td>
</tr>
<tr>
<td>Yes</td>
<td>7</td>
<td>19</td>
</tr>
<tr>
<td>Immunotherapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>9</td>
<td>25</td>
</tr>
<tr>
<td>No</td>
<td>27</td>
<td>75</td>
</tr>
<tr>
<td>Transplantation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>16</td>
<td>44</td>
</tr>
<tr>
<td>Yes</td>
<td>20</td>
<td>56</td>
</tr>
<tr>
<td>Other treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>No</td>
<td>34</td>
<td>94</td>
</tr>
<tr>
<td>Total</td>
<td>36</td>
<td>100</td>
</tr>
</tbody>
</table>

Details of treatment are listed in section §6.6.3.
4.5.5. Progression/relapse

132 patients (55%) in R-ICE arm and 117 patients (51%) in R-DHAP arm presented a first progression/relapse.

Table 4.5-131 Patients with progression/relapse (induction ITT)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Progression/relapse n°1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>132</td>
<td>117</td>
</tr>
<tr>
<td>No</td>
<td>107</td>
<td>113</td>
</tr>
<tr>
<td>Progression/relapse n°2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>No</td>
<td>218</td>
<td>208</td>
</tr>
<tr>
<td>Progression/relapse n°3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>No</td>
<td>231</td>
<td>222</td>
</tr>
<tr>
<td>Progression/relapse n°4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>No</td>
<td>237</td>
<td>228</td>
</tr>
<tr>
<td>Progression/relapse n°5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>No</td>
<td>237</td>
<td>229</td>
</tr>
<tr>
<td>Total</td>
<td>239</td>
<td>230</td>
</tr>
</tbody>
</table>

Table 4.5-132 Progression/relapse n°1 – Period (induction ITT)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Period of Progression / Relapse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TREATMENT PERIOD</td>
<td>64</td>
<td>63</td>
</tr>
<tr>
<td>FOLLOW UP PERIOD</td>
<td>66</td>
<td>54</td>
</tr>
<tr>
<td>Missing</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>132</td>
<td>117</td>
</tr>
</tbody>
</table>

Table 4.5-133 Progression/relapse n°1 – Involvement (induction ITT)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Initial involvement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>92</td>
<td>90</td>
</tr>
<tr>
<td>No</td>
<td>40</td>
<td>27</td>
</tr>
<tr>
<td>New involvement</td>
<td>Arm of treatment</td>
<td>Arm of treatment</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Not Done</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Yes</td>
<td>64</td>
<td>48</td>
</tr>
<tr>
<td>No</td>
<td>67</td>
<td>51</td>
</tr>
<tr>
<td>Nodal involvement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>95</td>
<td>72</td>
</tr>
<tr>
<td>No</td>
<td>37</td>
<td>28</td>
</tr>
<tr>
<td>Extra-nodal involvement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Done</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Yes</td>
<td>77</td>
<td>58</td>
</tr>
<tr>
<td>No</td>
<td>54</td>
<td>41</td>
</tr>
<tr>
<td>Total</td>
<td>132</td>
<td>100</td>
</tr>
</tbody>
</table>

Details of extra-nodal involvement are listed in section §6.6.4.

Table 4.5-134 Progression/relapse n°1 – Individual factors of IPI (induction ITT)

<p>| Arm of treatment |
|------------------|------------------|------------------|
| ARM A / R-ICE | ARM B / R-DHAP |</p>
<table>
<thead>
<tr>
<th>N</th>
<th>%</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDH > Upper Limit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Not Done</td>
<td>10</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Yes</td>
<td>71</td>
<td>54</td>
<td>80</td>
</tr>
<tr>
<td>No</td>
<td>49</td>
<td>37</td>
<td>30</td>
</tr>
<tr>
<td>Stage III - IV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Not Done</td>
<td>7</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Yes</td>
<td>81</td>
<td>61</td>
<td>77</td>
</tr>
<tr>
<td>No</td>
<td>43</td>
<td>33</td>
<td>36</td>
</tr>
<tr>
<td>PS >= 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Not Done</td>
<td>7</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Yes</td>
<td>39</td>
<td>30</td>
<td>38</td>
</tr>
<tr>
<td>No</td>
<td>85</td>
<td>64</td>
<td>72</td>
</tr>
<tr>
<td>Extra-nodal sites >= 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Not Done</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Yes</td>
<td>35</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>No</td>
<td>93</td>
<td>70</td>
<td>86</td>
</tr>
<tr>
<td>Total</td>
<td>132</td>
<td>100</td>
<td>117</td>
</tr>
</tbody>
</table>
Table 4.5-135 Progression/relapse n°1 – Progression/relapse treatment (induction ITT)

<table>
<thead>
<tr>
<th>Progression / Relapse treatment</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Missing</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Yes</td>
<td>124</td>
<td>94</td>
</tr>
<tr>
<td>No</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>132</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 4.5-136 Progression/relapse n°1 – Type of progression/relapse treatment (induction ITT)

<table>
<thead>
<tr>
<th>Type of treatment</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Chemotherapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Done</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Yes</td>
<td>97</td>
<td>78</td>
</tr>
<tr>
<td>No</td>
<td>26</td>
<td>21</td>
</tr>
<tr>
<td>Radiotherapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Done</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Yes</td>
<td>39</td>
<td>31</td>
</tr>
<tr>
<td>No</td>
<td>81</td>
<td>65</td>
</tr>
<tr>
<td>Immunotherapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Done</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Yes</td>
<td>36</td>
<td>29</td>
</tr>
<tr>
<td>No</td>
<td>84</td>
<td>68</td>
</tr>
<tr>
<td>Transplantation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Done</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Yes</td>
<td>29</td>
<td>23</td>
</tr>
<tr>
<td>No</td>
<td>91</td>
<td>73</td>
</tr>
<tr>
<td>Other treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Done</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Yes</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>No</td>
<td>109</td>
<td>88</td>
</tr>
<tr>
<td>Total</td>
<td>124</td>
<td>100</td>
</tr>
</tbody>
</table>

Details of treatment are listed in section §6.6.4.
Table 4.5-137 Progression/relapse n°1 – Response after additional treatments (induction ITT)

<table>
<thead>
<tr>
<th>Response after new treatment</th>
<th>Arm of treatment</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>COMPLETE RESPONSE</td>
<td>16</td>
<td>13</td>
<td>19</td>
</tr>
<tr>
<td>UNCONFIRMED COMPLETE RESPONSE</td>
<td>7</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>PARTIAL RESPONSE</td>
<td>17</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>STABLE DISEASE</td>
<td>4</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>PROGRESSIVE DISEASE</td>
<td>67</td>
<td>54</td>
<td>47</td>
</tr>
<tr>
<td>NOT EVALUATED</td>
<td>12</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>124</td>
<td>100</td>
<td>102</td>
</tr>
</tbody>
</table>

All information about progression/relapse n°2 are shown in section §6.6.4.
5. SAFETY EVALUATION

5.1. Extent of exposure to trial medication

The number of induction treatment cycles received by each patient is summarized in the following table; in this summary, patients were considered to have received a cycle if they were given at least one study drug.

<table>
<thead>
<tr>
<th>Actual arm of induction</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>239</td>
<td>100</td>
</tr>
<tr>
<td>Cycle 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>225</td>
<td>94</td>
</tr>
<tr>
<td>No</td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td>Cycle 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>204</td>
<td>85</td>
</tr>
<tr>
<td>No</td>
<td>35</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>239</td>
<td>100</td>
</tr>
</tbody>
</table>

204 patients (85%) in R-ICE arm received the complete treatment and 196 patients (85%) in the R-DHAP arm. One patient in R-ICE arm received only 2 cycles but then received consolidation.

<table>
<thead>
<tr>
<th>Actual arm of induction</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time between cycles 1 and 2 (days)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>225</td>
<td>214</td>
</tr>
<tr>
<td>Mean</td>
<td>22.7</td>
<td>22.7</td>
</tr>
<tr>
<td>Std</td>
<td>4.48</td>
<td>3.49</td>
</tr>
<tr>
<td>Median</td>
<td>21.0</td>
<td>21.5</td>
</tr>
<tr>
<td>Min</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>Max</td>
<td>53</td>
<td>39</td>
</tr>
<tr>
<td>Time between cycles 2 and 3 (days)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>204</td>
<td>195</td>
</tr>
<tr>
<td>Mean</td>
<td>23.2</td>
<td>23.0</td>
</tr>
<tr>
<td>Std</td>
<td>4.28</td>
<td>3.72</td>
</tr>
<tr>
<td>Median</td>
<td>22.0</td>
<td>22.0</td>
</tr>
<tr>
<td>Min</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>Max</td>
<td>55</td>
<td>52</td>
</tr>
</tbody>
</table>
Table 5.1-3 Induction - Percentage of planned dose received by cycle for rituximab (induction safety population)

<table>
<thead>
<tr>
<th>Rituximab</th>
<th>Cycle 1</th>
<th>Cycle 2</th>
<th>Cycle 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Actual arm of induction</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>239</td>
<td>228</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>95.0</td>
<td>94.6</td>
<td></td>
</tr>
<tr>
<td>Std</td>
<td>15.29</td>
<td>15.83</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>37</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>113</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>225</td>
<td>212</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>98.7</td>
<td>98.4</td>
<td></td>
</tr>
<tr>
<td>Std</td>
<td>7.87</td>
<td>8.00</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>100.0</td>
<td>99.9</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>117</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>204</td>
<td>193</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>98.7</td>
<td>99.0</td>
<td></td>
</tr>
<tr>
<td>Std</td>
<td>8.06</td>
<td>4.09</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>100.0</td>
<td>99.9</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>0</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>117</td>
<td>116</td>
<td></td>
</tr>
</tbody>
</table>

Some patients did not receive rituximab as planned:

- At 1st cycle, injection at day -2 was not administrated for 12 patients in R-ICE arm and 8 patients in R-DHAP arm. Injection at day 1 was not administrated for 9 patients in R-ICE arm and 12 patients in R-DHAP arm.
- Overall one patient in R-DHAP arm never received rituximab due to allergy.
Table 5.1-4 Induction - Percentage of planned dose received by cycle for ICE regimen (induction safety population)

<table>
<thead>
<tr>
<th>Dose received (% of planned dose)</th>
<th>Actual arm of induction ARM A / R-ICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etoposide</td>
<td></td>
</tr>
<tr>
<td>Cycle 1</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>239</td>
</tr>
<tr>
<td>Mean</td>
<td>98.0</td>
</tr>
<tr>
<td>Std</td>
<td>9.21</td>
</tr>
<tr>
<td>Median</td>
<td>100.0</td>
</tr>
<tr>
<td>Min</td>
<td>0</td>
</tr>
<tr>
<td>Max</td>
<td>110</td>
</tr>
<tr>
<td>Cycle 2</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>225</td>
</tr>
<tr>
<td>Mean</td>
<td>97.9</td>
</tr>
<tr>
<td>Std</td>
<td>7.79</td>
</tr>
<tr>
<td>Median</td>
<td>100.0</td>
</tr>
<tr>
<td>Min</td>
<td>33</td>
</tr>
<tr>
<td>Max</td>
<td>111</td>
</tr>
<tr>
<td>Cycle 3</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>204</td>
</tr>
<tr>
<td>Mean</td>
<td>97.5</td>
</tr>
<tr>
<td>Std</td>
<td>8.48</td>
</tr>
<tr>
<td>Median</td>
<td>100.0</td>
</tr>
<tr>
<td>Min</td>
<td>33</td>
</tr>
<tr>
<td>Max</td>
<td>111</td>
</tr>
<tr>
<td>Carboplatin</td>
<td></td>
</tr>
<tr>
<td>Cycle 1</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>238</td>
</tr>
<tr>
<td>Mean</td>
<td>99.0</td>
</tr>
<tr>
<td>Std</td>
<td>16.76</td>
</tr>
<tr>
<td>Median</td>
<td>99.0</td>
</tr>
<tr>
<td>Min</td>
<td>0</td>
</tr>
<tr>
<td>Max</td>
<td>149</td>
</tr>
<tr>
<td>Cycle 2</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>224</td>
</tr>
<tr>
<td>Mean</td>
<td>99.9</td>
</tr>
<tr>
<td>Std</td>
<td>18.85</td>
</tr>
<tr>
<td>Median</td>
<td>100.0</td>
</tr>
<tr>
<td>Min</td>
<td>0</td>
</tr>
<tr>
<td>Max</td>
<td>172</td>
</tr>
<tr>
<td>Cycle 3</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>203</td>
</tr>
<tr>
<td>Mean</td>
<td>98.7</td>
</tr>
<tr>
<td>Std</td>
<td>15.64</td>
</tr>
<tr>
<td>Median</td>
<td>99.5</td>
</tr>
<tr>
<td>Min</td>
<td>47</td>
</tr>
<tr>
<td>Max</td>
<td>150</td>
</tr>
</tbody>
</table>
Some patients did not receive at least one drug of ICE regimen:

- Patient 5003621301014 only received injection at day -2 for rituximab and was withdrawn for treatment toxicity.
- One patient did not receive carboplatine at 2nd cycle (permanent stop but anyway withdrawn before C3 for progressive disease).
- One patient did not receive ifosfamide at 2nd and 3rd cycles due to CNS toxicity.
Table 5.1-5 Induction - Percentage of planned dose received by cycle for DHAP regimen (induction safety population)

<table>
<thead>
<tr>
<th>Dose received (% of planned dose)</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Dexamethasone</td>
<td></td>
</tr>
<tr>
<td>Cycle 1</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>229</td>
</tr>
<tr>
<td>Mean</td>
<td>106.2</td>
</tr>
<tr>
<td>Std</td>
<td>43.02</td>
</tr>
<tr>
<td>Median</td>
<td>100.0</td>
</tr>
<tr>
<td>Min</td>
<td>75</td>
</tr>
<tr>
<td>Max</td>
<td>700</td>
</tr>
<tr>
<td>Cycle 2</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>213</td>
</tr>
<tr>
<td>Mean</td>
<td>103.3</td>
</tr>
<tr>
<td>Std</td>
<td>18.65</td>
</tr>
<tr>
<td>Median</td>
<td>100.0</td>
</tr>
<tr>
<td>Min</td>
<td>25</td>
</tr>
<tr>
<td>Max</td>
<td>200</td>
</tr>
<tr>
<td>Cycle 3</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>196</td>
</tr>
<tr>
<td>Mean</td>
<td>103.1</td>
</tr>
<tr>
<td>Std</td>
<td>17.62</td>
</tr>
<tr>
<td>Median</td>
<td>100.0</td>
</tr>
<tr>
<td>Min</td>
<td>50</td>
</tr>
<tr>
<td>Max</td>
<td>200</td>
</tr>
<tr>
<td>Cisplatine</td>
<td></td>
</tr>
<tr>
<td>Cycle 1</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>228</td>
</tr>
<tr>
<td>Mean</td>
<td>97.8</td>
</tr>
<tr>
<td>Std</td>
<td>7.49</td>
</tr>
<tr>
<td>Median</td>
<td>100.0</td>
</tr>
<tr>
<td>Min</td>
<td>28</td>
</tr>
<tr>
<td>Max</td>
<td>106</td>
</tr>
<tr>
<td>Cycle 2</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>212</td>
</tr>
<tr>
<td>Mean</td>
<td>95.0</td>
</tr>
<tr>
<td>Std</td>
<td>15.54</td>
</tr>
<tr>
<td>Median</td>
<td>100.0</td>
</tr>
<tr>
<td>Min</td>
<td>0</td>
</tr>
<tr>
<td>Max</td>
<td>110</td>
</tr>
<tr>
<td>Cycle 3</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>194</td>
</tr>
<tr>
<td>Mean</td>
<td>91.0</td>
</tr>
<tr>
<td>Std</td>
<td>27.03</td>
</tr>
<tr>
<td>Median</td>
<td>100.0</td>
</tr>
<tr>
<td>Min</td>
<td>0</td>
</tr>
<tr>
<td>Max</td>
<td>253</td>
</tr>
</tbody>
</table>
Dose received (% of planned dose) | Actual arm of induction
---|---
Cycle 1 | ARM B / R-DHAP
N | 228
Mean | 96.1
Std | 12.78
Median | 100.0
Min | 13
Max | 114
Cycle 2 | N | 211
Mean | 95.9
Std | 12.09
Median | 100.0
Min | 24
Max | 106
Cycle 3 | N | 194
Mean | 96.1
Std | 11.44
Median | 100.0
Min | 45
Max | 108

Some patients did not receive cisplatine of DHAP regimen due to renal toxicity:
- 4 patients did not receive cisplatine at 2nd and 3rd cycles.
- 7 additional patients did not receive cisplatine at 3rd cycle.

Same results are described in terms of frequency in section §6.7.1.

The following table summarizes the administration of growth factors during induction phase:

Table 5.1-6 Induction – Growth factors (induction safety population)

<table>
<thead>
<tr>
<th>G-CSF</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Cycle 1</td>
<td>43</td>
<td>18</td>
</tr>
<tr>
<td>Yes</td>
<td>194</td>
<td>81</td>
</tr>
<tr>
<td>Not Done</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>239</td>
<td>100</td>
</tr>
<tr>
<td>No</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Cycle 2</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>Yes</td>
<td>197</td>
<td>82</td>
</tr>
<tr>
<td>Not Done</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Missing</td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>239</td>
<td>100</td>
</tr>
</tbody>
</table>
G-CSF

<table>
<thead>
<tr>
<th>Actual arm of induction</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Cycle 3</td>
<td>No</td>
<td>9</td>
</tr>
<tr>
<td>Yes</td>
<td>192</td>
<td>80</td>
</tr>
<tr>
<td>Not Done</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Missing</td>
<td>35</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>239</td>
<td>100</td>
</tr>
</tbody>
</table>

The number of days of G-CSF administration is described in section §6.7.1.

Table 5.1-7 Consolidation - Percentage of planned dose received for BEAM (induction safety population)

<table>
<thead>
<tr>
<th>Dose received (% of planned dose)</th>
<th>Actual arm of induction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARM A / R-ICE</td>
</tr>
<tr>
<td>BCNU</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>122</td>
</tr>
<tr>
<td>Mean</td>
<td>98.5</td>
</tr>
<tr>
<td>Std</td>
<td>8.47</td>
</tr>
<tr>
<td>Median</td>
<td>100.0</td>
</tr>
<tr>
<td>Min</td>
<td>69</td>
</tr>
<tr>
<td>Max</td>
<td>167</td>
</tr>
<tr>
<td>Etoposide</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>122</td>
</tr>
<tr>
<td>Mean</td>
<td>99.1</td>
</tr>
<tr>
<td>Std</td>
<td>21.81</td>
</tr>
<tr>
<td>Median</td>
<td>100.0</td>
</tr>
<tr>
<td>Min</td>
<td>25</td>
</tr>
<tr>
<td>Max</td>
<td>203</td>
</tr>
<tr>
<td>Cytarabine</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>122</td>
</tr>
<tr>
<td>Mean</td>
<td>88.9</td>
</tr>
<tr>
<td>Std</td>
<td>20.88</td>
</tr>
<tr>
<td>Median</td>
<td>98.2</td>
</tr>
<tr>
<td>Min</td>
<td>13</td>
</tr>
<tr>
<td>Max</td>
<td>114</td>
</tr>
<tr>
<td>Melphalan</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>122</td>
</tr>
<tr>
<td>Mean</td>
<td>97.9</td>
</tr>
<tr>
<td>Std</td>
<td>6.81</td>
</tr>
<tr>
<td>Median</td>
<td>99.9</td>
</tr>
<tr>
<td>Min</td>
<td>50</td>
</tr>
<tr>
<td>Max</td>
<td>108</td>
</tr>
</tbody>
</table>

Same results are described in terms of frequency in section §6.7.1.
Table 5.1-8 Consolidation – Administration of growth factors (induction safety population)

<table>
<thead>
<tr>
<th>G-CSF</th>
<th>Actual arm of induction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARM A / R-ICE</td>
</tr>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>No</td>
<td>35</td>
</tr>
<tr>
<td>Yes</td>
<td>86</td>
</tr>
<tr>
<td>Missing</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>123</td>
</tr>
</tbody>
</table>

Table 5.1-9 Consolidation – Type of growth factors (induction safety population)

<table>
<thead>
<tr>
<th>G-CSF</th>
<th>Actual arm of induction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARM A / R-ICE</td>
</tr>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>G-CSF</td>
<td>83</td>
</tr>
<tr>
<td>OTHER</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>86</td>
</tr>
</tbody>
</table>

Other types of growth factors are listed in section §6.7.1.
5.2. Adverse events

All adverse events occurring were graded with CTCAE v3.0.

5.2.1. Overview of toxicity profile

The toxicity profile during the whole induction treatment phase is summarized by the worst grade reported per patient in the following tables:

Table 5.2-1 Incidence of toxicities by worst grade per patient during induction phase (induction safety population)

<table>
<thead>
<tr>
<th>Grade affection</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Actual arm of induction</td>
<td>Actual arm of induction</td>
</tr>
<tr>
<td></td>
<td>Grade</td>
<td>N</td>
</tr>
<tr>
<td>All tox.</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>allergic</td>
<td>Grade allergy</td>
<td>N</td>
</tr>
<tr>
<td>%</td>
<td>8</td>
<td>92</td>
</tr>
<tr>
<td>auditory</td>
<td>Grade auditory</td>
<td>N</td>
</tr>
<tr>
<td>%</td>
<td>2</td>
<td>98</td>
</tr>
<tr>
<td>blood</td>
<td>Grade blood</td>
<td>N</td>
</tr>
<tr>
<td>%</td>
<td>92</td>
<td>8</td>
</tr>
<tr>
<td>cardiovascular</td>
<td>Grade cardiovascular</td>
<td>N</td>
</tr>
<tr>
<td>%</td>
<td>7</td>
<td>92</td>
</tr>
<tr>
<td>coagulation</td>
<td>Grade coagulation</td>
<td>N</td>
</tr>
<tr>
<td>%</td>
<td>5</td>
<td>94</td>
</tr>
<tr>
<td>skin</td>
<td>Grade skin</td>
<td>N</td>
</tr>
<tr>
<td>%</td>
<td>15</td>
<td>84</td>
</tr>
<tr>
<td>gastrointestinal</td>
<td>Grade gastrointestinal</td>
<td>N</td>
</tr>
<tr>
<td>%</td>
<td>56</td>
<td>44</td>
</tr>
<tr>
<td>hepatic</td>
<td>Grade hepatic</td>
<td>N</td>
</tr>
<tr>
<td>%</td>
<td>18</td>
<td>82</td>
</tr>
<tr>
<td>infection with febrile neutropenia</td>
<td>Grade infection with febrile neutropenia</td>
<td>N</td>
</tr>
<tr>
<td>%</td>
<td>20</td>
<td>80</td>
</tr>
<tr>
<td>Grade infection without febrile neutropenia</td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
</tr>
<tr>
<td>--</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Grade</td>
<td>Grade</td>
<td>Grade</td>
</tr>
<tr>
<td>All Tox.</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>N</td>
<td>35</td>
<td>203</td>
</tr>
<tr>
<td>%</td>
<td>15</td>
<td>85</td>
</tr>
<tr>
<td>Grade metabolic</td>
<td>N</td>
<td>39</td>
</tr>
<tr>
<td>%</td>
<td>16</td>
<td>83</td>
</tr>
<tr>
<td>Grade neurology</td>
<td>N</td>
<td>32</td>
</tr>
<tr>
<td>%</td>
<td>13</td>
<td>86</td>
</tr>
<tr>
<td>Grade pulmonary</td>
<td>N</td>
<td>22</td>
</tr>
<tr>
<td>%</td>
<td>9</td>
<td>90</td>
</tr>
<tr>
<td>Grade renal</td>
<td>N</td>
<td>15</td>
</tr>
<tr>
<td>%</td>
<td>6</td>
<td>93</td>
</tr>
<tr>
<td>Other toxicity</td>
<td>N</td>
<td>81</td>
</tr>
<tr>
<td>%</td>
<td>34</td>
<td>64</td>
</tr>
</tbody>
</table>

NE = Not Evaluated
The toxicity profile is also summarized by grade and cycle for each designation in section §6.7.2. In this summary, the denominator is the number of patients who received treatment at each cycle.

Other toxicities are listed in section §6.7.2.

Table 5.2-2 Patients with RBC and platelets transfusions during induction (induction safety population)

<table>
<thead>
<tr>
<th>Actual arm of induction</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>At least one RBC transfusion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>119</td>
<td>50</td>
</tr>
<tr>
<td>No</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>Missing</td>
<td>95</td>
<td>40</td>
</tr>
<tr>
<td>At least one platelets transfusion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>92</td>
<td>38</td>
</tr>
<tr>
<td>No</td>
<td>52</td>
<td>22</td>
</tr>
<tr>
<td>Missing</td>
<td>95</td>
<td>40</td>
</tr>
<tr>
<td>Total</td>
<td>239</td>
<td>100</td>
</tr>
</tbody>
</table>

A higher proportion of patients in the R-DHAP arm presented with at least one platelets transfusion during induction phase (58% vs 38% in R-ICE arm).
Table 5.2-3 Incidence of toxicities during consolidation phase (induction safety population)

<table>
<thead>
<tr>
<th>Grade Infection</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All Tox.</td>
<td>0</td>
</tr>
<tr>
<td>N</td>
<td>90</td>
<td>32</td>
</tr>
<tr>
<td>%</td>
<td>73</td>
<td>26</td>
</tr>
<tr>
<td>Grade Neurologic</td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
</tr>
<tr>
<td></td>
<td>All Tox.</td>
<td>0</td>
</tr>
<tr>
<td>N</td>
<td>2</td>
<td>120</td>
</tr>
<tr>
<td>%</td>
<td>2</td>
<td>98</td>
</tr>
<tr>
<td>Grade Mucositis</td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
</tr>
<tr>
<td></td>
<td>All Tox.</td>
<td>0</td>
</tr>
<tr>
<td>N</td>
<td>81</td>
<td>41</td>
</tr>
<tr>
<td>%</td>
<td>66</td>
<td>33</td>
</tr>
<tr>
<td>Grade Hepatic</td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
</tr>
<tr>
<td></td>
<td>All Tox.</td>
<td>0</td>
</tr>
<tr>
<td>N</td>
<td>20</td>
<td>102</td>
</tr>
<tr>
<td>%</td>
<td>16</td>
<td>83</td>
</tr>
<tr>
<td>Grade Gastrointestinal</td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
</tr>
<tr>
<td></td>
<td>All Tox.</td>
<td>0</td>
</tr>
<tr>
<td>N</td>
<td>73</td>
<td>49</td>
</tr>
<tr>
<td>%</td>
<td>59</td>
<td>40</td>
</tr>
<tr>
<td>Grade Renal</td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
</tr>
<tr>
<td></td>
<td>All Tox.</td>
<td>0</td>
</tr>
<tr>
<td>N</td>
<td>9</td>
<td>113</td>
</tr>
<tr>
<td>%</td>
<td>7</td>
<td>92</td>
</tr>
<tr>
<td>Grade Cardiovascular</td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
</tr>
<tr>
<td></td>
<td>All Tox.</td>
<td>0</td>
</tr>
<tr>
<td>N</td>
<td>16</td>
<td>106</td>
</tr>
<tr>
<td>%</td>
<td>13</td>
<td>86</td>
</tr>
<tr>
<td>Other toxicity</td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
</tr>
<tr>
<td></td>
<td>All Tox.</td>
<td>0</td>
</tr>
<tr>
<td>N</td>
<td>27</td>
<td>0</td>
</tr>
<tr>
<td>%</td>
<td>22</td>
<td>0</td>
</tr>
</tbody>
</table>

Other toxicities during consolidation are listed in section §6.7.2.

NE = Not Evaluated
Table 5.2-4 Patients with RBC and platelets transfusions during consolidation (induction safety population)

<table>
<thead>
<tr>
<th>Actual arm of induction</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>At least one RBC transfusion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>28</td>
<td>23</td>
</tr>
<tr>
<td>Yes</td>
<td>94</td>
<td>76</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>At least one platelets transfusion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Yes</td>
<td>115</td>
<td>93</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>123</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 5.2-5 Time intervals for hematological recovery after transplant (induction safety population)

<table>
<thead>
<tr>
<th>Actual arm of induction</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean</td>
</tr>
<tr>
<td>Neutrophils > 1 Giga/l (days after transplant)</td>
<td></td>
<td>117</td>
</tr>
<tr>
<td>Neutrophils > 0.5 Giga/l (days after transplant)</td>
<td></td>
<td>116</td>
</tr>
<tr>
<td>Platelets > 20 Giga/l (days after transplant)</td>
<td>N</td>
<td>119</td>
</tr>
</tbody>
</table>
5.2.2. Description of adverse events

2 AEs were reported for patients who did not receive any study treatment. There are described in section §6.7.3.

On induction safety population, a total of 347 AEs in R-ICE arm and 552 in the R-DHAP arm were reported during the whole study (induction, consolidation and maintenance phases), concerning respectively 154 patients (64%) and 172 patients (75%).

In both arms, the most common System Organ Class was infections and infestations (respectively 135 and 166 AEs in R-ICE and RDHAP arm, 39% and 30% of AEs), then blood and lymphatic system disorders (64 and 116 AEs, 18% and 21% of AEs).

8 AEs (2 in R-ICE arm and 6 in R-DHAP arm) occurred before administration of first induction cycle. The list of these AEs is shown in section §6.7.3.

Table 5.2-6 Patients with at least one AE (induction safety population)

<table>
<thead>
<tr>
<th>Actual arm of induction</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Patient with at least one AE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>154</td>
<td>64</td>
</tr>
<tr>
<td>No</td>
<td>85</td>
<td>36</td>
</tr>
<tr>
<td>Total</td>
<td>239</td>
<td>100</td>
</tr>
</tbody>
</table>

The following table summarizes the incidence of AEs by System Organ Class and Preferred Term, ordered by frequency.

Table 5.2-7 Summary of adverse events by frequency of SOC and PT (induction safety population)

<table>
<thead>
<tr>
<th>Actual arm of induction</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Total number of AEs</td>
<td>347</td>
<td>100</td>
</tr>
</tbody>
</table>
System Organ Class

INFECTIONS AND INFESTATIONS

<table>
<thead>
<tr>
<th>Preferred Term</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of AEs</td>
<td>135</td>
<td>166</td>
</tr>
<tr>
<td>Actual arm of induction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>INFECTION</td>
<td>27</td>
<td>8</td>
</tr>
<tr>
<td>NEUTROPENIC INFECTION</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>NEUTROPENIC SEPSIS</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>HERPES ZOSTER</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>PNEUMONIA</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>CENTRAL LINE INFECTION</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>LOWER RESPIRATORY TRACT INFECTION</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>SEPSIS</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>SEPTIC SHOCK</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>BRONCHITIS</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>STAPHYLOCOCCAL SEPSIS</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CATHETER RELATED INFECTION</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>STAPHYLOCOCCAL INFECTION</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ORAL HERPES</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>URINARY TRACT INFECTION</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>FOLLICULITIS</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>BRONCHOPNEUMONIA</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>BACTERIAL SEPSIS</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>* UPPER RESPIRATORY TRACT INFECTION*</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ESCHERICHIA SEPSIS</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>SINUSITIS</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>RESPIRATORY TRACT INFECTION</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ESCHERICHIA URINARY TRACT INFECTION</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>CYTOMEGALOVIRUS INFECTION</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CLOSTRIDUM DIFFICILE COLITIS</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>CATHETER SEPSIS</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>CANDIDIASIS</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>PSEUDOMONAS INFECTION</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BRONCHOPULMONARY ASPERGILLOSIS</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>ESCHERICHIA INFECTION</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>ENTEROBACTER SEPSIS</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NASOPHARYNGITIS</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>CLOSTRIDIAL INFECTION</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>KLEBSIELLA INFECTION</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>INFLUENZA</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>HERPES VIRUS INFECTION</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>HAEMOPHILUS INFECTION</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DIARRHOEA INFECTION</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>* PSEUDOMONAL SEPSIS*</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CELLULITIS</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Condition</td>
<td>ARM A / R-ICE</td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>CYSTITIS</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>BRONCHITIS PNEUMOCOCCAL</td>
<td>1 0</td>
<td></td>
</tr>
<tr>
<td>PERTUSSIS</td>
<td>1 0</td>
<td></td>
</tr>
<tr>
<td>GASTROENTERITIS</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>HERPES SIMPLEX</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>ASPERGILLOSIS</td>
<td>1 0</td>
<td></td>
</tr>
<tr>
<td>PNEUMONIA PNEUMOCOCCAL</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>FUNGAL OESOPHAGITIS</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>STREPTOCOCCAL SEPSIS</td>
<td>1 0</td>
<td></td>
</tr>
<tr>
<td>VARICELLA</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>MENINGITIS</td>
<td>1 0</td>
<td></td>
</tr>
<tr>
<td>HELICOBACTER GASTRITIS</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>ENTEROCOLITIS INFECTION</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>PNEUMOCYSTIS JIROVECI PNEUMONIA</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>WEST NILE VIRAL INFECTION</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>GASTROENTERITIS VIRAL</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>PNEUMONIA STREPTOCOCCAL</td>
<td>1 0</td>
<td></td>
</tr>
<tr>
<td>PNEUMONIA FUNGAL</td>
<td>1 0</td>
<td></td>
</tr>
<tr>
<td>GASTROINTESTINAL INFECTION</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>ENTEROCOCCAL INFECTION</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>BACTERAEMIA</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>BACTERIAL INFECTION</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>CLOSTRIDIUM BACTERAEMIA</td>
<td>1 0</td>
<td></td>
</tr>
<tr>
<td>TONSILLITIS STREPTOCOCCAL</td>
<td>1 0</td>
<td></td>
</tr>
<tr>
<td>PNEUMONIA BACTERIAL</td>
<td>1 0</td>
<td></td>
</tr>
<tr>
<td>VIRAL INFECTION</td>
<td>1 0</td>
<td></td>
</tr>
<tr>
<td>CANDIDA SEPSIS</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>TOOTH ABSCESS</td>
<td>1 0</td>
<td></td>
</tr>
<tr>
<td>HEPATITIS C</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>PNEUMONIA INFLUENZAL</td>
<td>1 0</td>
<td></td>
</tr>
<tr>
<td>BRONCHIECTASIS</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>KLEBSIELLA SEPSIS</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>SKIN INFECTION</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>HEPATITIS B</td>
<td>1 0</td>
<td></td>
</tr>
<tr>
<td>GASTROINTESTINAL CANDIDIASIS</td>
<td>1 0</td>
<td></td>
</tr>
<tr>
<td>LOCALISED INFECTION</td>
<td>1 0</td>
<td></td>
</tr>
<tr>
<td>SINUSITIS ASPERGILLUS</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>BLOOD AND LYMPHATIC SYSTEM DISORDERS</td>
<td>Total number of AEs</td>
<td>Preferred Term</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>FEBRILE NEUTROPENIA</td>
<td>36</td>
<td>10</td>
</tr>
<tr>
<td>THROMBOCYTOPENIA</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>NEUTROPENIA</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>HAEMATOTOXICITY</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>LEUKOPENIA</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>FEBRILE BONE MARROW APLASIA</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ANAEMIA</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BICYTOPENIA</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>LYMPHOPENIA</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>PANCYTOPENIA</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>THROMBOTIC THROMBOCYTOPENIC PURPURA</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GASTROINTESTINAL DISORDERS</th>
<th>Total number of AEs</th>
<th>Preferred Term</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>VOMITING</td>
<td>7</td>
<td>2</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>DIARRHOEA</td>
<td>7</td>
<td>2</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>NAUSEA</td>
<td>1</td>
<td>0</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>GASTROINTESTINAL HEMORRHAGE</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>STOMATITIS</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>GASTROINTESTINAL DISORDER</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>ABDOMINAL PAIN</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>SMALL INTESTINAL OBSTRUCTION</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>CONSTIPATION</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>HAEMATEMESIS</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>GINGIVITIS</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DUODENAL ULCER</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OESOPHAGITIS</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GASTROINTESTINAL TOXICITY</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>OESOPHAGEAL HEMORRHAGE</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GASTROINTESTINAL ULCER HEMORRHAGE</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>INTESTINAL PERFORATION</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ENTEROCOLITIS HEMORRHAGIC</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ILEUS</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>FAECALOMA</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>INTESTINAL OBSTRUCTION</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LARGE INTESTINE PERFORATION</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DENTAL CARIES</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NEUTROPENIC COLITIS</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>GASTROINTESTINAL INFLAMMATION</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GINGIVAL PAIN</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MELAENA</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
GENERAL DISORDERS AND ADMINISTRATION SITE CONDITIONS

<table>
<thead>
<tr>
<th>Preferred Term</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of AEs</td>
<td>40</td>
<td>51</td>
</tr>
<tr>
<td>MUCOSAL INFLAMMATION</td>
<td>17</td>
<td>35</td>
</tr>
<tr>
<td>PYREXIA</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>FATIGUE</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>ASTHENIA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>HYPERTHERMIA</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>DISEASE PROGRESSION</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>INFLAMMATION</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>GENERAL PHYSICAL HEALTH DETERIORATION</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>CATHETER SITE HAEMORRHAGE</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>OEDEMA PERIPHERAL</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>INJECTION SITE REACTION</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

METABOLISM AND NUTRITION DISORDERS

<table>
<thead>
<tr>
<th>Preferred Term</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of AEs</td>
<td>11</td>
<td>40</td>
</tr>
<tr>
<td>HYPOKALAEMIA</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>HYPERGLYCAEMIA</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>HYPONATRAEMIA</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>METABOLIC DISORDER</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>DEHYDRATION</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>ANOREXIA</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>HYPERURICAEMIA</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>HYPOPHOSPHATAEMIA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>HYPOMAGNESIAEMIA</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>HYPOCALCAEMIA</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>HYPERKALAEMIA</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>FOOD INTOLERANCE</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>HYPERMAGNESIAEMIA</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>INVESTIGATIONS</td>
<td>Total number of AEs</td>
<td>Preferred Term</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>GAMMA-GLUTAMYLTRANSFERASE INCREASED</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>BLOOD CREATININE INCREASED</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TRANSAMINASES INCREASED</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LIVER FUNCTION TEST ABNORMAL</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>C-REACTIVE PROTEIN INCREASED</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>INTERNATIONAL NORMALISED RATIO</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>BLOOD ALKALINE PHOSPHATASE INCREASED</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ALANINE AMINOTRANSFERASE INCREASED</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CYTOMEGALOVIRUS TEST POSITIVE</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>BLOOD FIBRINOGEN DECREASED</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RENAL FUNCTION TEST ABNORMAL</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GLOMERULAR FILTRATION RATE</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BLOOD PHOSPHORUS DECREASED</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BLOOD PHOSPHORUS ABNORMAL</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>HEPATIC ENZYME INCREASED</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BLOOD LACTATE DEHYDROGENASE INCREASED</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PLATELET COUNT DECREASED</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>GAMMA-GLUTAMYLTRANSFERASE ABNORMAL</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NERVOUS SYSTEM DISORDERS</th>
<th>Total number of AEs</th>
<th>Preferred Term</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>CEREBROVASCULAR ACCIDENT</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>SYNCOPE</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>SYNCOPE VASOVAGAL</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>EPILEPSY</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>PARESIS</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>LEUKOENCEPHALOPATHY</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>HEADACHE</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>LOSS OF CONSCIOUSNESS</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>APHASIA</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>CEREBRAL ISCHAEMIA</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>TRANSIENT ISCHAEMIC ATTACK</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NEUROTOXICITY</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>EMBOLIC CEREBRAL INFARCTION</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>TOXIC INDUCED ENCEPHALOPATHY</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PRESYNCOPE</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>HYPOAESTHESIA</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Disorders</td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---------------</td>
<td>---------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actual arm of induction</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>RENAL AND URINARY DISORDERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of AEs</td>
<td>2</td>
<td>1</td>
<td>21</td>
<td>4</td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RENAL FAILURE ACUTE</td>
<td>1</td>
<td>0</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>RENAL FAILURE</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>CYSTITIS HAEMORRHAGIC</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>NEPHROPATHY TOXIC</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>RENAL TUBULAR ACIDOSIS</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>CALCULUS URINARY</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RESPIRATORY, THORACIC AND MEDIASTINAL DISORDERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of AEs</td>
<td>10</td>
<td>3</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PULMONARY EMBOLISM</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>DYSPNOEA</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>BRONCHOPNEUMOPATHY</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>LUNG DISORDER</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RESPIRATORY FAILURE</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>EPISTAXIS</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>INTERSTITIAL LUNG DISEASE</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LUNG INFILTRATION</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ACUTE PULMONARY OEDema</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>RESPIRATORY DISORDER</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>COUGH</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>CARDIAC DISORDERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of AEs</td>
<td>7</td>
<td>2</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CARDIAC FAILURE</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>ATRIAL FIBRILLATION</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>CARDIAC ARREST</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>MYOCARDIAL INFARCTION</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VENTRICULAR FIBRILLATION</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MYOCARDITIS</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MYOCARDIAL ISCHAEMIA</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VASCULAR DISORDERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of AEs</td>
<td>6</td>
<td>2</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THROMBOSIS</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>JUGULAR VEIN THROMBOSIS</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>HYPOTENSION</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>HYPERTENSION</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>CAPILLARY LEAK SYNDROME</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CIRCULATORY COLLAPSE</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>VENOOCCLUSIVE DISEASE</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DEEP VEIN THROMBOSIS</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NEOPLASMS BENIGN, MALIGNANT AND UNSPECIFIED (INCL CYSTS AND POLYPS)</td>
<td>Actual arm of induction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Total number of AEs</td>
<td>4</td>
<td>1</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TUMOUR LYSIS SYNDROME</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>OESOPHAGEAL CARCINOMA</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HEPATIC NEOPLASM MALIGNANT</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>MALIGNANT MELANOMA</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ACUTE LEUKAEMIA</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HODGKIN'S DISEASE</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TRANSITIONAL CELL CARCINOMA</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MYELODYSPLASTIC SYNDROME</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Total number of AEs</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HYPOGAMMAGLOBULINAEMIA</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>DRUG HYPERSENSITIVITY</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>ALLERGIC OEDEMA</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total number of AEs</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEPATITIS</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CHOLESTASIS</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>LIVER DISORDER</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>BILE DUCT STONE</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>HEPATOTOXICITY</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>CHOLECYSTITIS ACUTE</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total number of AEs</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BONE PAIN</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>BACK PAIN</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>MUSCULOSKELETAL PAIN</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RHABDOMYOLYSIS</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total number of AEs</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEAFNESS</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>TINNITUS</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>HEARING IMPAIRED</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>DEAFNESS BILATERAL</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total number of AEs</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRUG TOXICITY</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>THROMBOSIS IN DEVICE</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>SUBDURAL HAEMATOMA</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>POST LUMBAR PUNCTURE SYNDROME</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Actual arm of induction</td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------</td>
<td>---------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>PSYCHIATRIC DISORDERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of AEs</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONFUSIONAL STATE</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>DEPRESSION</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>SKIN AND SUBCUTANEOUS TISSUE DISORDERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of AEs</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PURPURA</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SKIN REACTION</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>SOCIAL CIRCUMSTANCES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of AEs</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOCIAL STAY HOSPITALISATION</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>SURGICAL AND MEDICAL PROCEDURES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of AEs</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEPATECTOMY</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

4 other malignancies in R-ICE arm and 7 in R-DHAP arm were reported (corresponding to the SOC neoplasms benign, malignant and unspecified (incl cysts and polyps)).
The following table shows the different characteristics of adverse events:

Table 5.2-8 Characteristics of adverse events (induction safety population)

<table>
<thead>
<tr>
<th></th>
<th>Actual arm of induction</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Non hematological toxicity grade</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NORMAL</td>
<td>3</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>MILD</td>
<td>11</td>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td>MODERATE</td>
<td>62</td>
<td>18</td>
<td>99</td>
</tr>
<tr>
<td>SEVERE</td>
<td>196</td>
<td>56</td>
<td>313</td>
</tr>
<tr>
<td>LIFE THREATENING</td>
<td>36</td>
<td>10</td>
<td>61</td>
</tr>
<tr>
<td>DEATH</td>
<td>6</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>UNKNOWN</td>
<td>6</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Missing</td>
<td>27</td>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>Hematological toxicity grade</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NORMAL</td>
<td>20</td>
<td>6</td>
<td>30</td>
</tr>
<tr>
<td>MILD</td>
<td>35</td>
<td>10</td>
<td>31</td>
</tr>
<tr>
<td>MODERATE</td>
<td>25</td>
<td>7</td>
<td>48</td>
</tr>
<tr>
<td>SEVERE</td>
<td>44</td>
<td>13</td>
<td>85</td>
</tr>
<tr>
<td>LIFE THREATENING</td>
<td>143</td>
<td>41</td>
<td>222</td>
</tr>
<tr>
<td>DEATH</td>
<td>3</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>UNKNOWN</td>
<td>13</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>Missing</td>
<td>64</td>
<td>18</td>
<td>119</td>
</tr>
<tr>
<td>Relation with study drugs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>174</td>
<td>50</td>
<td>264</td>
</tr>
<tr>
<td>Yes</td>
<td>172</td>
<td>50</td>
<td>286</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Action taken with study drug</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>305</td>
<td>88</td>
<td>475</td>
</tr>
<tr>
<td>Yes</td>
<td>41</td>
<td>12</td>
<td>73</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Antibiotherapy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>132</td>
<td>38</td>
<td>250</td>
</tr>
<tr>
<td>Yes</td>
<td>199</td>
<td>57</td>
<td>272</td>
</tr>
<tr>
<td>Not Done</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Missing</td>
<td>15</td>
<td>4</td>
<td>29</td>
</tr>
<tr>
<td>AE outcome</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECOVERED</td>
<td>313</td>
<td>90</td>
<td>483</td>
</tr>
<tr>
<td>RECOVERED WITH SEQUELAE</td>
<td>11</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>ONGOING</td>
<td>2</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>FATAL</td>
<td>19</td>
<td>5</td>
<td>26</td>
</tr>
<tr>
<td>Missing</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>347</td>
<td>100</td>
<td>552</td>
</tr>
</tbody>
</table>
Table 5.2-9 Action taken with study drugs due to AEs (induction safety population)

<table>
<thead>
<tr>
<th>Specify action taken with study drug</th>
<th>Actual arm of induction</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>PERMANENT TREATMENT DISCONTINUATION</td>
<td>13</td>
<td>23</td>
<td>32</td>
</tr>
<tr>
<td>TEMPORARY TREATMENT DISCONTINUATION</td>
<td>23</td>
<td>31</td>
<td>56</td>
</tr>
<tr>
<td>DOSE REGIMEN ADAPTATION</td>
<td>5</td>
<td>19</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>41</td>
<td>73</td>
<td>100</td>
</tr>
</tbody>
</table>

5.2.3. Corrective treatments

Among patients with at least one AE, 131 patients (85%) received a corrective treatment in R-ICE arm versus 141 patients (82%) in R-DHAP arm.

Table 5.2-10 Patients with corrective treatment for AE (induction safety population)

<table>
<thead>
<tr>
<th>Actual arm of treatment</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Patients with corrective treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>23</td>
<td>31</td>
</tr>
<tr>
<td>Yes</td>
<td>131</td>
<td>141</td>
</tr>
<tr>
<td>Total</td>
<td>154</td>
<td>172</td>
</tr>
</tbody>
</table>

285 AEs in R-ICE arm (82%) were associated with a corrective treatment versus 469 AEs (85%) in R-DHAP arm.

Table 5.2-11 Corrective treatments for AE (induction safety population)

<table>
<thead>
<tr>
<th>Actual arm of treatment</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>AEs with corrective treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>285</td>
<td>469</td>
</tr>
<tr>
<td>No</td>
<td>62</td>
<td>83</td>
</tr>
<tr>
<td>Total</td>
<td>347</td>
<td>552</td>
</tr>
</tbody>
</table>
5.3. Deaths and other serious adverse events

5.3.1. Serious adverse events

5.3.1.1. Description of serious adverse events

2 SAEs were reported for patients who did not receive any study treatment. There are described in section §6.7.4.

On induction safety population, a total of 106 SAEs in R-ICE arm and 151 in the R-DHAP arm were reported during the whole study (induction, consolidation and maintenance phases), concerning respectively 66 patients (28%) and 84 patients (37%).

In both arms, the most common System Organ Class was infections and infestations (respectively 46 and 55 SAEs in R-ICE and R-DHAP arm, 43% and 36% of SAEs), then gastrointestinal disorders (10 and 19 SAEs, 9% and 13% of SAEs) and blood and lymphatic system disorders (11 and 16 SAEs, 10% and 11% of SAEs).

5 SAEs were declared to Pharmacovigilance department concerning 2 patients not evaluable due to CRF not recovered. They are listed in section §6.7.4.

All serious adverse events are listed in section §6.7.4.

<table>
<thead>
<tr>
<th>Table 5.3-1 Patients with SAE (induction safety population)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual arm of induction</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
</tr>
<tr>
<td>%</td>
</tr>
<tr>
<td>Patient with at least one SAE</td>
</tr>
<tr>
<td>Yes</td>
</tr>
<tr>
<td>66</td>
</tr>
<tr>
<td>28</td>
</tr>
<tr>
<td>84</td>
</tr>
<tr>
<td>37</td>
</tr>
<tr>
<td>No</td>
</tr>
<tr>
<td>173</td>
</tr>
<tr>
<td>72</td>
</tr>
<tr>
<td>146</td>
</tr>
<tr>
<td>63</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>239</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>230</td>
</tr>
<tr>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 5.3-2 Summary of serious adverse events by frequency of SOC and PT (induction safety population)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual arm of induction</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
</tr>
<tr>
<td>%</td>
</tr>
<tr>
<td>Total number of SAEs</td>
</tr>
<tr>
<td>106</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>151</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>System Organ Class</td>
</tr>
<tr>
<td>--------------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Total number of SAEs</td>
</tr>
<tr>
<td>Preferred Term</td>
</tr>
<tr>
<td>NEUTROPENIC SEPSIS</td>
</tr>
<tr>
<td>PNEUMONIA</td>
</tr>
<tr>
<td>SEPTIC SHOCK</td>
</tr>
<tr>
<td>LOWER RESPIRATORY TRACT INFECTION</td>
</tr>
<tr>
<td>SEPSIS</td>
</tr>
<tr>
<td>NEUTROPENIC INFECTION</td>
</tr>
<tr>
<td>HERPES ZOSTER</td>
</tr>
<tr>
<td>STAPHYLOCCAL SEPSIS</td>
</tr>
<tr>
<td>INFECTION</td>
</tr>
<tr>
<td>BACTERIAL SEPSIS</td>
</tr>
<tr>
<td>CENTRAL LINE INFECTION</td>
</tr>
<tr>
<td>PSEUDOMONAS INFECTION</td>
</tr>
<tr>
<td>BRONCHOPULMONARY ASPERGILLOSIS</td>
</tr>
<tr>
<td>BRONCHOPNEUMONIA</td>
</tr>
<tr>
<td>CELLULITIS</td>
</tr>
<tr>
<td>CLOSTRIDIUM DIFFICILE COLITIS</td>
</tr>
<tr>
<td>CYTOMEGALOVIRUS INFECTION</td>
</tr>
<tr>
<td>BRONCHITIS PNEUMOCOCCAL</td>
</tr>
<tr>
<td>ESCHERICHIA INFECTION</td>
</tr>
<tr>
<td>ENTEROBACTER SEPSIS</td>
</tr>
<tr>
<td>CLOSTRIDIAL INFECTION</td>
</tr>
<tr>
<td>ASPERGILLOSIS</td>
</tr>
<tr>
<td>HAEMOPHILUS INFECTION</td>
</tr>
<tr>
<td>PNEUMONIA PNEUMOCOCCAL</td>
</tr>
<tr>
<td>STREPTOCOCCAL SEPSIS</td>
</tr>
<tr>
<td>VARICELLA</td>
</tr>
<tr>
<td>URINARY TRACT INFECTION</td>
</tr>
<tr>
<td>KLEBSIELLA INFECTION</td>
</tr>
<tr>
<td>PNEUMOCYSTIS JIROVECI PNEUMONIA</td>
</tr>
<tr>
<td>CATHETER RELATED INFECTION</td>
</tr>
<tr>
<td>PNEUMONIA STREPTOCOCCAL</td>
</tr>
<tr>
<td>DIARRHOEA INFECTIOUS</td>
</tr>
<tr>
<td>PSEUDOMONAL SEPSIS</td>
</tr>
<tr>
<td>BACTERAEMIA</td>
</tr>
<tr>
<td>CATHETER SEPSIS</td>
</tr>
<tr>
<td>PNEUMONIA BACTERIAL</td>
</tr>
<tr>
<td>CANDIDA SEPSIS</td>
</tr>
<tr>
<td>TOOTH ABSCESSE</td>
</tr>
<tr>
<td>UPPER RESPIRATORY TRACT INFECTION</td>
</tr>
<tr>
<td>RESPIRATORY TRACT INFECTION</td>
</tr>
<tr>
<td>Condition</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>HEPATITIS C</td>
</tr>
<tr>
<td>KLEBSIELLA SEPSIS</td>
</tr>
<tr>
<td>GASTROINTESTINAL CANDIDIASIS</td>
</tr>
<tr>
<td>SINUSITIS ASPERGILLUS</td>
</tr>
<tr>
<td>GASTROINTESTINAL DISORDERS</td>
</tr>
<tr>
<td>Total number of SAEs</td>
</tr>
<tr>
<td>Preferred Term</td>
</tr>
<tr>
<td>GASTROINTESTINAL HAEMORRHAGE</td>
</tr>
<tr>
<td>VOMITING</td>
</tr>
<tr>
<td>DIARRHOEA</td>
</tr>
<tr>
<td>SMALL INTESTINAL OBSTRUCTION</td>
</tr>
<tr>
<td>OESOPHAGEAL HAEMORRHAGE</td>
</tr>
<tr>
<td>NAUSEA</td>
</tr>
<tr>
<td>ABDOMINAL PAIN</td>
</tr>
<tr>
<td>GASTROINTESTINAL ULCEr HAEMORRHAGE</td>
</tr>
<tr>
<td>GASTROINTESTINAL DISORDER</td>
</tr>
<tr>
<td>INTESTINAL PERFORATION</td>
</tr>
<tr>
<td>ENTEROCOLITIS HAEMORRHAGIC</td>
</tr>
<tr>
<td>FAECALOMA</td>
</tr>
<tr>
<td>INTESTINAL OBSTRUCTION</td>
</tr>
<tr>
<td>LARGE INTESTINE PERFORATION</td>
</tr>
<tr>
<td>DENTAL CARIES</td>
</tr>
<tr>
<td>BLOOD AND LYMPHATIC SYSTEM DISORDERS</td>
</tr>
<tr>
<td>Total number of SAEs</td>
</tr>
<tr>
<td>Preferred Term</td>
</tr>
<tr>
<td>FEBRILE NEUTROPENIA</td>
</tr>
<tr>
<td>NEUTROPENIA</td>
</tr>
<tr>
<td>BICYTOPENIA</td>
</tr>
<tr>
<td>THROMBOCYTOPENIA</td>
</tr>
<tr>
<td>HAEMATOTOXICITY</td>
</tr>
<tr>
<td>ANAEMIA</td>
</tr>
<tr>
<td>PANCYTOPENIA</td>
</tr>
<tr>
<td>Disorder Category</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>NERVOUS SYSTEM DISORDERS</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Renal and Urinary Disorders</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>CARDCIAL DISORDERS</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>RESPIRATORY, THORACIC AND MEDIASTINAL DISORDERS</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Condition</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>GENERAL DISORDERS AND ADMINISTRATION SITE CONDITIONS</td>
</tr>
<tr>
<td>Total number of SAEs</td>
</tr>
<tr>
<td>Preferred Term</td>
</tr>
<tr>
<td>PYREXIA</td>
</tr>
<tr>
<td>MUCOSAL INFLAMMATION</td>
</tr>
<tr>
<td>HYPERTHERMIA</td>
</tr>
<tr>
<td>DISEASE PROGRESSION</td>
</tr>
<tr>
<td>CATHETER SITE HAEMORRHAGE</td>
</tr>
<tr>
<td>FATIGUE</td>
</tr>
<tr>
<td>METABOLISM AND NUTRITION DISORDERS</td>
</tr>
<tr>
<td>Total number of SAEs</td>
</tr>
<tr>
<td>Preferred Term</td>
</tr>
<tr>
<td>DEHYDRATION</td>
</tr>
<tr>
<td>HYPERGLYCAEMIA</td>
</tr>
<tr>
<td>HYPONATRAEMIA</td>
</tr>
<tr>
<td>NEOPLASMS BENIGN, MALIGNANT AND UNSPECIFIED (INCL CYSTS AND POLYPS)</td>
</tr>
<tr>
<td>Total number of SAEs</td>
</tr>
<tr>
<td>Preferred Term</td>
</tr>
<tr>
<td>OESOPHAGEAL CARCINOMA</td>
</tr>
<tr>
<td>HEPATIC NEOPLASM MALIGNANT</td>
</tr>
<tr>
<td>MALIGNANT MELANOMA</td>
</tr>
<tr>
<td>ACUTE LEUKAEMIA</td>
</tr>
<tr>
<td>HODGKIN'S DISEASE</td>
</tr>
<tr>
<td>TRANSITIONAL CELL CARCINOMA</td>
</tr>
<tr>
<td>MYELODYSPLASTIC SYNDROME</td>
</tr>
<tr>
<td>VASCULAR DISORDERS</td>
</tr>
<tr>
<td>Total number of SAEs</td>
</tr>
<tr>
<td>Preferred Term</td>
</tr>
<tr>
<td>THROMBOSIS</td>
</tr>
<tr>
<td>CIRCULATORY COLLAPSE</td>
</tr>
<tr>
<td>HYPOTENSION</td>
</tr>
<tr>
<td>VENOOCCLUSIVE DISEASE</td>
</tr>
<tr>
<td>MUSCULOSKELETAL AND CONNECTIVE TISSUE DISORDERS</td>
</tr>
<tr>
<td>Total number of SAEs</td>
</tr>
<tr>
<td>Preferred Term</td>
</tr>
<tr>
<td>BACK PAIN</td>
</tr>
<tr>
<td>RABDOMYOLYSIS</td>
</tr>
<tr>
<td>HEPATOBLIARY DISORDERS</td>
</tr>
<tr>
<td>Total number of SAEs</td>
</tr>
<tr>
<td>Preferred Term</td>
</tr>
<tr>
<td>HEPATITIS</td>
</tr>
<tr>
<td>CHOLECYSTITIS ACUTE</td>
</tr>
<tr>
<td>EAR AND LABYRINTH DISORDERS</td>
</tr>
<tr>
<td>Total number of SAEs</td>
</tr>
<tr>
<td>Preferred Term</td>
</tr>
<tr>
<td>DEAFNESS</td>
</tr>
<tr>
<td>TINNITUS</td>
</tr>
<tr>
<td>Category</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>PSYCHIATRIC DISORDERS</td>
</tr>
<tr>
<td>Total number of SAEs</td>
</tr>
<tr>
<td>Preferred Term</td>
</tr>
<tr>
<td>CONFUSIONAL STATE</td>
</tr>
<tr>
<td>DEPRESSION</td>
</tr>
<tr>
<td>INJURY, POISONING AND PROCEDURAL COMPLICATIONS</td>
</tr>
<tr>
<td>Total number of SAEs</td>
</tr>
<tr>
<td>Preferred Term</td>
</tr>
<tr>
<td>SUBDURAL HAEMATOMA</td>
</tr>
<tr>
<td>POST LUMBAR PUNCTURE SYNDROME</td>
</tr>
<tr>
<td>SKIN AND SUBCUTANEOUS TISSUE DISORDERS</td>
</tr>
<tr>
<td>Total number of SAEs</td>
</tr>
<tr>
<td>Preferred Term</td>
</tr>
<tr>
<td>SKIN REACTION</td>
</tr>
<tr>
<td>IMMUNE SYSTEM DISORDERS</td>
</tr>
<tr>
<td>Total number of SAEs</td>
</tr>
<tr>
<td>Preferred Term</td>
</tr>
<tr>
<td>DRUG HYPERSENSITIVITY</td>
</tr>
<tr>
<td>SOCIAL CIRCUMSTANCES</td>
</tr>
<tr>
<td>Total number of SAEs</td>
</tr>
<tr>
<td>Preferred Term</td>
</tr>
<tr>
<td>SOCIAL STAY HOSPITALISATION</td>
</tr>
<tr>
<td>INVESTIGATIONS</td>
</tr>
<tr>
<td>Total number of SAEs</td>
</tr>
<tr>
<td>Preferred Term</td>
</tr>
<tr>
<td>BLOOD CREATININE INCREASED</td>
</tr>
<tr>
<td>SURGICAL AND MEDICAL PROCEDURES</td>
</tr>
<tr>
<td>Total number of SAEs</td>
</tr>
<tr>
<td>Preferred Term</td>
</tr>
<tr>
<td>HEPATECTOMY</td>
</tr>
</tbody>
</table>

4 other malignancies in R-ICE arm and 3 in R-DHAP arm were reported as serious (corresponding to the SOC neoplasms benign, malignant and unspecified (incl cysts and polyps)).
The following table shows the different characteristics of adverse events reported as serious:

Table 5.3-3 Category of SAEs (induction safety population)

<table>
<thead>
<tr>
<th>Actual arm of induction</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Resulting of death</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>No</td>
<td>97</td>
<td>92</td>
</tr>
<tr>
<td>Yes</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Congenital anomaly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>No</td>
<td>106</td>
<td>100</td>
</tr>
<tr>
<td>Life threatening</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>No</td>
<td>87</td>
<td>82</td>
</tr>
<tr>
<td>Yes</td>
<td>19</td>
<td>18</td>
</tr>
<tr>
<td>Medically sign. event</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>No</td>
<td>95</td>
<td>90</td>
</tr>
<tr>
<td>Yes</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>Persistent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>No</td>
<td>97</td>
<td>92</td>
</tr>
<tr>
<td>Yes</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Hospitalization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>No</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>Yes</td>
<td>89</td>
<td>84</td>
</tr>
<tr>
<td>Total</td>
<td>106</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 5.3-4 Characteristics of SAEs (induction safety population)

<table>
<thead>
<tr>
<th>Actual arm of induction</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Non hematological toxicity grade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MILD</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MODERATE</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>SEVERE</td>
<td>52</td>
<td>49</td>
</tr>
<tr>
<td>LIFE THREATENING</td>
<td>26</td>
<td>25</td>
</tr>
<tr>
<td>DEATH</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>UNKNOWN</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Missing</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>
Table 5.3-5 Action taken with study drugs due to SAE (induction safety population)

<table>
<thead>
<tr>
<th>Specify action taken with study drug</th>
<th>Actual arm of induction</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PERMANENT TREATMENT DISCONTINUATION</td>
<td>ARM A / R-ICE</td>
<td>11</td>
<td>38</td>
</tr>
<tr>
<td>PERMANENT TREATMENT DISCONTINUATION</td>
<td>ARM B / R-DHAP</td>
<td>20</td>
<td>53</td>
</tr>
<tr>
<td>TEMPORARY TREATMENT DISCONTINUATION</td>
<td>ARM A / R-ICE</td>
<td>18</td>
<td>62</td>
</tr>
<tr>
<td>TEMPORARY TREATMENT DISCONTINUATION</td>
<td>ARM B / R-DHAP</td>
<td>13</td>
<td>34</td>
</tr>
<tr>
<td>DOSE REGIMEN ADAPTATION</td>
<td>ARM A / R-ICE</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DOSE REGIMEN ADAPTATION</td>
<td>ARM B / R-DHAP</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>Total</td>
<td>ARM A / R-ICE</td>
<td>29</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>ARM B / R-DHAP</td>
<td>38</td>
<td>100</td>
</tr>
</tbody>
</table>
5.3.1.2. Corrective treatments

Among patients with at least one SAE, 55 patients (83%) received a corrective treatment in R-ICE arm versus 75 patients (89%) in R-DHAP arm.

Table 5.3-6 Patients with corrective treatment for SAE (induction safety population)

<table>
<thead>
<tr>
<th>Actual arm of treatment</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Patients with corrective treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>11</td>
<td>17</td>
</tr>
<tr>
<td>Yes</td>
<td>55</td>
<td>83</td>
</tr>
<tr>
<td>Total</td>
<td>66</td>
<td>100</td>
</tr>
</tbody>
</table>

88 SAEs in R-ICE arm (82%) were associated with a corrective treatment versus 136 SAEs (90%) in R-DHAP arm.

Table 5.3-7 Corrective treatments for SAE (induction safety population)

<table>
<thead>
<tr>
<th>Actual arm of treatment</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>AEs with corrective treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>88</td>
<td>83</td>
</tr>
<tr>
<td>No</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td>Total</td>
<td>106</td>
<td>100</td>
</tr>
</tbody>
</table>
5.3.2. Deaths

4 deaths were reported for patients who did not receive any study treatment. There are described in section §6.7.5.

On induction safety population, 126 deaths (53% of patients) in R-ICE arm and 112 deaths (49%) in R-DHAP arm occurred at time of analysis, mainly due to lymphoma (respectively 78% and 72% of deaths).

Table 5.3-8 Summary of deaths (induction safety population)

<table>
<thead>
<tr>
<th>Actual arm of induction</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Deaths</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>126</td>
<td>112</td>
</tr>
<tr>
<td>No</td>
<td>113</td>
<td>118</td>
</tr>
<tr>
<td>Total</td>
<td>239</td>
<td>230</td>
</tr>
</tbody>
</table>

Table 5.3-9 Cause of death (induction safety population)

<table>
<thead>
<tr>
<th>Actual arm of induction</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Reason for death</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LYMPHOMA</td>
<td>98</td>
<td>81</td>
</tr>
<tr>
<td>TOXICITY OF STUDY TREATMENT</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>CONCURRENT ILLNESS</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>OTHER CANCER</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>TOXICITY OF ADDITIONNAL TREATMENT</td>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>OTHER REASON</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>UNKNOWN</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>126</td>
<td>112</td>
</tr>
</tbody>
</table>

See details of deaths in the following list:
Listing 5.3-1 Deaths (induction safety population)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Actual arm of induction</th>
<th>First Randomization Date</th>
<th>Actual arm of maintenance</th>
<th>Date of 2nd randomization</th>
<th>Transplantation date</th>
<th>Sex</th>
<th>Age (years)</th>
<th>Date of death</th>
<th>Reason for death</th>
<th>Specify reason of death</th>
<th>Response at death</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003101012008</td>
<td>ARM A / R-ICE</td>
<td>12/05/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>20</td>
<td>22/10/2004</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003101012027</td>
<td>ARM A / R-ICE</td>
<td>01/06/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>33</td>
<td>26/10/2006</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003101012165</td>
<td>ARM A / R-ICE</td>
<td>04/11/2003</td>
<td>OBSERVATION</td>
<td>04/02/2004</td>
<td>03/02/2004</td>
<td>MALE</td>
<td>58</td>
<td>20/06/2007</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003101013001</td>
<td>ARM A / R-ICE</td>
<td>24/07/2003</td>
<td>RITUXIMAB</td>
<td>21/10/2003</td>
<td>22/10/2003</td>
<td>MALE</td>
<td>65</td>
<td>06/05/2004</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>50031010151004</td>
<td>ARM A / R-ICE</td>
<td>26/11/2003</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>49</td>
<td>04/06/2004</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>50031010151075</td>
<td>ARM A / R-ICE</td>
<td>19/02/2008</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>63</td>
<td>21/09/2008</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>50031010151603</td>
<td>ARM A / R-ICE</td>
<td>27/10/2003</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>56</td>
<td>09/02/2005</td>
<td>OTHER CANCER</td>
<td>MAIL PROVIDED - OESOPHAGUS CARCINOMA</td>
<td>COMPLETE RESPONSE</td>
</tr>
<tr>
<td>5003101017020</td>
<td>ARM A / R-ICE</td>
<td>15/03/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>63</td>
<td>08/01/2008</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003101017059</td>
<td>ARM A / R-ICE</td>
<td>22/12/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>59</td>
<td>16/04/2007</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>50031010191602</td>
<td>ARM A / R-ICE</td>
<td>16/10/2003</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>45</td>
<td>27/10/2005</td>
<td>LYMPHOMA</td>
<td>MAJOR RESPIRATORY DISTRESS</td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>50031010113030</td>
<td>ARM A / R-ICE</td>
<td>16/06/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>48</td>
<td>16/08/2005</td>
<td>TOXICITY OF STUDY TREATMENT</td>
<td>NOT EVALUATED</td>
<td></td>
</tr>
<tr>
<td>50031010113062</td>
<td>ARM A / R-ICE</td>
<td>20/02/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>30</td>
<td>02/06/2007</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>500310101131409</td>
<td>ARM A / R-ICE</td>
<td>07/03/2006</td>
<td>RITUXIMAB</td>
<td>16/06/2006</td>
<td>14/06/2006</td>
<td>MALE</td>
<td>55</td>
<td>09/06/2007</td>
<td>UNKNOWN</td>
<td></td>
<td>NOT EVALUATED</td>
</tr>
<tr>
<td>50031010114065</td>
<td>ARM A / R-ICE</td>
<td>24/04/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>40</td>
<td>20/09/2007</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>50031010114406</td>
<td>ARM A / R-ICE</td>
<td>13/09/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>48</td>
<td>06/12/2006</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>50031010116407</td>
<td>ARM A / R-ICE</td>
<td>25/11/2005</td>
<td>OBSERVATION</td>
<td>17/03/2006</td>
<td>28/02/2006</td>
<td>MALE</td>
<td>60</td>
<td>20/06/2008</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>500310101211023</td>
<td>ARM A / R-ICE</td>
<td>25/04/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>29</td>
<td>03/10/2005</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>500310101221043</td>
<td>ARM A / R-ICE</td>
<td>27/02/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>51</td>
<td>17/06/2006</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>500310101281017</td>
<td>ARM A / R-ICE</td>
<td>18/11/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>60</td>
<td>12/01/2005</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Actual arm of induction</td>
<td>First Randomization Date</td>
<td>Actual arm of maintenance</td>
<td>Date of 2nd randomization</td>
<td>Transplantation date</td>
<td>Sex</td>
<td>Age (years)</td>
<td>Date of death</td>
<td>Reason for death</td>
<td>Specify reason of death</td>
<td>Response at death</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
<td>--------------------------</td>
<td>---------------------</td>
<td>------</td>
<td>-------------</td>
<td>----------------</td>
<td>---------------------------------</td>
<td>----------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>5003101281208</td>
<td>ARM A / R-ICE</td>
<td>09/02/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>56</td>
<td>19/09/2006</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003101331077</td>
<td>ARM A / R-ICE</td>
<td>18/03/2008</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>38</td>
<td>24/01/2009</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003101351040</td>
<td>ARM A / R-ICE</td>
<td>21/12/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>47</td>
<td>30/06/2006</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003101391039</td>
<td>ARM A / R-ICE</td>
<td>02/11/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>43</td>
<td>13/08/2006</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003101391201</td>
<td>ARM A / R-ICE</td>
<td>24/09/2003</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>35</td>
<td>08/12/2004</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003101441036</td>
<td>ARM A / R-ICE</td>
<td>02/08/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>57</td>
<td>10/05/2006</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003101441074</td>
<td>ARM A / R-ICE</td>
<td>12/11/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>57</td>
<td>28/01/2009</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003101491042</td>
<td>ARM A / R-ICE</td>
<td>14/02/2006</td>
<td>RITUXIMAB</td>
<td>09/05/2006</td>
<td>18/05/2006</td>
<td>MALE</td>
<td>46</td>
<td>05/02/2007</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003101601404</td>
<td>ARM A / R-ICE</td>
<td>04/07/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>65</td>
<td>05/09/2005</td>
<td>TOXICITY OF STUDY TREATMENT</td>
<td>PROBABLE INFECTION. PATIENT REFUSED HOSPITALIZATION</td>
<td>NOT EVALUATED</td>
</tr>
<tr>
<td>5003101621026</td>
<td>ARM A / R-ICE</td>
<td>31/05/2005</td>
<td>OBSERVATION</td>
<td>14/09/2005</td>
<td>06/09/2005</td>
<td>MALE</td>
<td>64</td>
<td>09/02/2009</td>
<td>OTHER REASON</td>
<td>MESENTERIC INFARCTUS</td>
<td>COMPLETE RESPONSE</td>
</tr>
<tr>
<td>5003101621609</td>
<td>ARM A / R-ICE</td>
<td>16/02/2004</td>
<td>OBSERVATION</td>
<td>19/05/2004</td>
<td>10/05/2004</td>
<td>FEMALE</td>
<td>64</td>
<td>26/03/2007</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003102161078</td>
<td>ARM A / R-ICE</td>
<td>21/05/2008</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>46</td>
<td>06/08/2009</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003102161413</td>
<td>ARM A / R-ICE</td>
<td>18/10/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>48</td>
<td>05/11/2006</td>
<td>TOXICITY OF STUDY TREATMENT</td>
<td></td>
<td>NOT EVALUATED</td>
</tr>
<tr>
<td>5003102321024</td>
<td>ARM A / R-ICE</td>
<td>29/04/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>62</td>
<td>31/08/2005</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003102341049</td>
<td>ARM A / R-ICE</td>
<td>11/07/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>33</td>
<td>19/09/2007</td>
<td>OTHER REASON</td>
<td>AUTOLYSIS</td>
<td>NOT EVALUATED</td>
</tr>
<tr>
<td>5003102341416</td>
<td>ARM A / R-ICE</td>
<td>20/12/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>59</td>
<td>25/02/2008</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Actual arm of induction</td>
<td>First Randomization Date</td>
<td>Actual arm of maintenance</td>
<td>Date of 2nd randomization</td>
<td>Transplantation date</td>
<td>Sex</td>
<td>Age (years)</td>
<td>Date of death</td>
<td>Reason for death</td>
<td>Specify reason of death</td>
<td>Response at death</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>---------------------</td>
<td>-----</td>
<td>-------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>---------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>5003601401003</td>
<td>ARM A / R-ICE</td>
<td>15/06/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>54</td>
<td>11/10/2006</td>
<td>LYMHPOMA</td>
<td></td>
<td>NOT EVALUATED</td>
</tr>
<tr>
<td>5003601401401</td>
<td>ARM A / R-ICE</td>
<td>04/03/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>62</td>
<td>18/07/2006</td>
<td>LYMHPOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003601401603</td>
<td>ARM A / R-ICE</td>
<td>27/10/2005</td>
<td>OBSERVATION</td>
<td>12/01/2006</td>
<td>05/01/2006</td>
<td>MALE</td>
<td>59</td>
<td>26/08/2008</td>
<td>LYMHPOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003601601002</td>
<td>ARM A / R-ICE</td>
<td>02/01/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>46</td>
<td>07/06/2007</td>
<td>LYMHPOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003601601003</td>
<td>ARM A / R-ICE</td>
<td>07/03/2007</td>
<td>OBSERVATION</td>
<td>08/06/2007</td>
<td>29/05/2007</td>
<td>MALE</td>
<td>27</td>
<td>23/04/2008</td>
<td>LYMHPOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003601601005</td>
<td>ARM A / R-ICE</td>
<td>15/01/2008</td>
<td>OBSERVATION</td>
<td>16/04/2008</td>
<td>08/04/2008</td>
<td>FEMALE</td>
<td>53</td>
<td>15/10/2008</td>
<td>LYMHPOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003602301001</td>
<td>ARM A / R-ICE</td>
<td>12/02/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>55</td>
<td>29/08/2004</td>
<td>OTHER REASON</td>
<td>INTERSTITIAL PNEUMONIA</td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003602801001</td>
<td>ARM A / R-ICE</td>
<td>01/12/2003</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>60</td>
<td>27/12/2004</td>
<td>LYMHPOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003602801403</td>
<td>ARM A / R-ICE</td>
<td>20/03/2007</td>
<td>RITUXIMAB</td>
<td>31/05/2007</td>
<td>20/06/2007</td>
<td>MALE</td>
<td>64</td>
<td>29/05/2009</td>
<td>TOXICITY OF ADDITIONNAL TREATMENT</td>
<td>BILATERAL PNEUMONIA, SEPTIC SHOCK</td>
<td>PARTIAL RESPONSE</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Actual arm of induction</td>
<td>First Randomization Date</td>
<td>Actual arm of maintenance</td>
<td>Date of 2nd randomization</td>
<td>Transplantation date</td>
<td>Sex</td>
<td>Age (years)</td>
<td>Date of death</td>
<td>Reason for death</td>
<td>Specify reason of death</td>
<td>Response at death</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>----------------------</td>
<td>-----</td>
<td>-------------</td>
<td>---------------</td>
<td>------------------</td>
<td>----------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>5003602901002</td>
<td>ARM A / R-ICE</td>
<td>24/01/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>64</td>
<td>04/04/2005</td>
<td>Lymphoma</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003602901201</td>
<td>ARM A / R-ICE</td>
<td>03/03/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>31</td>
<td>08/06/2004</td>
<td>Lymphoma</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003602901401</td>
<td>ARM A / R-ICE</td>
<td>12/11/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>60</td>
<td>11/05/2006</td>
<td>Lymphoma</td>
<td></td>
<td>NOT EVALUATED</td>
</tr>
<tr>
<td>5003603201213</td>
<td>ARM A / R-ICE</td>
<td>23/02/2007</td>
<td>OBSERVATION</td>
<td>29/05/2007</td>
<td>23/05/2007</td>
<td>MALE</td>
<td>54</td>
<td>28/03/2008</td>
<td>Lymphoma</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003603201628</td>
<td>ARM A / R-ICE</td>
<td>18/05/2007</td>
<td>RITUXIMAB</td>
<td>17/08/2007</td>
<td>22/08/2007</td>
<td>MALE</td>
<td>48</td>
<td>20/01/2009</td>
<td>Lymphoma</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003603701004</td>
<td>ARM A / R-ICE</td>
<td>12/08/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>64</td>
<td>01/09/2005</td>
<td>Toxicity of study treatment</td>
<td>PULMONAL INFECT STARTED IN AGRANULOCYTOSIS, TRANSFER TO INTENSIV CARE UNIT, ARTIFICIAL RESPIRATION, DEVELOPMENT OF A SEPTIC SHOCK</td>
<td>NOT EVALUATED</td>
</tr>
<tr>
<td>5003603701006</td>
<td>ARM A / R-ICE</td>
<td>14/10/2005</td>
<td>OBSERVATION</td>
<td>30/01/2006</td>
<td>09/01/2006</td>
<td>MALE</td>
<td>54</td>
<td>12/05/2006</td>
<td>Lymphoma</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003603701010</td>
<td>ARM A / R-ICE</td>
<td>03/07/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>54</td>
<td>29/11/2006</td>
<td>Lymphoma</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003603801002</td>
<td>ARM A / R-ICE</td>
<td>24/09/2004</td>
<td>OBSERVATION</td>
<td>22/12/2004</td>
<td>09/12/2004</td>
<td>FEMALE</td>
<td>49</td>
<td>21/03/2010</td>
<td>Lymphoma</td>
<td>DIED AFTER 1 CYCLE OF SALVAGE CHEMO FOR GENERALISED RELAPSE. IMMEDIATE REASON FOR DEATH SEPIC SHOCK</td>
<td>NOT EVALUATED</td>
</tr>
<tr>
<td>5003603801202</td>
<td>ARM A / R-ICE</td>
<td>18/11/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>60</td>
<td>17/11/2008</td>
<td>Lymphoma</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003603801203</td>
<td>ARM A / R-ICE</td>
<td>01/12/2004</td>
<td>RITUXIMAB</td>
<td>14/03/2005</td>
<td>01/03/2005</td>
<td>FEMALE</td>
<td>53</td>
<td>25/10/2005</td>
<td>Lymphoma</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003603801406</td>
<td>ARM A / R-ICE</td>
<td>15/02/2008</td>
<td>RITUXIMAB</td>
<td>15/05/2008</td>
<td>13/05/2008</td>
<td>MALE</td>
<td>31</td>
<td>01/03/2009</td>
<td>Lymphoma</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003603801602</td>
<td>ARM A / R-ICE</td>
<td>12/10/2004</td>
<td>OBSERVATION</td>
<td>01/02/2005</td>
<td>18/01/2005</td>
<td>MALE</td>
<td>54</td>
<td>14/08/2007</td>
<td>Toxicity of additional treatment</td>
<td>GVHD + INFECTION POST ALLOGENEIC PBCT FROM SIBLING DONOR</td>
<td>COMPLETE RESPONSE</td>
</tr>
<tr>
<td>5003603801608</td>
<td>ARM A / R-ICE</td>
<td>09/04/2008</td>
<td>OBSERVATION</td>
<td>03/07/2008</td>
<td>01/07/2008</td>
<td>MALE</td>
<td>26</td>
<td>03/06/2009</td>
<td>Lymphoma</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003604201204</td>
<td>ARM A / R-ICE</td>
<td>08/07/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>60</td>
<td>16/02/2005</td>
<td>Lymphoma</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003604801014</td>
<td>ARM A / R-ICE</td>
<td>15/02/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>62</td>
<td>09/07/2007</td>
<td>Lymphoma</td>
<td></td>
<td>NOT EVALUATED</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Actual arm of induction</td>
<td>First Randomization Date</td>
<td>Actual arm of maintenance</td>
<td>Date of 2nd randomization</td>
<td>Transplantation date</td>
<td>Sex</td>
<td>Age (years)</td>
<td>Date of death</td>
<td>Reason for death</td>
<td>Specify reason of death</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
<td>--------------------------</td>
<td>---------------------</td>
<td>-----</td>
<td>-------------</td>
<td>---------------</td>
<td>----------------</td>
<td>----------------------</td>
<td></td>
</tr>
<tr>
<td>5003604801205</td>
<td>ARM A / R-ICE</td>
<td>29/03/2006</td>
<td>RITUXIMAB</td>
<td>11/07/2006</td>
<td>21/06/2006</td>
<td>MALE</td>
<td>34</td>
<td>19/01/2008</td>
<td>LYMPHOMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003604901005</td>
<td>ARM A / R-ICE</td>
<td>05/01/2006</td>
<td>RITUXIMAB</td>
<td>09/05/2006</td>
<td>24/04/2006</td>
<td>FEMALE</td>
<td>62</td>
<td>11/01/2007</td>
<td>LYMPHOMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003605201006</td>
<td>ARM A / R-ICE</td>
<td>10/11/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>63</td>
<td>16/04/2005</td>
<td>LYMPHOMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003605301010</td>
<td>ARM A / R-ICE</td>
<td>16/08/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>55</td>
<td>18/12/2007</td>
<td>LYMPHOMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003605301601</td>
<td>ARM A / R-ICE</td>
<td>05/04/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>61</td>
<td>20/06/2004</td>
<td>CONCUURNT ILLNESS</td>
<td>SUDDEN DEATH, PRESUMED MYOCARDIAL EVENT. KNOWN MODERATE AORTIC STENOSIS UNCONFIRMED COMPLETE RESPONSE</td>
<td></td>
</tr>
<tr>
<td>5003606201605</td>
<td>ARM A / R-ICE</td>
<td>17/05/2004</td>
<td>RITUXIMAB</td>
<td>29/10/2004</td>
<td>08/10/2004</td>
<td>MALE</td>
<td>42</td>
<td>17/10/2006</td>
<td>TOXICITY OF ADDITIONAL TREATMENT</td>
<td>SEPTIC MULTIPLE ORGAN FAILURE AFTER AUTOL. TX 07/06 AND UNREL. ALLO TX 08/06 / EXTENSIVE GVHD SKIN + GUT - INTERSTITIAL PNEUMONIA HEMORRHAGIC CYSTITIS NOT EVALUATED</td>
<td></td>
</tr>
<tr>
<td>5003606301612</td>
<td>ARM A / R-ICE</td>
<td>15/02/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>58</td>
<td>30/05/2009</td>
<td>OTHER REASON</td>
<td>PULMONARY HAEMORRHAGE PARTIAL RESPONSE</td>
<td></td>
</tr>
<tr>
<td>5003607201016</td>
<td>ARM A / R-ICE</td>
<td>09/05/2005</td>
<td>OBSERVATION</td>
<td>11/08/2005</td>
<td>01/08/2005</td>
<td>FEMALE</td>
<td>54</td>
<td>07/03/2006</td>
<td>LYMPHOMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003607201032</td>
<td>ARM A / R-ICE</td>
<td>01/06/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>59</td>
<td>18/10/2006</td>
<td>LYMPHOMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003607201045</td>
<td>ARM A / R-ICE</td>
<td>09/05/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>09/08/2007</td>
<td>MALE</td>
<td>48</td>
<td>18/08/2007</td>
<td>TOXICITY OF STUDY TREATMENT</td>
<td>NOT EVALUATED</td>
<td></td>
</tr>
<tr>
<td>5003607501403</td>
<td>ARM A / R-ICE</td>
<td>16/10/2006</td>
<td>OBSERVATION</td>
<td>07/02/2007</td>
<td>02/02/2007</td>
<td>MALE</td>
<td>56</td>
<td>23/10/2007</td>
<td>LYMPHOMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003607701007</td>
<td>ARM A / R-ICE</td>
<td>06/12/2005</td>
<td>RITUXIMAB</td>
<td>09/03/2006</td>
<td>14/03/2006</td>
<td>MALE</td>
<td>56</td>
<td>01/06/2006</td>
<td>LYMPHOMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003607701009</td>
<td>ARM A / R-ICE</td>
<td>18/04/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>56</td>
<td>19/09/2006</td>
<td>LYMPHOMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003609301608</td>
<td>ARM A / R-ICE</td>
<td>02/11/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>43</td>
<td>21/04/2009</td>
<td>OTHER CANCER</td>
<td>AML TRANSFORMED FROM MDS STABLE DISEASE</td>
<td></td>
</tr>
<tr>
<td>5003610201206</td>
<td>ARM A / R-ICE</td>
<td>13/04/2005</td>
<td>RITUXIMAB</td>
<td>16/06/2005</td>
<td>24/06/2005</td>
<td>MALE</td>
<td>40</td>
<td>12/03/2007</td>
<td>LYMPHOMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003610201611</td>
<td>ARM A / R-ICE</td>
<td>05/04/2005</td>
<td>RITUXIMAB</td>
<td>22/06/2005</td>
<td>28/06/2005</td>
<td>FEMALE</td>
<td>61</td>
<td>13/02/2007</td>
<td>OTHER REASON</td>
<td>ORGANIC BRAIN SYNDROME COMPLETE RESPONSE</td>
<td></td>
</tr>
<tr>
<td>5003610201612</td>
<td>ARM A / R-ICE</td>
<td>12/04/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>56</td>
<td>23/07/2005</td>
<td>TOXICITY OF ADDITIONAL TREATMENT</td>
<td>PNEUMONIA (ASPERGILLUS) STABLE DISEASE</td>
<td></td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Actual arm of induction</td>
<td>First Randomization Date</td>
<td>Actual arm of maintenance</td>
<td>Date of 2nd randomization</td>
<td>Transplantation date</td>
<td>Sex</td>
<td>Age (years)</td>
<td>Date of death</td>
<td>Reason for death</td>
<td>Specify reason of death</td>
<td>Response at death</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>---------------------</td>
<td>-----</td>
<td>-------------</td>
<td>---------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>5003610301617</td>
<td>ARM A / R-ICE</td>
<td>31/01/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>41</td>
<td>01/08/2006</td>
<td>Lymphoma</td>
<td></td>
<td>Progressive Disease</td>
</tr>
<tr>
<td>5003610501031</td>
<td>ARM A / R-ICE</td>
<td>20/03/2008</td>
<td>OBSERVATION</td>
<td>08/07/2008</td>
<td>11/06/2008</td>
<td>MALE</td>
<td>54</td>
<td>01/09/2008</td>
<td>Lymphoma</td>
<td></td>
<td>Progressive Disease</td>
</tr>
<tr>
<td>5003611201057</td>
<td>ARM A / R-ICE</td>
<td>30/04/2008</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>52</td>
<td>25/09/2008</td>
<td>Lymphoma</td>
<td></td>
<td>Progressive Disease</td>
</tr>
<tr>
<td>5003612501015</td>
<td>ARM A / R-ICE</td>
<td>22/05/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>55</td>
<td>04/11/2008</td>
<td>Lymphoma</td>
<td></td>
<td>Progressive Disease</td>
</tr>
<tr>
<td>5003614501002</td>
<td>ARM A / R-ICE</td>
<td>12/09/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>27</td>
<td>06/01/2007</td>
<td>Lymphoma</td>
<td></td>
<td>Progressive Disease</td>
</tr>
<tr>
<td>5003615301004</td>
<td>ARM A / R-ICE</td>
<td>17/08/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>64</td>
<td>03/03/2006</td>
<td>Lymphoma</td>
<td></td>
<td>Progressive Disease</td>
</tr>
<tr>
<td>5003615501014</td>
<td>ARM A / R-ICE</td>
<td>02/05/2007</td>
<td>RITUXIMAB</td>
<td>14/08/2007</td>
<td>09/08/2007</td>
<td>MALE</td>
<td>53</td>
<td>04/05/2009</td>
<td>Lymphoma</td>
<td></td>
<td>Progressive Disease</td>
</tr>
<tr>
<td>5003615501018</td>
<td>ARM A / R-ICE</td>
<td>08/08/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>49</td>
<td>22/10/2007</td>
<td>Lymphoma</td>
<td></td>
<td>Progressive Disease</td>
</tr>
<tr>
<td>5003615501028</td>
<td>ARM A / R-ICE</td>
<td>10/01/2008</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>59</td>
<td>18/08/2008</td>
<td>Lymphoma</td>
<td></td>
<td>Progressive Disease</td>
</tr>
<tr>
<td>5003615501201</td>
<td>ARM A / R-ICE</td>
<td>12/09/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>56</td>
<td>15/05/2007</td>
<td>Lymphoma</td>
<td></td>
<td>Progressive Disease</td>
</tr>
<tr>
<td>5003615501404</td>
<td>ARM A / R-ICE</td>
<td>19/03/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>60</td>
<td>04/12/2007</td>
<td>Lymphoma</td>
<td></td>
<td>Progressive Disease</td>
</tr>
<tr>
<td>5003616501005</td>
<td>ARM A / R-ICE</td>
<td>27/10/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>14/02/2007</td>
<td>FEMALE</td>
<td>59</td>
<td>21/02/2007</td>
<td>Toxicity of Study</td>
<td>Toxicity of Study Treatment</td>
<td>Partial Response</td>
</tr>
<tr>
<td>5003617201004</td>
<td>ARM A / R-ICE</td>
<td>23/08/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>58</td>
<td>23/01/2005</td>
<td>Lymphoma</td>
<td></td>
<td>Progressive Disease</td>
</tr>
<tr>
<td>5003617201042</td>
<td>ARM A / R-ICE</td>
<td>06/12/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>64</td>
<td>10/06/2007</td>
<td>Lymphoma</td>
<td></td>
<td>Progressive Disease</td>
</tr>
<tr>
<td>5003617501024</td>
<td>ARM A / R-ICE</td>
<td>04/12/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>61</td>
<td>02/05/2008</td>
<td>Lymphoma</td>
<td></td>
<td>Progressive Disease</td>
</tr>
<tr>
<td>5003618501008</td>
<td>ARM A / R-ICE</td>
<td>16/01/2007</td>
<td>OBSERVATION</td>
<td>18/05/2007</td>
<td>01/05/2007</td>
<td>MALE</td>
<td>65</td>
<td>30/12/2009</td>
<td>Lymphoma</td>
<td></td>
<td>Acute Gastrointestinal Tract Haemorrhage</td>
</tr>
<tr>
<td>5003620301011</td>
<td>ARM A / R-ICE</td>
<td>14/09/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>41</td>
<td>07/07/2008</td>
<td>Lymphoma</td>
<td></td>
<td>Not Evaluated</td>
</tr>
<tr>
<td>5003621201023</td>
<td>ARM A / R-ICE</td>
<td>22/11/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>53</td>
<td>13/06/2006</td>
<td>Lymphoma</td>
<td></td>
<td>Progressive Disease</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Actual arm of induction</td>
<td>First Randomization Date</td>
<td>Actual arm of maintenance</td>
<td>Date of 2nd randomization</td>
<td>Transplantation date</td>
<td>Sex</td>
<td>Age (years)</td>
<td>Date of death</td>
<td>Reason for death</td>
<td>Specify reason of death</td>
<td>Response at death</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>---------------------</td>
<td>-----</td>
<td>-------------</td>
<td>---------------</td>
<td>------------------</td>
<td>----------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>5003621201026</td>
<td>ARM A / R-ICE</td>
<td>25/01/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>63</td>
<td>10/04/2006</td>
<td>TOXICITY OF ADDITIONAL TREATMENT</td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
</tr>
<tr>
<td>5003621301014</td>
<td>ARM A / R-ICE</td>
<td>29/10/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>58</td>
<td>03/12/2007</td>
<td>TOXICITY OF ADDITIONAL TREATMENT</td>
<td>SEPSIC AFTER CHEMO OFF THE CORAL PROTOCOL (ICE)</td>
<td>NOT EVALUATED</td>
</tr>
<tr>
<td>5003622201022</td>
<td>ARM A / R-ICE</td>
<td>04/11/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>60</td>
<td>19/06/2006</td>
<td>LYMHPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003622201403</td>
<td>ARM A / R-ICE</td>
<td>24/11/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>58</td>
<td>08/03/2007</td>
<td>UNKNOWN</td>
<td>DEATH DUE TO LYMHPHOMA COULD BE SUSPECTED BUT NOT PROVEN SINCE WE HAVE NO INFO ABOUT THE DEATH REASON</td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003628201003</td>
<td>ARM A / R-ICE</td>
<td>30/07/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>54</td>
<td>24/01/2005</td>
<td>LYMHPHOMA</td>
<td>BONE MARROW INFILTRATION, PANCYTOPENIA, INFECTION</td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003628201052</td>
<td>ARM A / R-ICE</td>
<td>10/09/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>48</td>
<td>-</td>
<td>UNKNOWN</td>
<td>PATIENT DID NOT PRESENT TO HOSPITAL OR HIS GP / WE WERE INFORMED THE HE DIED SHORTLY AFTER *</td>
<td>NOT EVALUATED</td>
</tr>
<tr>
<td>5003633201036</td>
<td>ARM A / R-ICE</td>
<td>15/09/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>51</td>
<td>23/08/2007</td>
<td>LYMHPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003642501030</td>
<td>ARM A / R-ICE</td>
<td>19/03/2008</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>37</td>
<td>23/01/2009</td>
<td>LYMHPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003643501202</td>
<td>ARM A / R-ICE</td>
<td>19/03/2008</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>62</td>
<td>14/11/2008</td>
<td>LYMHPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003101021038</td>
<td>ARM B / R-DHAP</td>
<td>06/10/2005</td>
<td>OBSERVATION</td>
<td>02/02/2006</td>
<td>09/01/2006</td>
<td>MALE</td>
<td>52</td>
<td>30/05/2007</td>
<td>LYMHPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003101031019</td>
<td>ARM B / R-DHAP</td>
<td>30/12/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>58</td>
<td>24/04/2005</td>
<td>LYMHPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003101031067</td>
<td>ARM B / R-DHAP</td>
<td>22/05/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>21</td>
<td>18/09/2007</td>
<td>LYMHPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003101051063</td>
<td>ARM B / R-DHAP</td>
<td>26/03/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>61</td>
<td>12/08/2008</td>
<td>LYMHPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003101071002</td>
<td>ARM B / R-DHAP</td>
<td>16/10/2003</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>64</td>
<td>21/11/2003</td>
<td>TOXICITY OF STUDY TREATMENT</td>
<td></td>
<td>NOT EVALUATED</td>
</tr>
<tr>
<td>5003101071051</td>
<td>ARM B / R-DHAP</td>
<td>25/07/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>61</td>
<td>01/12/2006</td>
<td>LYMHPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003101071073</td>
<td>ARM B / R-DHAP</td>
<td>19/10/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>47</td>
<td>09/01/2008</td>
<td>LYMHPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Actual arm of induction</td>
<td>First Randomization Date</td>
<td>Actual arm of maintenance</td>
<td>Date of 2nd randomization</td>
<td>Transplantation date</td>
<td>Sex</td>
<td>Age (years)</td>
<td>Date of death</td>
<td>Reason for death</td>
<td>Specify reason of death</td>
<td>Response at death</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------</td>
<td>--------------------------</td>
<td>----------------------------</td>
<td>---------------------------</td>
<td>----------------------</td>
<td>-----</td>
<td>-------------</td>
<td>----------------</td>
<td>------------------</td>
<td>-----------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>5003101071408</td>
<td>ARM B / R-DHAP</td>
<td>14/12/2005</td>
<td>RITUXIMAB</td>
<td>25/04/2006</td>
<td>03/04/2006</td>
<td>FEMALE</td>
<td>57</td>
<td>03/10/2007</td>
<td>Lymphoma</td>
<td></td>
<td>Progressive disease</td>
</tr>
<tr>
<td>5003101071417</td>
<td>ARM B / R-DHAP</td>
<td>16/03/2007</td>
<td>RITUXIMAB</td>
<td>17/07/2007</td>
<td>06/07/2007</td>
<td>FEMALE</td>
<td>56</td>
<td>03/10/2008</td>
<td>Lymphoma</td>
<td></td>
<td>Not Evaluated</td>
</tr>
<tr>
<td>5003101071607</td>
<td>ARM B / R-DHAP</td>
<td>07/01/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>59</td>
<td>04/06/2009</td>
<td>Lymphoma</td>
<td></td>
<td>Progressive disease</td>
</tr>
<tr>
<td>5003101071643</td>
<td>ARM B / R-DHAP</td>
<td>29/10/2007</td>
<td>OBSERVATION</td>
<td>20/03/2008</td>
<td>27/02/2008</td>
<td>FEMALE</td>
<td>58</td>
<td>15/05/2008</td>
<td>Toxicity of study treatment</td>
<td>Septicemia Staphylococcus Epidermidis Pneumopathy</td>
<td>Complete response</td>
</tr>
<tr>
<td>5003101091022</td>
<td>ARM B / R-DHAP</td>
<td>31/03/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>63</td>
<td>05/09/2005</td>
<td>Lymphoma</td>
<td></td>
<td>Progressive disease</td>
</tr>
<tr>
<td>5003101091025</td>
<td>ARM B / R-DHAP</td>
<td>04/05/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>61</td>
<td>20/08/2005</td>
<td>Lymphoma</td>
<td></td>
<td>Progressive disease</td>
</tr>
<tr>
<td>5003101091626</td>
<td>ARM B / R-DHAP</td>
<td>01/09/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>53</td>
<td>15/07/2007</td>
<td>Lymphoma</td>
<td></td>
<td>Progressive disease</td>
</tr>
<tr>
<td>5003101141402</td>
<td>ARM B / R-DHAP</td>
<td>06/04/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>63</td>
<td>13/03/2006</td>
<td>Lymphoma</td>
<td></td>
<td>Progressive disease</td>
</tr>
<tr>
<td>5003101141424</td>
<td>ARM B / R-DHAP</td>
<td>19/05/2005</td>
<td>OBSERVATION</td>
<td>26/10/2005</td>
<td>10/10/2005</td>
<td>FEMALE</td>
<td>64</td>
<td>18/04/2010</td>
<td>Lymphoma</td>
<td></td>
<td>Progressive disease</td>
</tr>
<tr>
<td>5003101221070</td>
<td>ARM B / R-DHAP</td>
<td>17/09/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>49</td>
<td>21/11/2008</td>
<td>Lymphoma</td>
<td></td>
<td>Progressive disease</td>
</tr>
<tr>
<td>5003101251044</td>
<td>ARM B / R-DHAP</td>
<td>28/03/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>64</td>
<td>26/09/2006</td>
<td>Lymphoma</td>
<td></td>
<td>Progressive disease</td>
</tr>
<tr>
<td>5003101391032</td>
<td>ARM B / R-DHAP</td>
<td>12/07/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>54</td>
<td>15/01/2006</td>
<td>Lymphoma</td>
<td></td>
<td>Progressive disease</td>
</tr>
<tr>
<td>5003101391048</td>
<td>ARM B / R-DHAP</td>
<td>15/06/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>61</td>
<td>17/12/2006</td>
<td>Lymphoma</td>
<td></td>
<td>Progressive disease</td>
</tr>
<tr>
<td>5003101391613</td>
<td>ARM B / R-DHAP</td>
<td>22/04/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>56</td>
<td>05/07/2005</td>
<td>Lymphoma</td>
<td></td>
<td>Progressive disease</td>
</tr>
<tr>
<td>5003101433104</td>
<td>ARM B / R-DHAP</td>
<td>25/11/2003</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>56</td>
<td>30/06/2006</td>
<td>Lymphoma</td>
<td></td>
<td>Progressive disease</td>
</tr>
<tr>
<td>5003101601066</td>
<td>ARM B / R-DHAP</td>
<td>18/05/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>55</td>
<td>18/09/2007</td>
<td>Toxicity of additionnal treatment</td>
<td>Stomach haemorrhage</td>
<td>Stable disease</td>
</tr>
<tr>
<td>5003101601076</td>
<td>ARM B / R-DHAP</td>
<td>05/03/2008</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>52</td>
<td>14/07/2008</td>
<td>Lymphoma</td>
<td></td>
<td>Progressive disease</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Actual arm of induction</td>
<td>First Randomization Date</td>
<td>Actual arm of maintenance</td>
<td>Date of 2nd randomization</td>
<td>Transplantation date</td>
<td>Sex</td>
<td>Age (years)</td>
<td>Date of death</td>
<td>Reason for death</td>
<td>Specify reason of death</td>
<td>Response at death</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>----------------------</td>
<td>-----</td>
<td>-------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>---------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>5003101601610</td>
<td>ARM B / R-DHAP</td>
<td>16/02/2004</td>
<td>NOT APPLICABLE</td>
<td>17/05/2004</td>
<td>24/05/2004</td>
<td>MALE</td>
<td>49</td>
<td>12/08/2004</td>
<td>LYMHPOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003101641018</td>
<td>ARM B / R-DHAP</td>
<td>28/12/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>61</td>
<td>20/07/2005</td>
<td>LYMHPOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003101641047</td>
<td>ARM B / R-DHAP</td>
<td>25/04/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>45</td>
<td>14/02/2008</td>
<td>LYMHPOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003101641079</td>
<td>ARM B / R-DHAP</td>
<td>27/06/2008</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>27</td>
<td>24/11/2008</td>
<td>LYMHPOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003102181031</td>
<td>ARM B / R-DHAP</td>
<td>24/06/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>63</td>
<td>16/12/2005</td>
<td>LYMHPOMA</td>
<td></td>
<td>STABLE DISEASE</td>
</tr>
<tr>
<td>5003102341003</td>
<td>ARM B / R-DHAP</td>
<td>07/11/2003</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>27</td>
<td>02/11/2004</td>
<td>LYMHPOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003102341020</td>
<td>ARM B / R-DHAP</td>
<td>21/11/2003</td>
<td>NOT APPLICABLE</td>
<td>19/02/2004</td>
<td>18/02/2004</td>
<td>MALE</td>
<td>38</td>
<td>12/10/2006</td>
<td>LYMHPOMA</td>
<td>NOT DATA ARE AVAILABLE BUT IT IS PROBABLE TO STATE THAT DEATH IS DUE TO LYMPHOMA</td>
<td>NOT EVALUATED</td>
</tr>
<tr>
<td>5003102411069</td>
<td>ARM B / R-DHAP</td>
<td>05/07/2007</td>
<td>OBSERVATION</td>
<td>24/10/2007</td>
<td>04/10/2007</td>
<td>MALE</td>
<td>63</td>
<td>16/10/2008</td>
<td>LYMHPOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003102510104</td>
<td>ARM B / R-DHAP</td>
<td>21/09/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>54</td>
<td>19/05/2005</td>
<td>TOXICITY OF ADDITIONAL TREATMENT</td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
</tr>
<tr>
<td>5003601201018</td>
<td>ARM B / R-DHAP</td>
<td>14/06/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>43</td>
<td>08/08/2006</td>
<td>LYMHPOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003601401042</td>
<td>ARM B / R-DHAP</td>
<td>17/02/2005</td>
<td>RITUXIMAB</td>
<td>04/05/2005</td>
<td>10/05/2005</td>
<td>MALE</td>
<td>63</td>
<td>14/11/2005</td>
<td>LYMHPOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003601601402</td>
<td>ARM B / R-DHAP</td>
<td>29/10/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>65</td>
<td>13/01/2005</td>
<td>CONCURRENT ILLNESS</td>
<td>PLEASE SEE AUTOPSY - PROVISIONAL. COMPLETE REPORT TO FOLLOW WHEN AVAILABLE</td>
<td>COMPLETE RESPONSE</td>
</tr>
<tr>
<td>5003601801003</td>
<td>ARM B / R-DHAP</td>
<td>08/11/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>63</td>
<td>03/12/2005</td>
<td>LYMHPOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003602801016</td>
<td>ARM B / R-DHAP</td>
<td>21/08/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>39</td>
<td>31/10/2007</td>
<td>TOXICITY OF ADDITIONAL TREATMENT</td>
<td>PATIENT DIED IN PROLONGED NEUTROPENIA AFTER NEW TREATMENT (R-G/FOX)</td>
<td>STABLE DISEASE</td>
</tr>
<tr>
<td>5003602801204</td>
<td>ARM B / R-DHAP</td>
<td>22/12/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>61</td>
<td>22/03/2005</td>
<td>LYMHPOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003603201001</td>
<td>ARM B / R-DHAP</td>
<td>11/03/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>50</td>
<td>13/05/2004</td>
<td>TOXICITY OF STUDY TREATMENT</td>
<td>STABLE DISEASE</td>
<td></td>
</tr>
<tr>
<td>5003603201034</td>
<td>ARM B / R-DHAP</td>
<td>14/08/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>33</td>
<td>11/04/2007</td>
<td>LYMHPOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003603201050</td>
<td>ARM B / R-DHAP</td>
<td>06/08/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>61</td>
<td>01/11/2008</td>
<td>LYMHPOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Actual arm of induction</td>
<td>First Randomization Date</td>
<td>Actual arm of maintenance</td>
<td>Date of 2nd randomization</td>
<td>Transplantation date</td>
<td>Sex</td>
<td>Age (years)</td>
<td>Date of death</td>
<td>Reason for death</td>
<td>Specify reason of death</td>
<td>Response at death</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>----------------------</td>
<td>------</td>
<td>-------------</td>
<td>---------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>5003603201211</td>
<td>ARM B / R-DHAP</td>
<td>21/02/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>61</td>
<td>16/07/2006</td>
<td>Lymphoma</td>
<td></td>
<td>Progressive Disease</td>
</tr>
<tr>
<td>5003603801007</td>
<td>ARM B / R-DHAP</td>
<td>08/03/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>34</td>
<td>11/02/2007</td>
<td>Lymphoma</td>
<td></td>
<td>Progressive Disease</td>
</tr>
<tr>
<td>5003603801009</td>
<td>ARM B / R-DHAP</td>
<td>31/05/2006</td>
<td>OBSERVATION</td>
<td>07/09/2006</td>
<td>05/09/2006</td>
<td>MALE</td>
<td>49</td>
<td>31/03/2007</td>
<td>Lymphoma</td>
<td></td>
<td>Progressive Disease</td>
</tr>
<tr>
<td>5003603801013</td>
<td>ARM B / R-DHAP</td>
<td>20/12/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>60</td>
<td>24/04/2007</td>
<td>Toxicity of additionnal treatment</td>
<td>Septic shock after high dose chemotherapy with asct</td>
<td>Partial response</td>
</tr>
<tr>
<td>5003603901001</td>
<td>ARM B / R-DHAP</td>
<td>06/10/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>54</td>
<td>19/11/2004</td>
<td>Lymphoma</td>
<td></td>
<td>Progressive Disease</td>
</tr>
<tr>
<td>5003604201028</td>
<td>ARM B / R-DHAP</td>
<td>02/02/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>65</td>
<td>15/04/2006</td>
<td>Lymphoma</td>
<td></td>
<td>Progressive Disease</td>
</tr>
<tr>
<td>5003604701012</td>
<td>ARM B / R-DHAP</td>
<td>19/04/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>62</td>
<td>04/05/2007</td>
<td>Toxicity of study treatment</td>
<td></td>
<td>Not evaluated</td>
</tr>
<tr>
<td>5003604801405</td>
<td>ARM B / R-DHAP</td>
<td>30/05/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>55</td>
<td>29/09/2008</td>
<td>Lymphoma</td>
<td>Progression nodal involvement with thrombosis in vena cava inferior / sepsis</td>
<td>Progressive disease</td>
</tr>
<tr>
<td>5003604901004</td>
<td>ARM B / R-DHAP</td>
<td>22/11/2005</td>
<td>RITUXIMAB</td>
<td>09/03/2006</td>
<td>25/05/2006</td>
<td>FEMALE</td>
<td>52</td>
<td>30/07/2007</td>
<td>Lymphoma</td>
<td></td>
<td>Progressive Disease</td>
</tr>
<tr>
<td>5003604901603</td>
<td>ARM B / R-DHAP</td>
<td>03/03/2008</td>
<td>RITUXIMAB</td>
<td>19/06/2008</td>
<td>18/06/2008</td>
<td>FEMALE</td>
<td>62</td>
<td>13/09/2008</td>
<td>Toxicity of study treatment</td>
<td>Post-mortem pathological analysis was performed today (14/09/2008)</td>
<td>Complete response</td>
</tr>
<tr>
<td>5003605201603</td>
<td>ARM B / R-DHAP</td>
<td>14/04/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>54</td>
<td>22/07/2005</td>
<td>Toxicity of additionnal treatment</td>
<td>Pneumocystis Cavinii pneumonia</td>
<td>Not evaluated</td>
</tr>
<tr>
<td>5003605301203</td>
<td>ARM B / R-DHAP</td>
<td>23/03/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>30</td>
<td>11/09/2004</td>
<td>Lymphoma</td>
<td></td>
<td>Progressive Disease</td>
</tr>
<tr>
<td>5003605301610</td>
<td>ARM B / R-DHAP</td>
<td>18/11/2004</td>
<td>RITUXIMAB</td>
<td>02/05/2005</td>
<td>23/02/2005</td>
<td>MALE</td>
<td>60</td>
<td>14/07/2007</td>
<td>Lymphoma</td>
<td></td>
<td>Progressive Disease</td>
</tr>
<tr>
<td>5003605701404</td>
<td>ARM B / R-DHAP</td>
<td>30/01/2008</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>52</td>
<td>13/11/2009</td>
<td>Toxicity of additionnal treatment</td>
<td>Pat died of graft vs host disease after allogeneic engraftment</td>
<td>Complete response</td>
</tr>
<tr>
<td>5003606201033</td>
<td>ARM B / R-DHAP</td>
<td>02/06/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>56</td>
<td>08/08/2007</td>
<td>Toxicity of additionnal treatment</td>
<td>CMV-pneumonia after allogeneic transplant</td>
<td>Not evaluated</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Actual arm of induction</td>
<td>First Randomization Date</td>
<td>Actual arm of maintenance</td>
<td>Date of 2nd randomization</td>
<td>Transplantation date</td>
<td>Sex</td>
<td>Age (years)</td>
<td>Date of death</td>
<td>Reason for death</td>
<td>Specify reason of death</td>
<td>Response at death</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
<td>--------------------------</td>
<td>----------------------</td>
<td>-----</td>
<td>-------------</td>
<td>---------------</td>
<td>------------------</td>
<td>----------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>5003606301012</td>
<td>ARM B / R-DHAP</td>
<td>11/10/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>15/01/2008</td>
<td>FEMALE</td>
<td>63</td>
<td>12/02/2008</td>
<td>TOXICITY OF STUDY TREATMENT</td>
<td>1) CANDIDA GUILLIERMONDI SEPTICEMIA 2) CMV ENTEROCOELITIS (SEVERE)</td>
<td>PARTIAL RESPONSE</td>
</tr>
<tr>
<td>5003606301606</td>
<td>ARM B / R-DHAP</td>
<td>07/07/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>40</td>
<td>03/09/2005</td>
<td>Lymphoma</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003607301622</td>
<td>ARM B / R-DHAP</td>
<td>11/12/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>65</td>
<td>26/01/2007</td>
<td>TOXICITY OF STUDY TREATMENT</td>
<td>GRAM NEGATIVE SEPTICAEMIA</td>
<td>NOT EVALUATED</td>
</tr>
<tr>
<td>5003608701008</td>
<td>ARM B / R-DHAP</td>
<td>09/02/2006</td>
<td>OBSERVATION</td>
<td>19/05/2006</td>
<td>01/05/2006</td>
<td>MALE</td>
<td>57</td>
<td>14/10/2006</td>
<td>Lymphoma</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003610201008</td>
<td>ARM B / R-DHAP</td>
<td>15/11/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>39</td>
<td>01/08/2005</td>
<td>TOXICITY OF ADDITIONNAL TREATMENT</td>
<td>SEPSIS, INFECTION NODE ALLO = GENER TRANSPLANTATION</td>
<td>COMPLETE RESPONSE</td>
</tr>
<tr>
<td>5003610201212</td>
<td>ARM B / R-DHAP</td>
<td>13/04/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>23</td>
<td>29/01/2007</td>
<td>Lymphoma</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003610301613</td>
<td>ARM B / R-DHAP</td>
<td>01/03/2005</td>
<td>OBSERVATION</td>
<td>23/05/2005</td>
<td>31/05/2005</td>
<td>MALE</td>
<td>53</td>
<td>29/07/2006</td>
<td>Lymphoma</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003610701014</td>
<td>ARM B / R-DHAP</td>
<td>24/09/2007</td>
<td>RITUXIMAB</td>
<td>07/01/2008</td>
<td>14/01/2008</td>
<td>MALE</td>
<td>57</td>
<td>01/06/2010</td>
<td>OTHER CANCER</td>
<td>Hodgkin lymphoma</td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003611301002</td>
<td>ARM B / R-DHAP</td>
<td>14/09/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>61</td>
<td>13/03/2005</td>
<td>Lymphoma</td>
<td>CENTRAL NERVOUS SYSTEM LYMPHOMA AND SYSTEMIC DISEASE AND MARROW INVOLVEMENT</td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003611301003</td>
<td>ARM B / R-DHAP</td>
<td>02/05/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>60</td>
<td>12/05/2006</td>
<td>Lymphoma</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003612301623</td>
<td>ARM B / R-DHAP</td>
<td>13/12/2006</td>
<td>RITUXIMAB</td>
<td>16/04/2007</td>
<td>30/03/2007</td>
<td>MALE</td>
<td>56</td>
<td>23/04/2008</td>
<td>Lymphoma</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003612501019</td>
<td>ARM B / R-DHAP</td>
<td>03/09/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>51</td>
<td>12/01/2008</td>
<td>Lymphoma</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003614501013</td>
<td>ARM B / R-DHAP</td>
<td>20/04/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>35</td>
<td>21/07/2007</td>
<td>OTHER REASON</td>
<td>AMPHOTERICIN TOXICITY</td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003615501004</td>
<td>ARM B / R-DHAP</td>
<td>05/10/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>64</td>
<td>11/07/2007</td>
<td>Lymphoma</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Actual arm of induction</td>
<td>First Randomization Date</td>
<td>Actual arm of maintenance</td>
<td>Date of 2nd randomization</td>
<td>Transplantation date</td>
<td>Sex</td>
<td>Age (years)</td>
<td>Date of death</td>
<td>Reason for death</td>
<td>Specify reason of death</td>
<td>Response at death</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
<td>--------------------------</td>
<td>----------------------</td>
<td>-----</td>
<td>-------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>----------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>5003615501007</td>
<td>ARM B / R-DHAP</td>
<td>20/12/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>52</td>
<td>25/05/2007</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003616201413</td>
<td>ARM B / R-DHAP</td>
<td>29/04/2008</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>62</td>
<td>20/08/2008</td>
<td>TOXICITY OF ADDITIONAL TREATMENT</td>
<td></td>
<td>NOT EVALUATED</td>
</tr>
<tr>
<td>5003616301212</td>
<td>ARM B / R-DHAP</td>
<td>21/04/2008</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>65</td>
<td>23/01/2007</td>
<td>TOXICITY OF ADDITIONAL TREATMENT</td>
<td></td>
<td>PARTIAL RESPONSE</td>
</tr>
<tr>
<td>5003616501003</td>
<td>ARM B / R-DHAP</td>
<td>14/09/2006</td>
<td>RITUXIMAB</td>
<td>20/12/2006</td>
<td>05/12/2006</td>
<td>MALE</td>
<td>30</td>
<td>21/08/2008</td>
<td>CONCURRENT ILLNESS</td>
<td>PNEUMONIA, DEVIC'S DISEASE</td>
<td>NOT EVALUATED</td>
</tr>
<tr>
<td>5003616501411</td>
<td>ARM B / R-DHAP</td>
<td>26/06/2008</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>63</td>
<td>28/11/2009</td>
<td>TOXICITY OF ADDITIONAL TREATMENT</td>
<td>MOTOR NEURONE DISEASE AND CJ VIRUS</td>
<td>STABLE DISEASE</td>
</tr>
<tr>
<td>5003617201021</td>
<td>ARM B / R-DHAP</td>
<td>17/10/2005</td>
<td>OBSERVATION</td>
<td>14/02/2006</td>
<td>01/02/2006</td>
<td>FEMALE</td>
<td>50</td>
<td>22/12/2007</td>
<td>OTHER REASON</td>
<td>RESPIRATORY INSUFFICIENCY</td>
<td>COMPLETE RESPONSE</td>
</tr>
<tr>
<td>5003617201024</td>
<td>ARM B / R-DHAP</td>
<td>07/12/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>58</td>
<td>12/09/2006</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003617201031</td>
<td>ARM B / R-DHAP</td>
<td>26/05/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>56</td>
<td>05/03/2007</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003617201043</td>
<td>ARM B / R-DHAP</td>
<td>25/01/2007</td>
<td>RITUXIMAB</td>
<td>16/04/2007</td>
<td>19/04/2007</td>
<td>MALE</td>
<td>42</td>
<td>28/06/2008</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003617201049</td>
<td>ARM B / R-DHAP</td>
<td>10/07/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>49</td>
<td>29/04/2009</td>
<td>TOXICITY OF ADDITIONAL TREATMENT</td>
<td></td>
<td>COMPLETE RESPONSE</td>
</tr>
<tr>
<td>5003617301619</td>
<td>ARM B / R-DHAP</td>
<td>06/02/2006</td>
<td>OBSERVATION</td>
<td>27/04/2006</td>
<td>05/05/2006</td>
<td>FEMALE</td>
<td>19</td>
<td>24/05/2008</td>
<td>TOXICITY OF ADDITIONAL TREATMENT</td>
<td>MULTI-ORGAN FAILURE SECONDARY TO GRAFT VERSUS HOST DISEASE FOLLOWING ALLOGENEIC BONE MARROW TRANSPLANT</td>
<td>COMPLETE RESPONSE</td>
</tr>
<tr>
<td>5003617501006</td>
<td>ARM B / R-DHAP</td>
<td>01/12/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>61</td>
<td>04/02/2007</td>
<td>LYMPHOMA</td>
<td>PATIENT ADMITTED WITH SHORTNESS OF BREATH AND DIED WITHIN 4 HOURS THEREFORE GONE TO CORONER. WILL UPDATE WHEN INFORMATION OBTAINED.</td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003617501026</td>
<td>ARM B / R-DHAP</td>
<td>06/12/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>59</td>
<td>24/01/2008</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003618301005</td>
<td>ARM B / R-DHAP</td>
<td>01/02/2006</td>
<td>OBSERVATION</td>
<td>19/05/2006</td>
<td>03/05/2006</td>
<td>MALE</td>
<td>27</td>
<td>07/12/2006</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003618501025</td>
<td>ARM B / R-DHAP</td>
<td>05/12/2007</td>
<td>OBSERVATION</td>
<td>29/04/2008</td>
<td>10/04/2008</td>
<td>MALE</td>
<td>59</td>
<td>08/01/2009</td>
<td>LYMPHOMA</td>
<td>CAUSE OF DEATH DUE TO LYMPHOMA FOUND ON POST-MORTEM</td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003619301016</td>
<td>ARM B / R-DHAP</td>
<td>22/01/2008</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>38</td>
<td>20/06/2008</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003619501010</td>
<td>ARM B / R-DHAP</td>
<td>14/02/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>45</td>
<td>06/04/2007</td>
<td>TOXICITY OF STUDY TREATMENT</td>
<td>RESPIRATORY FAILURE DUE TO SEPSIS</td>
<td>NOT EVALUATED</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Actual arm of induction</td>
<td>First Randomization Date</td>
<td>Actual arm of maintenance</td>
<td>Date of 2nd randomization</td>
<td>Transplantation date</td>
<td>Sex</td>
<td>Age (years)</td>
<td>Date of death</td>
<td>Reason for death</td>
<td>Specify reason of death</td>
<td>Response at death</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>---------------------</td>
<td>-----</td>
<td>-------------</td>
<td>---------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>5003620201017</td>
<td>ARM B / R-DHAP</td>
<td>09/05/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>58</td>
<td>24/11/2005</td>
<td>TOXICITY OF ADDITIONAL TREATMENT</td>
<td>SEPSIS</td>
<td>PARTIAL RESPONSE</td>
</tr>
<tr>
<td>5003623501405</td>
<td>ARM B / R-DHAP</td>
<td>05/07/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>58</td>
<td>26/07/2007</td>
<td>LYMPHOMA</td>
<td>NOT EVALUATED</td>
<td></td>
</tr>
<tr>
<td>5003625501020</td>
<td>ARM B / R-DHAP</td>
<td>14/09/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>60</td>
<td>24/05/2008</td>
<td>LYMPHOMA</td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
</tr>
<tr>
<td>5003628201046</td>
<td>ARM B / R-DHAP</td>
<td>21/06/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>48</td>
<td>17/03/2009</td>
<td>LYMPHOMA</td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
</tr>
<tr>
<td>5003630201040</td>
<td>ARM B / R-DHAP</td>
<td>06/11/2006</td>
<td>RITUXIMAB</td>
<td>09/03/2007</td>
<td>13/02/2007</td>
<td>MALE</td>
<td>65</td>
<td>21/12/2007</td>
<td>LYMPHOMA</td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
</tr>
<tr>
<td>5003631201011</td>
<td>ARM B / R-DHAP</td>
<td>03/12/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>61</td>
<td>29/12/2004</td>
<td>LYMPHOMA</td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
</tr>
<tr>
<td>5003631201012</td>
<td>ARM B / R-DHAP</td>
<td>15/12/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>FEMALE</td>
<td>58</td>
<td>25/05/2006</td>
<td>LYMPHOMA</td>
<td>CHEMOREFRACTORY DISEASE</td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003631201619</td>
<td>ARM B / R-DHAP</td>
<td>24/02/2006</td>
<td>NOT APPLICABLE</td>
<td>14/06/2006</td>
<td>29/05/2006</td>
<td>MALE</td>
<td>37</td>
<td>14/10/2006</td>
<td>LYMPHOMA</td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
</tr>
<tr>
<td>5003632201015</td>
<td>ARM B / R-DHAP</td>
<td>01/04/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>MALE</td>
<td>51</td>
<td>04/06/2006</td>
<td>LYMPHOMA</td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
</tr>
</tbody>
</table>

N = 238
5.4. Clinical laboratory evaluation

The following tables show statistics summary of parameters registered only at baseline.

Table 5.4-1 Summary of laboratory tests at relapse diagnosis (induction safety population)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Actual arm of induction</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymphocytes (G/L)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>226</td>
<td>224</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>1.138</td>
<td>1.102</td>
<td></td>
</tr>
<tr>
<td>Std</td>
<td>0.6287</td>
<td>0.7269</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>0.997</td>
<td>0.967</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>0.11</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>4.65</td>
<td>4.61</td>
<td></td>
</tr>
<tr>
<td>Lymphoma cells (G/L)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>181</td>
<td>182</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Std</td>
<td>0.22</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ASAT (UI/L)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>220</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>31.6</td>
<td>29.0</td>
<td></td>
</tr>
<tr>
<td>Std</td>
<td>39.23</td>
<td>20.73</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>25.0</td>
<td>23.0</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>9</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>566</td>
<td>209</td>
<td></td>
</tr>
<tr>
<td>ALAT (UI/L)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>229</td>
<td>219</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>35.9</td>
<td>33.2</td>
<td></td>
</tr>
<tr>
<td>Std</td>
<td>61.26</td>
<td>34.26</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>23.0</td>
<td>24.0</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>4</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>861</td>
<td>384</td>
<td></td>
</tr>
<tr>
<td>beta 2 microglobulin (mg/l)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>160</td>
<td>156</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>2.815</td>
<td>2.381</td>
<td></td>
</tr>
<tr>
<td>Std</td>
<td>5.2793</td>
<td>1.1310</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>2.000</td>
<td>2.100</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>0.20</td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>67.00</td>
<td>8.30</td>
<td></td>
</tr>
<tr>
<td>Aaline phosphatase (UI/L)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>232</td>
<td>224</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>113.1</td>
<td>126.0</td>
<td></td>
</tr>
<tr>
<td>Std</td>
<td>89.67</td>
<td>131.10</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>85.0</td>
<td>88.5</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>35</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>788</td>
<td>1285</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Actual arm of induction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------------------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
<td></td>
</tr>
<tr>
<td>Total bilirubin (µmol/l)</td>
<td>N</td>
<td>232</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>10.430</td>
<td>11.732</td>
</tr>
<tr>
<td></td>
<td>Std</td>
<td>8.9383</td>
<td>22.6876</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>8.800</td>
<td>8.550</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>238</td>
<td>229</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>78.6</td>
<td>77.9</td>
</tr>
<tr>
<td></td>
<td>Std</td>
<td>18.64</td>
<td>19.95</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>77.9</td>
<td>77.0</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>35</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>155</td>
<td>174</td>
</tr>
<tr>
<td>Creatinin (µmol/l)</td>
<td>N</td>
<td>218</td>
<td>214</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>2.376</td>
<td>2.386</td>
</tr>
<tr>
<td></td>
<td>Std</td>
<td>0.5149</td>
<td>0.3347</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>2.355</td>
<td>2.360</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>1.03</td>
<td>1.83</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>9.50</td>
<td>5.25</td>
</tr>
<tr>
<td>Calcium (mmol/l)</td>
<td>N</td>
<td>233</td>
<td>227</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>139.8</td>
<td>139.4</td>
</tr>
<tr>
<td></td>
<td>Std</td>
<td>3.27</td>
<td>3.13</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>140.0</td>
<td>139.0</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>129</td>
<td>126</td>
</tr>
<tr>
<td>Sodium (mmol/l)</td>
<td>Max</td>
<td>150</td>
<td>146</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>234</td>
<td>223</td>
</tr>
<tr>
<td>Potassium (mmol/l)</td>
<td>Mean</td>
<td>4.149</td>
<td>4.121</td>
</tr>
<tr>
<td></td>
<td>Std</td>
<td>0.4220</td>
<td>0.4563</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>4.100</td>
<td>4.100</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>3.30</td>
<td>2.50</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>5.80</td>
<td>5.60</td>
</tr>
</tbody>
</table>
Table 5.4-2 Serum electrophoresis values at relapse diagnosis (induction safety population)

<table>
<thead>
<tr>
<th>Total protein (G/L)</th>
<th>Actual arm of induction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARM A / R-ICE</td>
</tr>
<tr>
<td>N</td>
<td>206</td>
</tr>
<tr>
<td>Mean</td>
<td>68.43</td>
</tr>
<tr>
<td>Std</td>
<td>10.560</td>
</tr>
<tr>
<td>Median</td>
<td>69.00</td>
</tr>
<tr>
<td>Min</td>
<td>6.6</td>
</tr>
<tr>
<td>Max</td>
<td>90</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Albumin (G/L)</th>
<th>Actual arm of induction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARM A / R-ICE</td>
</tr>
<tr>
<td>N</td>
<td>202</td>
</tr>
<tr>
<td>Mean</td>
<td>40.52</td>
</tr>
<tr>
<td>Std</td>
<td>6.606</td>
</tr>
<tr>
<td>Median</td>
<td>41.00</td>
</tr>
<tr>
<td>Min</td>
<td>2.9</td>
</tr>
<tr>
<td>Max</td>
<td>62</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Monoclonal component value (G/L)</th>
<th>Actual arm of induction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARM A / R-ICE</td>
</tr>
<tr>
<td>N</td>
<td>4</td>
</tr>
<tr>
<td>Mean</td>
<td>5.25</td>
</tr>
<tr>
<td>Std</td>
<td>7.182</td>
</tr>
<tr>
<td>Median</td>
<td>2.00</td>
</tr>
<tr>
<td>Min</td>
<td>1.0</td>
</tr>
<tr>
<td>Max</td>
<td>16</td>
</tr>
</tbody>
</table>

For each parameter registered at different time over the course of the study, the mean, standard deviation, median, range and changes from baseline are described in section §6.7.6.

5.5. Vitals signs, physical finding and other observations related to safety

Vital signs are described in section §6.7.7.
For clinical examination, a frequency table summarizes the results at each visit.
6. TABLES, LISTINGS AND FIGURES NOT INCLUDED IN THE REPORT

6.1. Withdrawals
Listing 6.1-1 Withdrawals (FAS)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of treatment</th>
<th>First Randomization Date</th>
<th>Arm of 2nd randomization</th>
<th>Date of 2nd randomization</th>
<th>Date of withdrawal</th>
<th>Treatment period at withdrawal</th>
<th>Reason for premature withdrawal</th>
<th>Other reason for premature withdrawal</th>
<th>Response at withdrawal</th>
<th>Transplantation date</th>
<th>Nb of cycles received</th>
<th>Nb of maintenance visits</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003101021008</td>
<td>ARM A / R-ICE</td>
<td>12/05/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>06/07/2004</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003101021014</td>
<td>ARM A / R-ICE</td>
<td>20/08/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>20/10/2004</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>UNCONFIRMED COMPLETE RESPONSE</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003101021027</td>
<td>ARM A / R-ICE</td>
<td>01/06/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>26/07/2005</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>5003101021665</td>
<td>ARM A / R-ICE</td>
<td>04/11/2003</td>
<td>OBSERVATION</td>
<td>04/02/2004</td>
<td>29/04/2004</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSIVE DISEASE</td>
<td>PROGRESSIVE DISEASE</td>
<td>03/02/2004</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5003101021631</td>
<td>ARM A / R-ICE</td>
<td>07/02/2006</td>
<td>RITUXIMAB</td>
<td>01/06/2006</td>
<td>09/05/2007</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSION</td>
<td>PROGRESSIVE DISEASE</td>
<td>22/05/2006</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>5003101031001</td>
<td>ARM A / R-ICE</td>
<td>24/07/2003</td>
<td>RITUXIMAB</td>
<td>21/10/2003</td>
<td>18/11/2003</td>
<td>FOLLOW UP PERIOD</td>
<td>TRANSPLANTATION FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td>22/10/2003</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003101031007</td>
<td>ARM A / R-ICE</td>
<td>26/01/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>20/04/2004</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>STABLE DISEASE</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003101041666</td>
<td>ARM A / R-ICE</td>
<td>03/12/2003</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>05/12/2003</td>
<td>BEFORE TREATMENT</td>
<td>MAJOR PROTOCOL VIOLATION</td>
<td></td>
<td>NOT EVALUATED</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5003101051004</td>
<td>ARM A / R-ICE</td>
<td>26/11/2003</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>29/01/2004</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>PARTIAL RESPONSE</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003101051068</td>
<td>ARM A / R-ICE</td>
<td>04/07/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>24/09/2007</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>STABLE DISEASE</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003101051075</td>
<td>ARM A / R-ICE</td>
<td>19/02/2008</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>02/06/2008</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>STABLE DISEASE</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003101051603</td>
<td>ARM A / R-ICE</td>
<td>27/10/2003</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>29/12/2003</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>COMPLETE RESPONSE</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003101071029</td>
<td>ARM A / R-ICE</td>
<td>15/03/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>20/07/2005</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003101071029</td>
<td>ARM A / R-ICE</td>
<td>09/06/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>05/12/2005</td>
<td>CONSOLIDATION PHASE</td>
<td>OTHER</td>
<td>FORGOT 2NDE RANDOMIZATION</td>
<td>COMPLETE RESPONSE</td>
<td>10/10/2005</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003101071059</td>
<td>ARM A / R-ICE</td>
<td>22/12/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>26/01/2007</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Arm of treatment</td>
<td>First Randomization Date</td>
<td>Arm of 2nd randomization</td>
<td>Date of 2nd randomization</td>
<td>Date of withdrawal</td>
<td>Treatment period at withdrawal</td>
<td>Reason for premature withdrawal</td>
<td>Other reason for premature withdrawal</td>
<td>Response at withdrawal</td>
<td>Transplantation date</td>
<td>Nb of cycles received</td>
<td>Nb of maintenance visits</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
<td>--------------------</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
<td>-----------------------------------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>5003101071647</td>
<td>ARM A / R-ICE</td>
<td>11/04/2008</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>01/05/2008</td>
<td>INDUCTION PHASE</td>
<td>OTHER</td>
<td>TREATMENT OUT OF RADIOTHERAPY BETWEEN CYCLE 1 AND 2</td>
<td>COMPLETE RESPONSE</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5003101091602</td>
<td>ARM A / R-ICE</td>
<td>16/10/2003</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>22/12/2003</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>STABLE DISEASE</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003101131030</td>
<td>ARM A / R-ICE</td>
<td>16/06/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>16/08/2005</td>
<td>INDUCTION PHASE</td>
<td>DEATH</td>
<td></td>
<td>NOT EVALUATED</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>5003101131062</td>
<td>ARM A / R-ICE</td>
<td>20/02/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>02/05/2007</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003101131072</td>
<td>ARM A / R-ICE</td>
<td>27/09/2007</td>
<td>OBSERVATION</td>
<td>26/12/2007</td>
<td>18/01/2008</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PATIENT RETURN IN ROUMANIA</td>
<td>UNCONFIRMED COMPLETE RESPONSE</td>
<td>24/12/2007</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003101131409</td>
<td>ARM A / R-ICE</td>
<td>07/03/2006</td>
<td>RITUXIMAB</td>
<td>16/06/2006</td>
<td>23/11/2006</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSIVE DISEASE</td>
<td>PROGRESSIVE DISEASE</td>
<td>14/06/2006</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003101141065</td>
<td>ARM A / R-ICE</td>
<td>24/04/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>12/07/2007</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>STABLE DISEASE</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003101141406</td>
<td>ARM A / R-ICE</td>
<td>13/09/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>20/12/2005</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003101211023</td>
<td>ARM A / R-ICE</td>
<td>25/04/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>06/07/2005</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003101221043</td>
<td>ARM A / R-ICE</td>
<td>27/02/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>29/03/2006</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>5003101281017</td>
<td>ARM A / R-ICE</td>
<td>18/11/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>10/12/2004</td>
<td>INDUCTION PHASE</td>
<td>TREATMENT TOXICITY</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>5003101281033</td>
<td>ARM A / R-ICE</td>
<td>15/07/2005</td>
<td>RITUXIMAB</td>
<td>15/11/2005</td>
<td>10/01/2006</td>
<td>FOLLOW UP PERIOD</td>
<td>TRANSPLANTATION FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td>04/10/2005</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003101281208</td>
<td>ARM A / R-ICE</td>
<td>09/02/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>21/03/2006</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>5003101331077</td>
<td>ARM A / R-ICE</td>
<td>18/03/2008</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>26/06/2008</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>STABLE DISEASE</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003101351040</td>
<td>ARM A / R-ICE</td>
<td>21/12/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>10/03/2006</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003101391039</td>
<td>ARM A / R-ICE</td>
<td>02/11/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>03/01/2006</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>STABLE DISEASE</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Arm of treatment</td>
<td>First Randomization Date</td>
<td>Arm of 2nd randomization</td>
<td>Date of 2nd randomization</td>
<td>Date of withdrawal</td>
<td>Treatment period at withdrawal</td>
<td>Reason for premature withdrawal</td>
<td>Other reason for premature withdrawal</td>
<td>Response at withdrawal</td>
<td>Transplantation date</td>
<td>Nb of cycles received</td>
<td>Nb of maintenance visits</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>--------------------</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>5003101391201</td>
<td>ARM A / R-ICE</td>
<td>24/09/2003</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>12/12/2003</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5003101391638</td>
<td>ARM A / R-ICE</td>
<td>26/01/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>26/02/2007</td>
<td>INDUCTION PHASE</td>
<td>PATIENT VOLONTARY WITHDRAWAL</td>
<td>NOT EVALUATED</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>50031014331040</td>
<td>ARM A / R-ICE</td>
<td>11/06/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>18/08/2004</td>
<td>INDUCTION PHASE</td>
<td>OTHER</td>
<td>THE SECOND RANDOMIZATION COULD NOT BE PERFORMED DUE TO THE DELAY TO GET THE PATHOLOGICAL EVALUATION</td>
<td>STABLE DISEASE</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>50031014331046</td>
<td>ARM A / R-ICE</td>
<td>19/04/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>13/06/2006</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5003101441036</td>
<td>ARM A / R-ICE</td>
<td>02/08/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>17/10/2005</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5003101441074</td>
<td>ARM A / R-ICE</td>
<td>12/11/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>31/01/2008</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>STABLE DISEASE</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5003101481403</td>
<td>ARM A / R-ICE</td>
<td>21/06/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>01/09/2005</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>UNCONFIRMED COMPLETE RESPONSE</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5003101491042</td>
<td>ARM A / R-ICE</td>
<td>14/02/2006</td>
<td>RITUXIMAB</td>
<td>09/05/2006</td>
<td>31/07/2006</td>
<td>FOLLOW UP PERIOD</td>
<td>TRANSPLANTATION FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td>18/05/2006</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5003101601404</td>
<td>ARM A / R-ICE</td>
<td>04/07/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>21/08/2005</td>
<td>INDUCTION PHASE</td>
<td>TREATMENT TOXICITY</td>
<td>NOT EVALUATED</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5003101621026</td>
<td>ARM A / R-ICE</td>
<td>31/05/2005</td>
<td>OBSERVATION</td>
<td>14/09/2005</td>
<td>22/03/2006</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSIVE DISEASE</td>
<td>06/09/2005</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5003102161078</td>
<td>ARM A / R-ICE</td>
<td>21/05/2008</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>03/09/2008</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5003102161413</td>
<td>ARM A / R-ICE</td>
<td>18/10/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>05/11/2006</td>
<td>INDUCTION PHASE</td>
<td>DEATH</td>
<td>NOT EVALUATED</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5003102321024</td>
<td>ARM A / R-ICE</td>
<td>29/04/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>17/08/2005</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5003102341045</td>
<td>ARM A / R-ICE</td>
<td>30/03/2006</td>
<td>OBSERVATION</td>
<td>03/07/2006</td>
<td>09/09/2006</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>RADIOTherAPY TREATMENT</td>
<td>PARTIAL RESPONSE</td>
<td>21/06/2006</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Arm of treatment</td>
<td>First Randomization Date</td>
<td>Arm of 2nd randomization</td>
<td>Date of 2nd randomization</td>
<td>Date of withdrawal</td>
<td>Treatment period at withdrawal</td>
<td>Reason for premature withdrawal</td>
<td>Other reason for premature withdrawal</td>
<td>Response at withdrawal</td>
<td>Transplantation date</td>
<td>Nb of cycles received</td>
<td>Nb of maintenance visits</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>-------------------</td>
<td>-------------------------------</td>
<td>------------------------------</td>
<td>---------------------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>5003102341049</td>
<td>ARM A / R-ICE</td>
<td>11/07/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>11/10/2006</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PARTIAL RESPONSE</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5003102341061</td>
<td>ARM A / R-ICE</td>
<td>31/01/2007</td>
<td>RITUXIMAB</td>
<td>04/05/2007</td>
<td>03/12/2007</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>POST TRANSPLANTATION RELAPSE</td>
<td>02/05/2007</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5003102341416</td>
<td>ARM A / R-ICE</td>
<td>20/12/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>31/01/2007</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5003102491616</td>
<td>ARM A / R-ICE</td>
<td>29/06/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>27/09/2004</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PARTIAL RESPONSE</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5003102541052</td>
<td>ARM A / R-ICE</td>
<td>26/07/2006</td>
<td>OBSERVATION</td>
<td>12/10/2006</td>
<td>04/01/2007</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSION</td>
<td>05/11/2006</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5003102541625</td>
<td>ARM A / R-ICE</td>
<td>13/06/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>18/08/2005</td>
<td>INDUCTION PHASE</td>
<td>MAJOR PROTOCOL VIOLATION</td>
<td>PARTIAL RESPONSE</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5003601201041</td>
<td>ARM A / R-ICE</td>
<td>28/11/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>02/02/2007</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5003601201602</td>
<td>ARM A / R-ICE</td>
<td>16/03/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>23/05/2004</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>UNCONFIRMED COMPLETE RESPONSE</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5003601401003</td>
<td>ARM A / R-ICE</td>
<td>15/06/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>12/08/2005</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>STABLE DISEASE</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5003601401401</td>
<td>ARM A / R-ICE</td>
<td>04/03/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>04/05/2004</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PARTIAL RESPONSE</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5003601401605</td>
<td>ARM A / R-ICE</td>
<td>21/09/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>24/11/2006</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PARTIAL RESPONSE</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5003601601002</td>
<td>ARM A / R-ICE</td>
<td>02/01/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>06/03/2007</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>STABLE DISEASE</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5003601601003</td>
<td>ARM A / R-ICE</td>
<td>07/03/2007</td>
<td>OBSERVATION</td>
<td>08/06/2007</td>
<td>31/08/2007</td>
<td>FOLLOW UP PERIOD</td>
<td>TRANSPLANTATION FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td>29/05/2007</td>
<td>3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5003601601005</td>
<td>ARM A / R-ICE</td>
<td>15/01/2008</td>
<td>OBSERVATION</td>
<td>16/04/2008</td>
<td>03/07/2008</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSION OF DISEASE</td>
<td>08/04/2008</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5003601601401</td>
<td>ARM A / R-ICE</td>
<td>26/03/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>13/06/2004</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>COMPLETE RESPONSE</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Arm of treatment</td>
<td>First Randomization Date</td>
<td>Arm of 2nd randomization</td>
<td>Date of 2nd randomization</td>
<td>Date of withdrawal</td>
<td>Treatment period at withdrawal</td>
<td>Reason for premature withdrawal</td>
<td>Other reason for premature withdrawal</td>
<td>Response at withdrawal</td>
<td>Transplantation date</td>
<td>Nb of cycles received</td>
<td>Nb of maintenance visits</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>--------------------------</td>
<td>-------------------------</td>
<td>--------------------------</td>
<td>--------------------</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
<td>---------------------------------</td>
<td>-----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>5003602301001</td>
<td>ARM A / R-ICE</td>
<td>12/02/2004</td>
<td>NOT APPLICABLE</td>
<td>16/04/2004</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td>NOT APPLICABLE</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003602401005</td>
<td>ARM A / R-ICE</td>
<td>29/11/2006</td>
<td>NOT APPLICABLE</td>
<td>30/01/2007</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>STABLE DISEASE</td>
<td>NOT APPLICABLE</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003602501001</td>
<td>ARM A / R-ICE</td>
<td>05/09/2006</td>
<td>NOT APPLICABLE</td>
<td>18/10/2006</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>STABLE DISEASE</td>
<td>NOT APPLICABLE</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>5003602801001</td>
<td>ARM A / R-ICE</td>
<td>01/12/2003</td>
<td>NOT APPLICABLE</td>
<td>25/02/2004</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td>NOT APPLICABLE</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003602901002</td>
<td>ARM A / R-ICE</td>
<td>24/01/2005</td>
<td>NOT APPLICABLE</td>
<td>29/03/2005</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td>NOT APPLICABLE</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>5003602901201</td>
<td>ARM A / R-ICE</td>
<td>03/03/2004</td>
<td>NOT APPLICABLE</td>
<td>29/04/2004</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td>NOT APPLICABLE</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>5003602901401</td>
<td>ARM A / R-ICE</td>
<td>12/11/2004</td>
<td>NOT APPLICABLE</td>
<td>01/02/2005</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td>NOT APPLICABLE</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003603201025</td>
<td>ARM A / R-ICE</td>
<td>12/01/2006</td>
<td>NOT APPLICABLE</td>
<td>20/04/2006</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td>NOT APPLICABLE</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003603201213</td>
<td>ARM A / R-ICE</td>
<td>23/02/2007</td>
<td>OBSERVATION</td>
<td>29/05/2007</td>
<td>28/03/2008</td>
<td>FOLLOW UP PERIOD</td>
<td>DEATH</td>
<td>PROGRESSIVE DISEASE</td>
<td>PROGRESSIVE DISEASE</td>
<td>23/05/2007</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5003603201406</td>
<td>ARM A / R-ICE</td>
<td>04/05/2006</td>
<td>NOT APPLICABLE</td>
<td>01/06/2006</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>UNCONFIRMED COMPLETE RESPONSE</td>
<td>NOT APPLICABLE</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003603201409</td>
<td>ARM A / R-ICE</td>
<td>25/01/2007</td>
<td>NOT APPLICABLE</td>
<td>16/02/2007</td>
<td>INDUCTION PHASE</td>
<td>PATIENT VOLONTARY WITHDRAWAL</td>
<td>NOT EVALUATED</td>
<td>NOT APPLICABLE</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>5003603201627</td>
<td>ARM A / R-ICE</td>
<td>28/03/2007</td>
<td>NOT APPLICABLE</td>
<td>03/04/2007</td>
<td>BEFORE TREATMENT</td>
<td>DEATH</td>
<td>PROGRESSIVE DISEASE</td>
<td>NOT APPLICABLE</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Arm of treatment</td>
<td>First Randomization Date</td>
<td>Arm of 2nd randomization</td>
<td>Date of 2nd randomization</td>
<td>Date of withdrawal</td>
<td>Treatment period at withdrawal</td>
<td>Reason for premature withdrawal</td>
<td>Other reason for premature withdrawal</td>
<td>Response at withdrawal</td>
<td>Transplantation date</td>
<td>Nb of cycles received</td>
<td>Nb of maintenance visits</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>--------------------------</td>
<td>-------------------------</td>
<td>--------------------------</td>
<td>------------------</td>
<td>------------------------------</td>
<td>-------------------------------</td>
<td>----------------------------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>----------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>5003603201628</td>
<td>ARM A / R-ICE</td>
<td>18/05/2007</td>
<td>RITUXIMAB</td>
<td>17/08/2007</td>
<td>20/03/2008</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSIVE DISEASE</td>
<td>PROGRESSIVE DISEASE</td>
<td>22/08/2007</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5003603301201</td>
<td>ARM A / R-ICE</td>
<td>11/03/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>23/07/2004</td>
<td>CONSOLIDATION PHASE</td>
<td>OTHER</td>
<td>POSITIVE PET RESULT AFTER CONSOLIDATION: REQUIRED RADIOTHERAPY (INVESTIGATOR’S DECISION)</td>
<td>PARTIAL RESPONSE</td>
<td>25/06/2004</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003603701004</td>
<td>ARM A / R-ICE</td>
<td>12/08/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>01/09/2005</td>
<td>INDUCTION PHASE</td>
<td>DEATH</td>
<td></td>
<td>NOT EVALUATED</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>5003603701006</td>
<td>ARM A / R-ICE</td>
<td>14/10/2005</td>
<td>OBSERVATION</td>
<td>30/01/2006</td>
<td>13/03/2006</td>
<td>FOLLOW UP PERIOD</td>
<td>TRANSPLANTATION FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td>09/01/2006</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003603701010</td>
<td>ARM A / R-ICE</td>
<td>03/07/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>16/08/2006</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>5003603801015</td>
<td>ARM A / R-ICE</td>
<td>11/04/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>20/06/2007</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003603801202</td>
<td>ARM A / R-ICE</td>
<td>18/11/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>07/02/2005</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>STABLE DISEASE</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5003603801203</td>
<td>ARM A / R-ICE</td>
<td>01/12/2004</td>
<td>RITUXIMAB</td>
<td>14/03/2005</td>
<td>02/05/2005</td>
<td>FOLLOW UP PERIOD</td>
<td>TRANSPLANTATION FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td>01/03/2005</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003603801406</td>
<td>ARM A / R-ICE</td>
<td>15/02/2008</td>
<td>RITUXIMAB</td>
<td>15/05/2008</td>
<td>05/08/2008</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PR ; START OF NEW TREATMENT</td>
<td>PARTIAL RESPONSE</td>
<td>13/05/2008</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003603801608</td>
<td>ARM A / R-ICE</td>
<td>09/04/2008</td>
<td>OBSERVATION</td>
<td>03/07/2008</td>
<td>24/10/2008</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>EARLY RELAPSE AFTER TRANSPLANTATION</td>
<td>PROGRESSIVE DISEASE</td>
<td>01/07/2008</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003604201204</td>
<td>ARM A / R-ICE</td>
<td>08/07/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>19/08/2004</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>5003604301618</td>
<td>ARM A / R-ICE</td>
<td>02/02/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>03/05/2006</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>PARTIAL RESPONSE</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003604801014</td>
<td>ARM A / R-ICE</td>
<td>15/02/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>26/02/2007</td>
<td>INDUCTION PHASE</td>
<td>TREATMENT TOXICITY</td>
<td></td>
<td>NOT EVALUATED</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>5003604901005</td>
<td>ARM A / R-ICE</td>
<td>05/01/2006</td>
<td>RITUXIMAB</td>
<td>09/05/2006</td>
<td>27/07/2006</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>BONE MARROW INVOLVEMENT</td>
<td>PROGRESSIVE DISEASE</td>
<td>24/04/2006</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003604901006</td>
<td>ARM A / R-ICE</td>
<td>20/06/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>25/09/2006</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>COMPLETE RESPONSE</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Arm of treatment</td>
<td>First Randomization Date</td>
<td>Arm of 2nd randomization</td>
<td>Date of 2nd randomization</td>
<td>Date of withdrawal</td>
<td>Treatment period at withdrawal</td>
<td>Reason for premature withdrawal</td>
<td>Other reason for premature withdrawal</td>
<td>Response at withdrawal</td>
<td>Transplantation date</td>
<td>Nb of cycles received</td>
<td>Nb of maintenance visits</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
<td>-------------------</td>
<td>-----------------------------</td>
<td>---------------------------------</td>
<td>----------------------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>5003605201006</td>
<td>ARM A / R-ICE</td>
<td>10/11/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>05/01/2005</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003605301010</td>
<td>ARM A / R-ICE</td>
<td>16/08/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>24/09/2007</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>5003605301601</td>
<td>ARM A / R-ICE</td>
<td>05/04/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>20/06/2004</td>
<td>INDUCTION PHASE</td>
<td>DEATH</td>
<td>UNCONFIRMED COMPLETE RESPONSE</td>
<td></td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003608701401</td>
<td>ARM A / R-ICE</td>
<td>11/10/2006</td>
<td>RITUXIMAB</td>
<td>30/01/2007</td>
<td>28/11/2007</td>
<td>FOLLOW UP PERIOD</td>
<td>PATIENT VOLUNTARY WITHDRAWAL</td>
<td>COMPLETE RESPONSE</td>
<td>12/01/2007</td>
<td>3</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>5003605901003</td>
<td>ARM A / R-ICE</td>
<td>15/02/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>28/06/2005</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003606301612</td>
<td>ARM A / R-ICE</td>
<td>15/02/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>25/05/2005</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>UNCONFIRMED COMPLETE RESPONSE</td>
<td></td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003606701003</td>
<td>ARM A / R-ICE</td>
<td>10/03/2005</td>
<td>OBSERVATION</td>
<td>07/06/2005</td>
<td>13/01/2006</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSIVE DISEASE</td>
<td>08/06/2005</td>
<td>3</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>5003607201016</td>
<td>ARM A / R-ICE</td>
<td>09/05/2005</td>
<td>OBSERVATION</td>
<td>11/08/2005</td>
<td>16/12/2005</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSIVE DISEASE</td>
<td>01/08/2005</td>
<td>3</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003607201032</td>
<td>ARM A / R-ICE</td>
<td>01/06/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>14/07/2006</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>STABLE DISEASE</td>
<td></td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>5003607201045</td>
<td>ARM A / R-ICE</td>
<td>09/05/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>18/08/2007</td>
<td>CONSOLIDATION PHASE</td>
<td>DEATH</td>
<td>PARTIAL RESPONSE</td>
<td>09/08/2007</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5003607501403</td>
<td>ARM A / R-ICE</td>
<td>16/10/2006</td>
<td>OBSERVATION</td>
<td>07/02/2007</td>
<td>11/07/2007</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>RELAPSE DISEASE</td>
<td>02/02/2007</td>
<td>3</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>5003607701007</td>
<td>ARM A / R-ICE</td>
<td>06/12/2005</td>
<td>RITUXIMAB</td>
<td>09/03/2006</td>
<td>21/04/2006</td>
<td>FOLLOW UP PERIOD</td>
<td>TRANSPLANTATION FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td>14/03/2006</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>5003607701009</td>
<td>ARM A / R-ICE</td>
<td>18/04/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>24/07/2006</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003608301605</td>
<td>ARM A / R-ICE</td>
<td>03/06/2004</td>
<td>RITUXIMAB</td>
<td>25/08/2004</td>
<td>13/09/2004</td>
<td>FOLLOW UP PERIOD</td>
<td>PATIENT VOLUNTARY WITHDRAWAL</td>
<td>COMPLETE RESPONSE</td>
<td>25/08/2004</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5003608701016</td>
<td>ARM A / R-ICE</td>
<td>04/04/2008</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>23/06/2008</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003609201013</td>
<td>ARM A / R-ICE</td>
<td>14/03/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>14/03/2005</td>
<td>BEFORE TREATMENT</td>
<td>OTHER</td>
<td>MEET NOT INCLUSION CRITERIAS</td>
<td>NOT EVALUATED</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Arm of treatment</td>
<td>First Randomization Date</td>
<td>Arm of 2nd randomization</td>
<td>Date of 2nd randomization</td>
<td>Date of withdrawal</td>
<td>Treatment period at withdrawal</td>
<td>Reason for premature withdrawal</td>
<td>Other reason for premature withdrawal</td>
<td>Response at withdrawal</td>
<td>Transplantation date</td>
<td>Nb of cycles received</td>
<td>Nb of maintenance visits</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
<td>-------------------</td>
<td>-------------------------------</td>
<td>----------------------------------</td>
<td>-----------------------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>500360921058</td>
<td>ARM A / R-ICE</td>
<td>02/06/2008</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>05/08/2008</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5003609301608</td>
<td>ARM A / R-ICE</td>
<td>02/11/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>25/03/2005</td>
<td>INDUCTION PHASE</td>
<td>OTHER</td>
<td>INVESTIGATOR'S DECISION (REQUIRES 4TH CYCLE OF INDUCTION)</td>
<td>PARTIAL RESPONSE</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5003610201007</td>
<td>ARM A / R-ICE</td>
<td>12/11/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>14/01/2005</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5003610201612</td>
<td>ARM A / R-ICE</td>
<td>12/04/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>16/06/2005</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5003610301617</td>
<td>ARM A / R-ICE</td>
<td>31/01/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>24/04/2006</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5003610501031</td>
<td>ARM A / R-ICE</td>
<td>20/03/2008</td>
<td>OBSERVATION</td>
<td>08/07/2008</td>
<td>28/07/2008</td>
<td>FOLLOW UP PERIOD</td>
<td>TRANSPLANTATION FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td>11/06/2008</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003611201057</td>
<td>ARM A / R-ICE</td>
<td>30/04/2008</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>25/07/2008</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5003612501012</td>
<td>ARM A / R-ICE</td>
<td>19/03/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>13/06/2007</td>
<td>INDUCTION PHASE</td>
<td>TREATMENT TOXICITY</td>
<td></td>
<td>PARTIAL RESPONSE</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5003612501015</td>
<td>ARM A / R-ICE</td>
<td>22/05/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>16/08/2007</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>PARTIAL RESPONSE</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5003613301210</td>
<td>ARM A / R-ICE</td>
<td>16/05/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>01/08/2005</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>STABLE DISEASE</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5003614301614</td>
<td>ARM A / R-ICE</td>
<td>16/06/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>17/06/2005</td>
<td>INDUCTION PHASE</td>
<td>BEFORE TREATMENT</td>
<td>MAJOR PROTOCOL VIOLATION</td>
<td>NOT EVALUATED</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5003615301004</td>
<td>ARM A / R-ICE</td>
<td>17/08/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>14/11/2005</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5003615501014</td>
<td>ARM A / R-ICE</td>
<td>02/05/2007</td>
<td>RITUXIMAB</td>
<td>14/08/2007</td>
<td>04/02/2008</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSIVE DISEASE</td>
<td>PROGRESSIVE DISEASE</td>
<td>09/08/2007</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Arm of treatment</td>
<td>First Randomization Date</td>
<td>Arm of 2nd randomization</td>
<td>Date of 2nd randomization</td>
<td>Date of withdrawal</td>
<td>Treatment period at withdrawal</td>
<td>Reason for premature withdrawal</td>
<td>Other reason for premature withdrawal</td>
<td>Response at withdrawal</td>
<td>Transplantation date</td>
<td>Nb of cycles received</td>
<td>Nb of maintenance visits</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>------------------</td>
<td>-----------------------------</td>
<td>--------------------------------</td>
<td>--------------------------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>5003615501018</td>
<td>ARM A / R-ICE</td>
<td>08/08/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>01/10/2007</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td>-</td>
<td></td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003615501028</td>
<td>ARM A / R-ICE</td>
<td>10/01/2008</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>18/03/2008</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td>-</td>
<td></td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003615501201</td>
<td>ARM A / R-ICE</td>
<td>12/09/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>23/11/2006</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>STABLE DISEASE</td>
<td>-</td>
<td></td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003615501404</td>
<td>ARM A / R-ICE</td>
<td>19/03/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>21/05/2007</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>UNCONFIRMED COMPLETE RESPONSE</td>
<td>-</td>
<td></td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003616501005</td>
<td>ARM A / R-ICE</td>
<td>27/10/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>21/02/2007</td>
<td>CONSOLIDATION PHASE</td>
<td>DEATH</td>
<td></td>
<td>14/02/2007</td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5003617201004</td>
<td>ARM A / R-ICE</td>
<td>23/08/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>24/11/2004</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td>-</td>
<td></td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003617201010</td>
<td>ARM A / R-ICE</td>
<td>30/11/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>24/02/2005</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td>-</td>
<td></td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003617201039</td>
<td>ARM A / R-ICE</td>
<td>20/10/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>16/01/2007</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td>-</td>
<td></td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003617201042</td>
<td>ARM A / R-ICE</td>
<td>06/12/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>06/03/2007</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>STABLE DISEASE</td>
<td>-</td>
<td></td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003617201048</td>
<td>ARM A / R-ICE</td>
<td>06/07/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>26/09/2007</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>STABLE DISEASE</td>
<td>-</td>
<td></td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003617501024</td>
<td>ARM A / R-ICE</td>
<td>04/12/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>20/02/2008</td>
<td>INDUCTION PHASE</td>
<td>OTHER</td>
<td>PATIENT REFUSED TO CONTINUE THE STUDY TREATMENT</td>
<td>-</td>
<td></td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003617501606</td>
<td>ARM A / R-ICE</td>
<td>19/11/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>15/02/2008</td>
<td>INDUCTION PHASE</td>
<td>OTHER</td>
<td>TRANSPLANT CENTRE WOULD NOT TRANSPLANT PATIENT AS PATIENT WAS PET POSITIVE</td>
<td>-</td>
<td></td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003619301008</td>
<td>ARM A / R-ICE</td>
<td>17/11/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>04/01/2007</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>STABLE DISEASE</td>
<td>-</td>
<td></td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>5003619301621</td>
<td>ARM A / R-ICE</td>
<td>01/12/2006</td>
<td>OBSERVATION</td>
<td>19/03/2007</td>
<td>18/10/2007</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSION</td>
<td>08/03/2007</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Arm of treatment</td>
<td>First Randomization Date</td>
<td>Arm of 2nd randomization</td>
<td>Date of 2nd randomization</td>
<td>Date of withdrawal</td>
<td>Treatment period at withdrawal</td>
<td>Reason for premature withdrawal</td>
<td>Other reason for premature withdrawal</td>
<td>Response at withdrawal</td>
<td>Transplantation date</td>
<td>Nb of cycles received</td>
<td>Nb of maintenance visits</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
<td>-------------------</td>
<td>-------------------------------</td>
<td>--------------------------------</td>
<td>---------------------------------</td>
<td>-----------------------</td>
<td>---------------------</td>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>5003620301011</td>
<td>ARM A / R-ICE</td>
<td>14/09/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>29/10/2007</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5003620301017</td>
<td>ARM A / R-ICE</td>
<td>13/03/2008</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>19/05/2008</td>
<td>INDUCTION PHASE</td>
<td>OTHER</td>
<td>USE OF DIFFERENT CONSOLIDATION TREATMENT THAN SPECIFIED IN PROTOCOL</td>
<td>STABLE DISEASE</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003621201020</td>
<td>ARM A / R-ICE</td>
<td>28/07/2005</td>
<td>OBSERVATION</td>
<td>07/12/2005</td>
<td>26/04/2006</td>
<td>FOLLOW UP PERIOD</td>
<td>TRANSPLANTATION FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td>17/11/2005</td>
<td>3</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003621201023</td>
<td>ARM A / R-ICE</td>
<td>22/11/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>08/02/2006</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PARTIAL RESPONSE</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5003621201026</td>
<td>ARM A / R-ICE</td>
<td>25/01/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>13/02/2006</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5003621301014</td>
<td>ARM A / R-ICE</td>
<td>29/10/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>11/11/2007</td>
<td>INDUCTION PHASE</td>
<td>TREATMENT TOXICITY</td>
<td>STABLE DISEASE</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5003621501603</td>
<td>ARM A / R-ICE</td>
<td>10/04/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>28/08/2007</td>
<td>CONSOLIDATION PHASE</td>
<td>OTHER</td>
<td>FAILURE TO RANDOMISE</td>
<td>UNCONFIRMED COMPLETE RESPONSE</td>
<td>08/08/2007</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003622201022</td>
<td>ARM A / R-ICE</td>
<td>04/11/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>21/02/2006</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5003622201210</td>
<td>ARM A / R-ICE</td>
<td>20/02/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>27/03/2006</td>
<td>INDUCTION PHASE</td>
<td>TREATMENT TOXICITY</td>
<td>NOT EVALUATED</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5003622201403</td>
<td>ARM A / R-ICE</td>
<td>24/11/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>24/01/2006</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>NOT EVALUATED</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5003624501017</td>
<td>ARM A / R-ICE</td>
<td>31/07/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>07/11/2007</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>STABLE DISEASE</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5003628201003</td>
<td>ARM A / R-ICE</td>
<td>30/07/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>08/10/2004</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>STABLE DISEASE</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5003628201009</td>
<td>ARM A / R-ICE</td>
<td>26/11/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>31/01/2005</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>STABLE DISEASE</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5003628201052</td>
<td>ARM A / R-ICE</td>
<td>10/09/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>-</td>
<td>INDUCTION PHASE</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5003628201624</td>
<td>ARM A / R-ICE</td>
<td>06/12/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>06/03/2007</td>
<td>INDUCTION PHASE</td>
<td>PATIENT VOLUNTARY WITHDRAWAL</td>
<td>COMPLETE RESPONSE</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5003630201055</td>
<td>ARM A / R-ICE</td>
<td>09/04/2008</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>24/07/2008</td>
<td>INDUCTION PHASE</td>
<td>TREATMENT TOXICITY</td>
<td>COMPLETE RESPONSE</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Arm of treatment</td>
<td>First Randomization Date</td>
<td>Arm of 2nd randomization</td>
<td>Date of 2nd randomization</td>
<td>Date of withdrawal</td>
<td>Treatment period at withdrawal</td>
<td>Reason for premature withdrawal</td>
<td>Other reason for premature withdrawal</td>
<td>Response at withdrawal</td>
<td>Transplantation date</td>
<td>Nb of cycles received</td>
<td>Nb of maintenance visits</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>--------------------------</td>
<td>-------------------------</td>
<td>--------------------------</td>
<td>-------------------</td>
<td>-----------------------------</td>
<td>--------------------------------</td>
<td>--------------------------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>5003631201035</td>
<td>ARM A / R-ICE</td>
<td>28/08/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>12/02/2007</td>
<td>CONSOLIDATION PHASE</td>
<td>OTHER</td>
<td>THE PATIENT WAS ALLOGRAFTED BECAUSE OF HIGH RISK OF RELAPSE ON 01/06/2007</td>
<td>COMPLETE RESPONSE</td>
<td>19/12/2006</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003632201054</td>
<td>ARM A / R-ICE</td>
<td>07/02/2008</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>08/07/2008</td>
<td>CONSOLIDATION PHASE</td>
<td>OTHER</td>
<td>PATIENT REFUSES SECOND RANDOMIZATION</td>
<td>COMPLETE RESPONSE</td>
<td>05/05/2008</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003633201036</td>
<td>ARM A / R-ICE</td>
<td>15/09/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>07/12/2006</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003635201051</td>
<td>ARM A / R-ICE</td>
<td>17/08/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>03/10/2007</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>STABLE DISEASE</td>
<td></td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>5003642501030</td>
<td>ARM A / R-ICE</td>
<td>19/03/2008</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>02/05/2008</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>STABLE DISEASE</td>
<td></td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>5003642501410</td>
<td>ARM A / R-ICE</td>
<td>08/02/2008</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>29/05/2008</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>PARTIAL RESPONSE</td>
<td></td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003643501202</td>
<td>ARM A / R-ICE</td>
<td>19/03/2008</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>02/06/2008</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003649501033</td>
<td>ARM A / R-ICE</td>
<td>05/06/2008</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>03/09/2008</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003101021038</td>
<td>ARM B / R-DHAP</td>
<td>06/10/2005</td>
<td>OBSERVATION</td>
<td>02/02/2006</td>
<td>05/12/2006</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSION</td>
<td>PROGRESSIVE DISEASE</td>
<td>09/01/2006</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>5003101031006</td>
<td>ARM B / R-DHAP</td>
<td>17/12/2003</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>19/02/2004</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>STABLE DISEASE</td>
<td></td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003101031019</td>
<td>ARM B / R-DHAP</td>
<td>30/12/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>21/01/2005</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>5003101031067</td>
<td>ARM B / R-DHAP</td>
<td>22/05/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>14/06/2007</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>5003101031411</td>
<td>ARM B / R-DHAP</td>
<td>26/09/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>06/12/2006</td>
<td>INDUCTION PHASE</td>
<td>OTHER</td>
<td>COLLECTION FAILURE</td>
<td>COMPLETE RESPONSE</td>
<td></td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003101051063</td>
<td>ARM B / R-DHAP</td>
<td>26/03/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>25/06/2007</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>COMPLETE RESPONSE</td>
<td></td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Arm of treatment</td>
<td>First Randomization Date</td>
<td>Arm of 2nd randomization</td>
<td>Date of 2nd randomization</td>
<td>Date of withdrawal</td>
<td>Treatment period at withdrawal</td>
<td>Reason for premature withdrawal</td>
<td>Other reason for premature withdrawal</td>
<td>Response at withdrawal</td>
<td>Transplantation date</td>
<td>Nb of cycles received</td>
<td>Nb of maintenance visits</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
<td>-------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>---------------------------------</td>
<td>-----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>5003101071002</td>
<td>ARM B / R-DHAP</td>
<td>16/10/2003</td>
<td>NOT APPLICABLE</td>
<td>21/11/2003</td>
<td>INDUCTION PHASE</td>
<td>DEATH</td>
<td>NOT EVALUATED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003101071051</td>
<td>ARM B / R-DHAP</td>
<td>25/07/2006</td>
<td>NOT APPLICABLE</td>
<td>19/09/2006</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003101071073</td>
<td>ARM B / R-DHAP</td>
<td>19/10/2007</td>
<td>NOT APPLICABLE</td>
<td>28/11/2007</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003101071408</td>
<td>ARM B / R-DHAP</td>
<td>14/12/2005</td>
<td>RITUXIMAB</td>
<td>25/04/2006</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>FAILURE TREATMENT</td>
<td>PROGRESSIVE DISEASE</td>
<td>03/04/2006</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003101071414</td>
<td>ARM B / R-DHAP</td>
<td>16/11/2006</td>
<td>NOT APPLICABLE</td>
<td>16/02/2007</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>COMPLETE RESPONSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003101071607</td>
<td>ARM B / R-DHAP</td>
<td>07/01/2004</td>
<td>NOT APPLICABLE</td>
<td>16/01/2004</td>
<td>INDUCTION PHASE</td>
<td>TREATMENT TOXICITY</td>
<td>NOT EVALUATED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003101071620</td>
<td>ARM B / R-DHAP</td>
<td>29/10/2004</td>
<td>NOT APPLICABLE</td>
<td>29/10/2004</td>
<td>BEFORE TREATMENT</td>
<td>PATIENT VOLUNTARY WITHDRAWAL</td>
<td>NOT EVALUATED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003101071643</td>
<td>ARM B / R-DHAP</td>
<td>29/10/2007</td>
<td>OBSERVATION</td>
<td>20/03/2008</td>
<td>FOLLOW UP PERIOD</td>
<td>DEATH</td>
<td>DEATH WITHOUT PROGRESSION</td>
<td></td>
<td>27/02/2008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003101091022</td>
<td>ARM B / R-DHAP</td>
<td>31/03/2005</td>
<td>NOT APPLICABLE</td>
<td>14/06/2005</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003101091025</td>
<td>ARM B / R-DHAP</td>
<td>04/05/2005</td>
<td>NOT APPLICABLE</td>
<td>12/07/2005</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003101091626</td>
<td>ARM B / R-DHAP</td>
<td>01/09/2005</td>
<td>NOT APPLICABLE</td>
<td>17/10/2005</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003101131060</td>
<td>ARM B / R-DHAP</td>
<td>25/01/2007</td>
<td>NOT APPLICABLE</td>
<td>06/04/2007</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003101141402</td>
<td>ARM B / R-DHAP</td>
<td>06/04/2005</td>
<td>NOT APPLICABLE</td>
<td>21/06/2005</td>
<td>INDUCTION PHASE</td>
<td>TREATMENT TOXICITY</td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003101161028</td>
<td>ARM B / R-DHAP</td>
<td>08/08/2005</td>
<td>NOT APPLICABLE</td>
<td>22/08/2005</td>
<td>INDUCTION PHASE</td>
<td>TREATMENT TOXICITY</td>
<td>COMPLETE RESPONSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003101221057</td>
<td>ARM B / R-DHAP</td>
<td>29/11/2006</td>
<td>NOT APPLICABLE</td>
<td>25/01/2007</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003101221070</td>
<td>ARM B / R-DHAP</td>
<td>17/09/2007</td>
<td>NOT APPLICABLE</td>
<td>13/12/2007</td>
<td>INDUCTION PHASE</td>
<td>OTHER</td>
<td>INVESTIGATOR DECISION</td>
<td>PARTIAL RESPONSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Arm of treatment</td>
<td>First Randomization Date</td>
<td>Arm of 2nd randomization</td>
<td>Date of 2nd randomization</td>
<td>Date of withdrawal</td>
<td>Treatment period at withdrawal</td>
<td>Reason for premature withdrawal</td>
<td>Other reason for premature withdrawal</td>
<td>Response at withdrawal</td>
<td>Transplantation date</td>
<td>Nb of cycles received</td>
<td>Nb of maintenance visits</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
<td>-------------------</td>
<td>--------------------------------</td>
<td>----------------------------------</td>
<td>-------------------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>-----------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>500310121639</td>
<td>ARM B / R-DHAP</td>
<td>01/02/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>19/04/2007</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5003101251015</td>
<td>ARM B / R-DHAP</td>
<td>15/09/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>01/12/2004</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5003101251044</td>
<td>ARM B / R-DHAP</td>
<td>28/03/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>12/05/2006</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5003101391032</td>
<td>ARM B / R-DHAP</td>
<td>12/07/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>02/08/2005</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5003101391048</td>
<td>ARM B / R-DHAP</td>
<td>15/06/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>12/09/2006</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5003101391207</td>
<td>ARM B / R-DHAP</td>
<td>30/01/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>05/06/2006</td>
<td>CONSOLIDATION PHASE</td>
<td>OTHER</td>
<td>MEDICAL DECISION TO TREAT WITH RADIOThERAPy ON SINUS BECAUSE OF RESIDUAL MASS</td>
<td>UNCONFIRMED COMPLETE RESPONSE</td>
<td>04/05/2006</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5003101391613</td>
<td>ARM B / R-DHAP</td>
<td>22/04/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>02/07/2004</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>STABLE DISEASE</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5003101431204</td>
<td>ARM B / R-DHAP</td>
<td>25/11/2003</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>13/02/2004</td>
<td>INDUCTION PHASE</td>
<td>TREATMENT TOXICITY</td>
<td></td>
<td>UNCONFIRMED COMPLETE RESPONSE</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5003101601066</td>
<td>ARM B / R-DHAP</td>
<td>18/05/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>24/07/2007</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5003101601076</td>
<td>ARM B / R-DHAP</td>
<td>05/03/2008</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>25/04/2008</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5003101601610</td>
<td>ARM B / R-DHAP</td>
<td>16/02/2004</td>
<td>OBSERVATION</td>
<td>17/05/2004</td>
<td>11/08/2004</td>
<td>FOLLOW UP PERIOD</td>
<td>TRANSPLANTATION FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td>24/05/2004</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5003101641018</td>
<td>ARM B / R-DHAP</td>
<td>28/12/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>31/03/2005</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5003101641047</td>
<td>ARM B / R-DHAP</td>
<td>25/04/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>29/06/2006</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5003101641079</td>
<td>ARM B / R-DHAP</td>
<td>27/06/2008</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>12/08/2008</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Arm of treatment</td>
<td>First Randomization Date</td>
<td>Arm of 2nd randomization</td>
<td>Date of 2nd randomization</td>
<td>Date of withdrawal</td>
<td>Treatment period at withdrawal</td>
<td>Reason for premature withdrawal</td>
<td>Other reason for premature withdrawal</td>
<td>Response at withdrawal</td>
<td>Transplantation date</td>
<td>Nb of cycles received</td>
<td>Nb of maintenance visits</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
<td>-------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>-----------------------------------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>5003102110131</td>
<td>ARM B / R-DHAP</td>
<td>24/06/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>20/08/2005</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>STABLE DISEASE</td>
<td></td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003102341003</td>
<td>ARM B / R-DHAP</td>
<td>07/11/2003</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>12/01/2004</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>STABLE DISEASE</td>
<td></td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003102361203</td>
<td>ARM B / R-DHAP</td>
<td>21/11/2003</td>
<td>OBSERVATION</td>
<td>19/02/2004</td>
<td>13/03/2004</td>
<td>FOLLOW UP PERIOD</td>
<td>PATIENT VOLUNTARY WITHDRAWAL</td>
<td>NOT EVALUATED</td>
<td>18/02/2004</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5003102411054</td>
<td>ARM B / R-DHAP</td>
<td>27/09/2006</td>
<td>OBSERVATION</td>
<td>08/01/2007</td>
<td>28/08/2007</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSION</td>
<td>28/12/2006</td>
<td>3</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>5003102411069</td>
<td>ARM B / R-DHAP</td>
<td>05/07/2007</td>
<td>OBSERVATION</td>
<td>24/10/2007</td>
<td>21/01/2008</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSION</td>
<td>04/10/2007</td>
<td>3</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003102541016</td>
<td>ARM B / R-DHAP</td>
<td>21/09/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>20/10/2004</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>5003102541600</td>
<td>ARM B / R-DHAP</td>
<td>02/04/2007</td>
<td>RITUXIMAB</td>
<td>27/07/2007</td>
<td>11/09/2007</td>
<td>FOLLOW UP PERIOD</td>
<td>TRANSPLANTATION FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td>26/07/2007</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>5003104621053</td>
<td>ARM B / R-DHAP</td>
<td>02/08/2006</td>
<td>OBSERVATION</td>
<td>15/11/2006</td>
<td>22/01/2007</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSION</td>
<td>22/11/2006</td>
<td>3</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>500360120118</td>
<td>ARM B / R-DHAP</td>
<td>14/06/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>04/08/2005</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>STABLE DISEASE</td>
<td></td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>5003601201021</td>
<td>ARM B / R-DHAP</td>
<td>26/03/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>15/06/2004</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003601301015</td>
<td>ARM B / R-DHAP</td>
<td>21/11/2007</td>
<td>RITUXIMAB</td>
<td>08/02/2008</td>
<td>18/03/2008</td>
<td>FOLLOW UP PERIOD</td>
<td>PATIENT VOLUNTARY WITHDRAWAL</td>
<td>PARTIAL RESPONSE</td>
<td>14/02/2008</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5003601401001</td>
<td>ARM B / R-DHAP</td>
<td>13/11/2003</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>02/01/2004</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>STABLE DISEASE</td>
<td></td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003601401049</td>
<td>ARM B / R-DHAP</td>
<td>27/09/2006</td>
<td>RITUXIMAB</td>
<td>19/12/2006</td>
<td>26/06/2007</td>
<td>FOLLOW UP PERIOD</td>
<td>TREATMENT TOXICITY</td>
<td>COMPLETE RESPONSE</td>
<td>15/12/2006</td>
<td>3</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003601401402</td>
<td>ARM B / R-DHAP</td>
<td>17/02/2005</td>
<td>RITUXIMAB</td>
<td>04/05/2005</td>
<td>16/09/2005</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSIVE DISEASE</td>
<td>10/05/2005</td>
<td>3</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>5003601601001</td>
<td>ARM B / R-DHAP</td>
<td>05/04/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>16/06/2006</td>
<td>INDUCTION PHASE</td>
<td>OTHER</td>
<td>WEST NILE VIRUS</td>
<td>NOT EVALUATED</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003601601004</td>
<td>ARM B / R-DHAP</td>
<td>02/11/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>04/11/2007</td>
<td>BEFORE TREATMENT</td>
<td>PATIENT VOLUNTARY WITHDRAWAL</td>
<td>NOT EVALUATED</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Arm of treatment</td>
<td>First Randomization Date</td>
<td>Arm of 2nd randomization</td>
<td>Date of 2nd randomization</td>
<td>Date of withdrawal</td>
<td>Treatment period at withdrawal</td>
<td>Reason for premature withdrawal</td>
<td>Other reason for premature withdrawal</td>
<td>Response at withdrawal</td>
<td>Transplantation date</td>
<td>Nb of cycles received</td>
<td>Nb of maintenance visits</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>--------------------------</td>
<td>-------------------------</td>
<td>--------------------------</td>
<td>-------------------</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
<td>---------------------------------</td>
<td>------------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>5003601601402</td>
<td>ARM B / R-DHAP</td>
<td>29/10/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>03/01/2005</td>
<td>INDUCTION PHASE</td>
<td>TREATMENT TOXICITY</td>
<td></td>
<td>COMPLETE RESPONSE</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003601601602</td>
<td>ARM B / R-DHAP</td>
<td>05/12/2007</td>
<td>OBSERVATION</td>
<td>13/03/2008</td>
<td>23/05/2008</td>
<td>FOLLOW UP PERIOD</td>
<td>TRANSPLANTATION FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td>27/02/2008</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003601801003</td>
<td>ARM B / R-DHAP</td>
<td>08/11/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>13/01/2005</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003601801603</td>
<td>ARM B / R-DHAP</td>
<td>15/12/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>09/03/2005</td>
<td>INDUCTION PHASE</td>
<td>TREATMENT TOXICITY</td>
<td></td>
<td>PARTIAL RESPONSE</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003602801016</td>
<td>ARM B / R-DHAP</td>
<td>21/08/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>04/10/2007</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>STABLE DISEASE</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>5003602801204</td>
<td>ARM B / R-DHAP</td>
<td>22/12/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>08/02/2005</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>5003603201001</td>
<td>ARM B / R-DHAP</td>
<td>11/03/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>03/05/2004</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>STABLE DISEASE</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003603201005</td>
<td>ARM B / R-DHAP</td>
<td>08/10/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>12/10/2004</td>
<td>BEFORE TREATMENT</td>
<td>MAJOR PROTOCOL VIOLATION</td>
<td></td>
<td>NOT EVALUATED</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5003603201227</td>
<td>ARM B / R-DHAP</td>
<td>26/01/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>26/01/2006</td>
<td>BEFORE TREATMENT</td>
<td>DEATH</td>
<td></td>
<td>NOT EVALUATED</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5003603201334</td>
<td>ARM B / R-DHAP</td>
<td>14/08/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>12/10/2006</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>STABLE DISEASE</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>500360320150</td>
<td>ARM B / R-DHAP</td>
<td>06/08/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>08/11/2007</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003603201211</td>
<td>ARM B / R-DHAP</td>
<td>21/02/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>26/04/2006</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003603301401</td>
<td>ARM B / R-DHAP</td>
<td>06/09/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>30/04/2005</td>
<td>CONSOLIDATION PHASE</td>
<td>OTHER</td>
<td>IT WAS DECIDED BY GELA THAT THE PATIENT COULD NOT BE RANDOMIZED AS IT WAS 5 MONTH BETWEEN TRANSPLANT AND MAINTENANCE AND THEREFORE PATIENT HAS COME OFF PROTOCOL</td>
<td>UNCONFIRMED COMPLETE RESPONSE</td>
<td>10/12/2004</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003603801007</td>
<td>ARM B / R-DHAP</td>
<td>08/03/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>17/05/2006</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Arm of treatment</td>
<td>First Randomization Date</td>
<td>Arm of 2nd randomization</td>
<td>Date of 2nd randomization</td>
<td>Date of withdrawal</td>
<td>Treatment period at withdrawal</td>
<td>Reason for premature withdrawal</td>
<td>Other reason for premature withdrawal</td>
<td>Response at withdrawal</td>
<td>Transplantation date</td>
<td>Nb of cycles received</td>
<td>Nb of maintenance visits</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>--------------------</td>
<td>-----------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>--------------------------</td>
<td>---------------------</td>
<td>------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>5003603801013</td>
<td>ARM B / R-DHAP</td>
<td>20/12/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>15/02/2007</td>
<td>INDUCTION PHASE</td>
<td>TREATMENT TOXICITY</td>
<td>NOT EVALUATED</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003603901001</td>
<td>ARM B / R-DHAP</td>
<td>06/10/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>14/11/2004</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003604201028</td>
<td>ARM B / R-DHAP</td>
<td>02/02/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>27/03/2006</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003604301607</td>
<td>ARM B / R-DHAP</td>
<td>12/08/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>27/10/2004</td>
<td>INDUCTION PHASE</td>
<td>PATIENT VOLUNTARY WITHDRAWAL</td>
<td>PARTIAL RESPONSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003604701002</td>
<td>ARM B / R-DHAP</td>
<td>25/02/2005</td>
<td>RITUXIMAB</td>
<td>19/05/2005</td>
<td>26/10/2005</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSION UNDER MAINTENANCE THERAPY</td>
<td>PROGRESSIVE DISEASE</td>
<td>17/05/2005</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5003604701012</td>
<td>ARM B / R-DHAP</td>
<td>19/04/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>04/05/2007</td>
<td>INDUCTION PHASE</td>
<td>DEATH</td>
<td>NOT EVALUATED</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003604801006</td>
<td>ARM B / R-DHAP</td>
<td>18/10/2005</td>
<td>RITUXIMAB</td>
<td>09/03/2006</td>
<td>16/05/2006</td>
<td>FOLLOW UP PERIOD</td>
<td>TRANSPLANTATION FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003604801201</td>
<td>ARM B / R-DHAP</td>
<td>08/09/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>14/11/2004</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>STABLE DISEASE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003604801405</td>
<td>ARM B / R-DHAP</td>
<td>30/05/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>09/08/2007</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>COMPLETE RESPONSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003604901004</td>
<td>ARM B / R-DHAP</td>
<td>22/11/2005</td>
<td>RITUXIMAB</td>
<td>09/03/2006</td>
<td>21/12/2006</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>RELAPSE</td>
<td>PROGRESSIVE DISEASE</td>
<td>25/05/2006</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003604901007</td>
<td>ARM B / R-DHAP</td>
<td>15/01/2008</td>
<td>OBSERVATION</td>
<td>18/06/2008</td>
<td>05/10/2008</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>ABOUT 2 MONTHS FOLLOWING TRANSPLANT, THE PATIENT UNDERWENT PET-CT EVALUATION. ALTHOUGH THERE WAS NO MAJOR ANATOMICAL CHANGE IN CT, THE MEDIASTINAL NODES WERE FDG AVID WITH SIGNIFICANT UPTAKE DUE TO PET-CT RESULTS, THE TREATING PHYSICIAN SUSPECTED THAT *</td>
<td>PARTIAL RESPONSE</td>
<td>19/05/2008</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003604901602</td>
<td>ARM B / R-DHAP</td>
<td>02/02/2005</td>
<td>RITUXIMAB</td>
<td>02/05/2005</td>
<td>28/06/2005</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>LOST TO FOLLOW-UP AFTER BMT</td>
<td>NOT EVALUATED</td>
<td>16/06/2005</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Arm of treatment</td>
<td>First Randomization Date</td>
<td>Date of 2nd randomization</td>
<td>Date of withdrawal</td>
<td>Treatment period at withdrawal</td>
<td>Reason for premature withdrawal</td>
<td>Other reason for premature withdrawal</td>
<td>Response at withdrawal</td>
<td>Transplantation date</td>
<td>Nb of cycles received</td>
<td>Nb of maintenance visits</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>-------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>-----------------------------------</td>
<td>------------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>----------------------</td>
<td></td>
</tr>
<tr>
<td>5003604901603</td>
<td>ARM B / R-DHAP</td>
<td>03/03/2008</td>
<td>RITUXIMAB</td>
<td>19/06/2008</td>
<td>FOLLOW UP PERIOD</td>
<td>DEATH</td>
<td></td>
<td></td>
<td>18/06/2008</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5003605201603</td>
<td>ARM B / R-DHAP</td>
<td>14/04/2004</td>
<td>NOT APPLICABLE</td>
<td>29/06/2004</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5003605301203</td>
<td>ARM B / R-DHAP</td>
<td>23/03/2004</td>
<td>NOT APPLICABLE</td>
<td>25/05/2004</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5003605301610</td>
<td>ARM B / R-DHAP</td>
<td>18/11/2004</td>
<td>RITUXIMAB</td>
<td>02/05/2005</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSION- NEW LESION VERICAL LYMPH NODE</td>
<td></td>
<td>23/02/2005</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5003605701404</td>
<td>ARM B / R-DHAP</td>
<td>30/01/2008</td>
<td>NOT APPLICABLE</td>
<td>04/04/2008</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5003606201033</td>
<td>ARM B / R-DHAP</td>
<td>02/06/2006</td>
<td>NOT APPLICABLE</td>
<td>22/08/2006</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5003606201407</td>
<td>ARM B / R-DHAP</td>
<td>06/06/2006</td>
<td>RITUXIMAB</td>
<td>21/09/2006</td>
<td>FOLLOW UP PERIOD</td>
<td>TRANSPLANTATION FAILURE</td>
<td></td>
<td></td>
<td>13/09/2006</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5003606201410</td>
<td>ARM B / R-DHAP</td>
<td>09/05/2007</td>
<td>NOT APPLICABLE</td>
<td>31/05/2007</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5003606201622</td>
<td>ARM B / R-DHAP</td>
<td>21/07/2006</td>
<td>NOT APPLICABLE</td>
<td>25/09/2006</td>
<td>INDUCTION PHASE</td>
<td>OTHER</td>
<td>NO STEM CELL MOBILIZATION POSSIBLE</td>
<td>PARTIAL RESPONSE</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5003606201626</td>
<td>ARM B / R-DHAP</td>
<td>22/02/2007</td>
<td>NOT APPLICABLE</td>
<td>18/06/2007</td>
<td>CONSOLIDATION PHASE</td>
<td>OTHER</td>
<td>NO SECOND RANDOMISATION DONE</td>
<td>COMPLETE RESPONSE</td>
<td>21/05/2007</td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5003606301012</td>
<td>ARM B / R-DHAP</td>
<td>11/10/2007</td>
<td>NOT APPLICABLE</td>
<td>12/02/2008</td>
<td>CONSOLIDATION PHASE</td>
<td>DEATH</td>
<td></td>
<td></td>
<td>15/01/2008</td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5003606301606</td>
<td>ARM B / R-DHAP</td>
<td>07/07/2004</td>
<td>NOT APPLICABLE</td>
<td>13/09/2004</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5003606701005</td>
<td>ARM B / R-DHAP</td>
<td>22/09/2005</td>
<td>NOT APPLICABLE</td>
<td>05/02/2006</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5003607201408</td>
<td>ARM B / R-DHAP</td>
<td>14/12/2006</td>
<td>NOT APPLICABLE</td>
<td>10/05/2007</td>
<td>CONSOLIDATION PHASE</td>
<td>OTHER</td>
<td>NO SECOND RANDOMIZATION DUE TO PROLONGED THROMBOCYTOPENIA AND LEUCOCYTOPENIA</td>
<td>COMPLETE RESPONSE</td>
<td>15/03/2007</td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5003607301622</td>
<td>ARM B / R-DHAP</td>
<td>11/12/2006</td>
<td>NOT APPLICABLE</td>
<td>26/01/2007</td>
<td>INDUCTION PHASE</td>
<td>DEATH</td>
<td>NOT EVALUATED</td>
<td></td>
<td>-</td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5003607501401</td>
<td>ARM B / R-DHAP</td>
<td>19/07/2006</td>
<td>RITUXIMAB</td>
<td>30/10/2006</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSIVE DISEASE</td>
<td>PROGRESSIVE DISEASE</td>
<td>18/10/2006</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Arm of treatment</td>
<td>First Randomization Date</td>
<td>Arm of 2nd randomization</td>
<td>Date of 2nd randomization</td>
<td>Date of withdrawal</td>
<td>Treatment period at withdrawal</td>
<td>Reason for premature withdrawal</td>
<td>Other reason for premature withdrawal</td>
<td>Response at withdrawal</td>
<td>Transplantation date</td>
<td>Nb of cycles received</td>
<td>Nb of maintenance visits</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>-------------------</td>
<td>-----------------------------</td>
<td>--------------------------------</td>
<td>---------------------------------</td>
<td>-----------------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>50036083012025</td>
<td>ARM B / R-DHAP</td>
<td>25/06/2004</td>
<td>RITUXIMAB</td>
<td>01/10/2004</td>
<td>15/06/2005</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>INADVERTENTLY STOPPED RITUXIMAB</td>
<td>UNCONFIRMED COMPLETE RESPONSE</td>
<td>29/09/2004</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>50036087010008</td>
<td>ARM B / R-DHAP</td>
<td>09/02/2006</td>
<td>OBSERVATION</td>
<td>19/05/2006</td>
<td>13/06/2006</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSED AFTER STABLE DISEASE</td>
<td>PROGRESSIVE DISEASE</td>
<td>01/05/2006</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>50036102010008</td>
<td>ARM B / R-DHAP</td>
<td>15/11/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>11/01/2005</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>STABLE DISEASE</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5003610201212</td>
<td>ARM B / R-DHAP</td>
<td>13/04/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>17/05/2006</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>STABLE DISEASE</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5003610301209</td>
<td>ARM B / R-DHAP</td>
<td>17/03/2005</td>
<td>OBSERVATION</td>
<td>21/06/2005</td>
<td>14/03/2006</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PATIENT WITHDRAWN BY INVESTIGATOR AS IS NON COMPLIANT WITH ATTENDING FOR REVIEW</td>
<td>UNCONFIRMED COMPLETE RESPONSE</td>
<td>27/06/2005</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003610301613</td>
<td>ARM B / R-DHAP</td>
<td>01/03/2005</td>
<td>OBSERVATION</td>
<td>23/05/2005</td>
<td>07/09/2005</td>
<td>FOLLOW UP PERIOD</td>
<td>TRANSPLANTATION FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td>31/05/2005</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5003610701014</td>
<td>ARM B / R-DHAP</td>
<td>24/09/2007</td>
<td>RITUXIMAB</td>
<td>07/01/2008</td>
<td>14/04/2008</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PD</td>
<td>COMPLETE RESPONSE</td>
<td>14/01/2008</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003610701403</td>
<td>ARM B / R-DHAP</td>
<td>06/12/2007</td>
<td>OBSERVATION</td>
<td>28/03/2008</td>
<td>06/10/2008</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>RECCURENT IN FU-PHASE 6 MONTHS AFTER TRANSPLANT</td>
<td>PROGRESSIVE DISEASE</td>
<td>03/03/2008</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5003611301002</td>
<td>ARM B / R-DHAP</td>
<td>14/09/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>30/10/2004</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5003611301003</td>
<td>ARM B / R-DHAP</td>
<td>02/05/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>19/07/2005</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>COMPLETE RESPONSE</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5003612301623</td>
<td>ARM B / R-DHAP</td>
<td>13/12/2006</td>
<td>RITUXIMAB</td>
<td>16/04/2007</td>
<td>31/07/2007</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSIVE DISEASE</td>
<td>PROGRESSIVE DISEASE</td>
<td>30/03/2007</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003612501016</td>
<td>ARM B / R-DHAP</td>
<td>29/06/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>12/09/2007</td>
<td>INDUCTION PHASE</td>
<td>OTHER</td>
<td>RESPONSE NOT ENOUGH, THERE IS STILL BULKY DISEASE</td>
<td>PROGRESSIVE DISEASE</td>
<td>-</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5003612501019</td>
<td>ARM B / R-DHAP</td>
<td>03/09/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>20/11/2007</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5003614301407</td>
<td>ARM B / R-DHAP</td>
<td>06/03/2008</td>
<td>OBSERVATION</td>
<td>21/07/2008</td>
<td>18/09/2008</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSIVE DISEASE</td>
<td>PROGRESSIVE DISEASE</td>
<td>20/06/2008</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003614501013</td>
<td>ARM B / R-DHAP</td>
<td>20/04/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>21/07/2007</td>
<td>INDUCTION PHASE</td>
<td>DEATH</td>
<td>PROGRESSIVE DISEASE</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Arm of treatment</td>
<td>First Randomization Date</td>
<td>Arm of 2nd randomization</td>
<td>Date of 2nd randomization</td>
<td>Date of withdrawal</td>
<td>Treatment period at withdrawal</td>
<td>Reason for premature withdrawal</td>
<td>Other reason for premature withdrawal</td>
<td>Response at withdrawal</td>
<td>Transplantation date</td>
<td>Nb of cycles received</td>
<td>Nb of maintenance visits</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>-------------------</td>
<td>-------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>5003615501004</td>
<td>ARM B / R-DHAP</td>
<td>05/10/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>18/12/2006</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5003615501007</td>
<td>ARM B / R-DHAP</td>
<td>20/12/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>23/02/2007</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>OTHER</td>
<td>CVA</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>5003615501029</td>
<td>ARM B / R-DHAP</td>
<td>27/02/2008</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>02/05/2008</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PARTIAL RESPONSE</td>
<td>NOT EVALUATED</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003616201413</td>
<td>ARM B / R-DHAP</td>
<td>29/04/2008</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>03/06/2008</td>
<td>INDUCTION PHASE</td>
<td>TREATMENT TOXICITY</td>
<td>NOT EVALUATED</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5003616301212</td>
<td>ARM B / R-DHAP</td>
<td>21/04/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>05/07/2006</td>
<td>INDUCTION PHASE</td>
<td>OTHER</td>
<td>FAILURE TO MOBILIZE</td>
<td>PARTIAL RESPONSE</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003616501411</td>
<td>ARM B / R-DHAP</td>
<td>26/06/2008</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>22/09/2008</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>STABLE DISEASE</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5003617201021</td>
<td>ARM B / R-DHAP</td>
<td>17/10/2005</td>
<td>RITUXIMAB</td>
<td>14/02/2006</td>
<td>17/03/2006</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>ACTIVE HEPATITIS C INFECTION AFTER APERESIS, BAD CONDITION AFTER TRANSPLANTATION / DECISION NOT TO TREAT PATIENT WITH RITUXIMAB FURTHER AS RANDOMIZED IN STUDY</td>
<td>UNCONFIRMED COMPLETE RESPONSE</td>
<td>01/02/2006</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>5003617201024</td>
<td>ARM B / R-DHAP</td>
<td>07/12/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>02/01/2006</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5003617201031</td>
<td>ARM B / R-DHAP</td>
<td>26/05/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>13/07/2006</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5003617201043</td>
<td>ARM B / R-DHAP</td>
<td>25/01/2007</td>
<td>RITUXIMAB</td>
<td>16/04/2007</td>
<td>11/09/2007</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSION</td>
<td>PROGRESSIVE DISEASE</td>
<td>19/04/2007</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003617201049</td>
<td>ARM B / R-DHAP</td>
<td>10/07/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>24/09/2007</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>STABLE DISEASE</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5003617201616</td>
<td>ARM B / R-DHAP</td>
<td>28/07/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>14/10/2005</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>NOT EVALUATED</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5003617501006</td>
<td>ARM B / R-DHAP</td>
<td>01/12/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>12/01/2007</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5003617501026</td>
<td>ARM B / R-DHAP</td>
<td>06/12/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>07/01/2008</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5003618301005</td>
<td>ARM B / R-DHAP</td>
<td>01/02/2006</td>
<td>OBSERVATION</td>
<td>19/05/2006</td>
<td>23/06/2006</td>
<td>FOLLOW UP PERIOD</td>
<td>TRANSPLANTATION FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td>03/05/2006</td>
<td>3</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Arm of treatment</td>
<td>First Randomization Date</td>
<td>Arm of 2nd randomization</td>
<td>Date of 2nd randomization</td>
<td>Date of withdrawal</td>
<td>Treatment period at withdrawal</td>
<td>Reason for premature withdrawal</td>
<td>Other reason for premature withdrawal</td>
<td>Response at withdrawal</td>
<td>Transplantation date</td>
<td>Nb of cycles received</td>
<td>Nb of maintenance visits</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>-------------------</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
<td>---------------------------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>50036185010125</td>
<td>ARM B / R-DHAP</td>
<td>05/12/2007</td>
<td>OBSERVATION</td>
<td>29/04/2008</td>
<td>08/01/2009</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSION DURING MAINTENANCE</td>
<td>PROGRESSIVE DISEASE</td>
<td>10/04/2008</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5003619301006</td>
<td>ARM B / R-DHAP</td>
<td>26/05/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>21/09/2006</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td>PROGRESSIVE DISEASE</td>
<td>-</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5003619301016</td>
<td>ARM B / R-DHAP</td>
<td>22/01/2008</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>26/03/2008</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td>PROGRESSIVE DISEASE</td>
<td>-</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5003619501009</td>
<td>ARM B / R-DHAP</td>
<td>17/01/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>06/06/2007</td>
<td>CONSOLIDATION PHASE</td>
<td>OTHER</td>
<td>CLINICIAN DECISION TO PLAN AND GIVE RADIOTHERAPY POST TRANSPLANT</td>
<td>PARTIAL RESPONSE</td>
<td>15/05/2007</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5003619501010</td>
<td>ARM B / R-DHAP</td>
<td>14/02/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>06/04/2007</td>
<td>INDUCTION PHASE</td>
<td>DEATH</td>
<td>NOT EVALUATED</td>
<td>-</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003620201017</td>
<td>ARM B / R-DHAP</td>
<td>09/05/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>10/08/2005</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003622201037</td>
<td>ARM B / R-DHAP</td>
<td>28/09/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>14/12/2006</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>STABLE DISEASE</td>
<td>-</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003623501405</td>
<td>ARM B / R-DHAP</td>
<td>05/07/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>26/07/2007</td>
<td>INDUCTION PHASE</td>
<td>DEATH</td>
<td>DEATH WITHOUT PROGRESSION</td>
<td>-</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003623501408</td>
<td>ARM B / R-DHAP</td>
<td>18/10/2007</td>
<td>OBSERVATION</td>
<td>25/01/2008</td>
<td>28/04/2008</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>COMMENCING RADIOTHERAPY, CONSIDERED A NEW TREATMENT, PATIENT IS IN PARTIAL RESPONSE</td>
<td>PARTIAL RESPONSE</td>
<td>18/01/2008</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003625601605</td>
<td>ARM B / R-DHAP</td>
<td>14/09/2007</td>
<td>RITUXIMAB</td>
<td>19/12/2007</td>
<td>28/04/2008</td>
<td>FOLLOW UP PERIOD</td>
<td>TREATMENT TOXICITY</td>
<td>PARTIAL RESPONSE</td>
<td>09/01/2008</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5003628201046</td>
<td>ARM B / R-DHAP</td>
<td>21/06/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>04/09/2007</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>STABLE DISEASE</td>
<td>-</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003628201404</td>
<td>ARM B / R-DHAP</td>
<td>13/02/2006</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>07/06/2006</td>
<td>INDUCTION PHASE</td>
<td>PATIENT VOLUNTARY WITHDRAWAL</td>
<td>STABLE DISEASE</td>
<td>-</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003630201040</td>
<td>ARM B / R-DHAP</td>
<td>06/11/2006</td>
<td>RITUXIMAB</td>
<td>09/03/2007</td>
<td>22/05/2007</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSION</td>
<td>PROGRESSIVE DISEASE</td>
<td>13/02/2007</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003631201011</td>
<td>ARM B / R-DHAP</td>
<td>03/12/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>25/12/2004</td>
<td>INDUCTION PHASE</td>
<td>TREATMENT TOXICITY</td>
<td>PROGRESSIVE DISEASE</td>
<td>-</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Arm of treatment</td>
<td>First Randomization Date</td>
<td>Arm of 2nd randomization</td>
<td>Date of 2nd randomization</td>
<td>Date of withdrawal</td>
<td>Treatment period at withdrawal</td>
<td>Reason for premature withdrawal</td>
<td>Other reason for premature withdrawal</td>
<td>Response at withdrawal</td>
<td>Transplantation date</td>
<td>Nb of cycles received</td>
<td>Nb of maintenance visits</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
<td>-------------------</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
<td>----------------------------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>5003631201012</td>
<td>ARM B / R-DHAP</td>
<td>15/12/2004</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>01/03/2005</td>
<td>INDUCTION PHASE</td>
<td>TREATMENT TOXICITY</td>
<td>STABLE DISEASE</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5003632201015</td>
<td>ARM B / R-DHAP</td>
<td>01/04/2005</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>01/07/2005</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5003635201411</td>
<td>ARM B / R-DHAP</td>
<td>11/05/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>04/06/2007</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>STABLE DISEASE</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5003636201047</td>
<td>ARM B / R-DHAP</td>
<td>29/06/2007</td>
<td>NOT APPLICABLE</td>
<td>-</td>
<td>14/08/2007</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

N = 318
6.2. Initial treatment

Listing 6.2-1 Initial treatment - Patients with other chemotherapy (FAS)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of treatment</th>
<th>Number of cycles of chemotherapy</th>
<th>Chemotherapy regimen</th>
<th>Specify other Chemotherapy regimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003603801601</td>
<td>ARM A / R-ICE</td>
<td>4</td>
<td>OTHER</td>
<td>B ALL GERMAN : PEDIATRIC PROTOCOL NHL-BFM95</td>
</tr>
<tr>
<td>5003603801608</td>
<td>ARM A / R-ICE</td>
<td>6</td>
<td>OTHER</td>
<td>NHL-BFM 95 PROTOCOL FOR RISK GROUP 3</td>
</tr>
<tr>
<td>5003607201016</td>
<td>ARM A / R-ICE</td>
<td>6</td>
<td>OTHER</td>
<td>B ALL GERMAN : HOELZER PROTOCOL (BLOCK A1, B1, C1, A2, B2, C2) + INTRATHecal MTX + ARAC + DEXAMETHASONE</td>
</tr>
<tr>
<td>5003609201058</td>
<td>ARM A / R-ICE</td>
<td>6</td>
<td>OTHER</td>
<td>GMALL B-NHL</td>
</tr>
<tr>
<td>5003617201209</td>
<td>ARM A / R-ICE</td>
<td>8</td>
<td>OTHER</td>
<td>BEACOPP ESC.</td>
</tr>
<tr>
<td>5003631201035</td>
<td>ARM A / R-ICE</td>
<td>2</td>
<td>OTHER</td>
<td>B-NHL PROTOCOL</td>
</tr>
<tr>
<td>5003642501030</td>
<td>ARM A / R-ICE</td>
<td>8</td>
<td>OTHER</td>
<td>R-CHOP (R-CHOP 14 VS 21 STUDY)</td>
</tr>
<tr>
<td>5003601201201</td>
<td>ARM B / R-DHAP</td>
<td>6</td>
<td>OTHER</td>
<td>VM26 / ARA-C / VINCRISTIN / HD-MTX / IFOSFAMID / DEXAMETHASON</td>
</tr>
<tr>
<td>5003604201028</td>
<td>ARM B / R-DHAP</td>
<td>6</td>
<td>OTHER</td>
<td>B-ALL GERMAN / B-NHL ELDERLY : MTX, VINCR, ADRIA, CYCLOPH, DEXA, RITUX, IFOSF, VM-26, ARA-C, GEMCI</td>
</tr>
<tr>
<td>5003616201413</td>
<td>ARM B / R-DHAP</td>
<td>8</td>
<td>OTHER</td>
<td>CHOP-14</td>
</tr>
<tr>
<td>5003617201616</td>
<td>ARM B / R-DHAP</td>
<td>3</td>
<td>OTHER</td>
<td>B ALL GERMAN / NHL 2002 PROTOCOL (>55 YEARS)</td>
</tr>
</tbody>
</table>

N = 11

Listing 6.2-2 Initial treatment – Doses of radiotherapy (FAS)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of treatment</th>
<th>Radiotherapy</th>
<th>Specify dose of radiotherapy (Gy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003101071013</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003101071647</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>40</td>
</tr>
<tr>
<td>50031011301058</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>30</td>
</tr>
<tr>
<td>5003101131062</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003101281033</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003101391201</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>40</td>
</tr>
<tr>
<td>5003101441036</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>40</td>
</tr>
<tr>
<td>5003101621609</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>40</td>
</tr>
<tr>
<td>5003101621615</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>40</td>
</tr>
<tr>
<td>5003102161413</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>20</td>
</tr>
<tr>
<td>5003102341641</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>40</td>
</tr>
<tr>
<td>5003102491619</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>30</td>
</tr>
<tr>
<td>5003102541052</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003601401605</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>40</td>
</tr>
<tr>
<td>5003601601005</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>45</td>
</tr>
<tr>
<td>5003601801017</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>16</td>
</tr>
<tr>
<td>5003601881401</td>
<td>ARM A / R-ICE</td>
<td>-</td>
<td>48</td>
</tr>
<tr>
<td>5003602021601</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003602081605</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>40</td>
</tr>
<tr>
<td>5003602901402</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>45</td>
</tr>
<tr>
<td>5003603201213</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>40</td>
</tr>
<tr>
<td>5003603201608</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003603701004</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>30.6</td>
</tr>
<tr>
<td>5003603801002</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003603801203</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>6</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Arm of treatment</td>
<td>Radiotherapy</td>
<td>Specify dose of radiotherapy (Gy)</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>--------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>5003603801406</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>40</td>
</tr>
<tr>
<td>5003603801601</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003604301013</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003604301602</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>40</td>
</tr>
<tr>
<td>5003604301618</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>40</td>
</tr>
<tr>
<td>5003604801014</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>30</td>
</tr>
<tr>
<td>5003604801205</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>40</td>
</tr>
<tr>
<td>5003605301010</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>40</td>
</tr>
<tr>
<td>5003606201029</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>38</td>
</tr>
<tr>
<td>5003606201605</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003606301204</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>30</td>
</tr>
<tr>
<td>5003606301612</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>30</td>
</tr>
<tr>
<td>5003607201016</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>59</td>
</tr>
<tr>
<td>5003607201045</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>20</td>
</tr>
<tr>
<td>5003607701007</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003607701405</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>39.6</td>
</tr>
<tr>
<td>5003608301605</td>
<td>ARM A / R-ICE</td>
<td>OTHER</td>
<td>40</td>
</tr>
<tr>
<td>5003608701016</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003610201612</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003610201615</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>39.6</td>
</tr>
<tr>
<td>5003612501015</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>30</td>
</tr>
<tr>
<td>5003616301403</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003616501005</td>
<td>ARM A / R-ICE</td>
<td>OTHER</td>
<td>35</td>
</tr>
<tr>
<td>5003617201209</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>30</td>
</tr>
<tr>
<td>5003620301017</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>45</td>
</tr>
<tr>
<td>500362201022</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>500362201210</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003622201403</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003626501607</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>40</td>
</tr>
<tr>
<td>5003628201618</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003628201624</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003630201055</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>35</td>
</tr>
<tr>
<td>5003632201054</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>24</td>
</tr>
<tr>
<td>5003632201614</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>40</td>
</tr>
<tr>
<td>5003642501410</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>20</td>
</tr>
<tr>
<td>5003643501202</td>
<td>ARM A / R-ICE</td>
<td>LOCAL</td>
<td>30</td>
</tr>
<tr>
<td>5003701061617</td>
<td>ARM B / R-DHAP</td>
<td>LOCAL</td>
<td>40</td>
</tr>
<tr>
<td>5003701071607</td>
<td>ARM B / R-DHAP</td>
<td>LOCAL</td>
<td>50</td>
</tr>
<tr>
<td>5003701071620</td>
<td>ARM B / R-DHAP</td>
<td>LOCAL</td>
<td>50</td>
</tr>
<tr>
<td>5003701071643</td>
<td>ARM B / R-DHAP</td>
<td>LOCAL</td>
<td>50</td>
</tr>
<tr>
<td>5003701141624</td>
<td>ARM B / R-DHAP</td>
<td>LOCAL</td>
<td>27</td>
</tr>
<tr>
<td>5003701251009</td>
<td>ARM B / R-DHAP</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003701251021</td>
<td>ARM B / R-DHAP</td>
<td>LOCAL</td>
<td>40</td>
</tr>
<tr>
<td>5003701251035</td>
<td>ARM B / R-DHAP</td>
<td>LOCAL</td>
<td>40</td>
</tr>
<tr>
<td>5003701391613</td>
<td>ARM B / R-DHAP</td>
<td>LOCAL</td>
<td>40</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Arm of treatment</td>
<td>Radiotherapy</td>
<td>Specify dose of radiotherapy (Gy)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------</td>
<td>--------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>500301391646</td>
<td>ARM B / R-DHAP</td>
<td>LOCAL</td>
<td>40</td>
</tr>
<tr>
<td>500301431627</td>
<td>ARM B / R-DHAP</td>
<td>LOCAL</td>
<td>40</td>
</tr>
<tr>
<td>500301481614</td>
<td>ARM B / R-DHAP</td>
<td>LOCAL</td>
<td>40</td>
</tr>
<tr>
<td>500301234003</td>
<td>ARM B / R-DHAP</td>
<td>OTHER</td>
<td>40</td>
</tr>
<tr>
<td>5003012541636</td>
<td>ARM B / R-DHAP</td>
<td>LOCAL</td>
<td>7.6</td>
</tr>
<tr>
<td>5003012541640</td>
<td>ARM B / R-DHAP</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003601201201</td>
<td>ARM B / R-DHAP</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003601201604</td>
<td>ARM B / R-DHAP</td>
<td>LOCAL</td>
<td>40</td>
</tr>
<tr>
<td>5003601301015</td>
<td>ARM B / R-DHAP</td>
<td>LOCAL</td>
<td>30</td>
</tr>
<tr>
<td>5003601401604</td>
<td>ARM B / R-DHAP</td>
<td>LOCAL</td>
<td>44</td>
</tr>
<tr>
<td>5003601401604</td>
<td>ARM B / R-DHAP</td>
<td>LOCAL</td>
<td>40</td>
</tr>
<tr>
<td>5003601601601</td>
<td>ARM B / R-DHAP</td>
<td>LOCAL</td>
<td>30</td>
</tr>
<tr>
<td>5003601801607</td>
<td>ARM B / R-DHAP</td>
<td>LOCAL</td>
<td>40</td>
</tr>
<tr>
<td>5003601801601</td>
<td>ARM B / R-DHAP</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003603201001</td>
<td>ARM B / R-DHAP</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003603701001</td>
<td>ARM B / R-DHAP</td>
<td>LOCAL</td>
<td>30.6</td>
</tr>
<tr>
<td>5003603801013</td>
<td>ARM B / R-DHAP</td>
<td>LOCAL</td>
<td>38</td>
</tr>
<tr>
<td>5003604701011</td>
<td>ARM B / R-DHAP</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003604801004</td>
<td>ARM B / R-DHAP</td>
<td>LOCAL</td>
<td>40</td>
</tr>
<tr>
<td>5003604901602</td>
<td>ARM B / R-DHAP</td>
<td>LOCAL</td>
<td>4</td>
</tr>
<tr>
<td>5003605301203</td>
<td>ARM B / R-DHAP</td>
<td>LOCAL</td>
<td>30</td>
</tr>
<tr>
<td>5003606301604</td>
<td>ARM B / R-DHAP</td>
<td>LOCAL</td>
<td>30</td>
</tr>
<tr>
<td>5003606501601</td>
<td>ARM B / R-DHAP</td>
<td>LOCAL</td>
<td>39.6</td>
</tr>
<tr>
<td>5003606701005</td>
<td>ARM B / R-DHAP</td>
<td>LOCAL</td>
<td>39.6</td>
</tr>
<tr>
<td>5003607201623</td>
<td>ARM B / R-DHAP</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003607501401</td>
<td>ARM B / R-DHAP</td>
<td>LOCAL</td>
<td>30</td>
</tr>
<tr>
<td>5003608701008</td>
<td>ARM B / R-DHAP</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003610201008</td>
<td>ARM B / R-DHAP</td>
<td>LOCAL</td>
<td>39.6</td>
</tr>
<tr>
<td>5003610201212</td>
<td>ARM B / R-DHAP</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003612301623</td>
<td>ARM B / R-DHAP</td>
<td>LOCAL</td>
<td>40</td>
</tr>
<tr>
<td>5003616501411</td>
<td>ARM B / R-DHAP</td>
<td>LOCAL</td>
<td>35</td>
</tr>
<tr>
<td>5003617201031</td>
<td>ARM B / R-DHAP</td>
<td>LOCAL</td>
<td>9</td>
</tr>
<tr>
<td>5003617201616</td>
<td>ARM B / R-DHAP</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003617201629</td>
<td>ARM B / R-DHAP</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003617301616</td>
<td>ARM B / R-DHAP</td>
<td>LOCAL</td>
<td>30</td>
</tr>
<tr>
<td>5003623501405</td>
<td>ARM B / R-DHAP</td>
<td>LOCAL</td>
<td>40</td>
</tr>
<tr>
<td>5003628201046</td>
<td>ARM B / R-DHAP</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003630201040</td>
<td>ARM B / R-DHAP</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003632201015</td>
<td>ARM B / R-DHAP</td>
<td>LOCAL</td>
<td>20</td>
</tr>
<tr>
<td>5003632201606</td>
<td>ARM B / R-DHAP</td>
<td>LOCAL</td>
<td>36</td>
</tr>
</tbody>
</table>

N = 110
6.3. Progression/relapse diagnosis

Table 6.3-1 Nodal involvement (FAS)

<table>
<thead>
<tr>
<th>Nodal Involvement</th>
<th>Arm of Treatment</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
<td>All</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Cervical right</td>
<td>Normal</td>
<td>185</td>
<td>76</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>Involved</td>
<td>49</td>
<td>20</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Not evaluated</td>
<td>8</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cervical left</td>
<td>Normal</td>
<td>170</td>
<td>70</td>
<td>173</td>
</tr>
<tr>
<td></td>
<td>Involved</td>
<td>64</td>
<td>26</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Not evaluated</td>
<td>8</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Supraclavicular</td>
<td>Normal</td>
<td>219</td>
<td>90</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>Involved</td>
<td>18</td>
<td>7</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Not evaluated</td>
<td>5</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Supraclavicular left</td>
<td>Normal</td>
<td>202</td>
<td>83</td>
<td>196</td>
</tr>
<tr>
<td></td>
<td>Involved</td>
<td>35</td>
<td>14</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Not evaluated</td>
<td>5</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Axillary right</td>
<td>Normal</td>
<td>205</td>
<td>84</td>
<td>196</td>
</tr>
<tr>
<td></td>
<td>Involved</td>
<td>34</td>
<td>14</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Not evaluated</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Axillary left</td>
<td>Normal</td>
<td>191</td>
<td>79</td>
<td>195</td>
</tr>
<tr>
<td></td>
<td>Involved</td>
<td>49</td>
<td>20</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Not evaluated</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Inguinal right</td>
<td>Normal</td>
<td>199</td>
<td>82</td>
<td>201</td>
</tr>
<tr>
<td></td>
<td>Involved</td>
<td>39</td>
<td>16</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Not evaluated</td>
<td>4</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Inguinal left</td>
<td>Normal</td>
<td>201</td>
<td>83</td>
<td>197</td>
</tr>
<tr>
<td></td>
<td>Involved</td>
<td>37</td>
<td>15</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Not evaluated</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Nodule Location</td>
<td>Normal N</td>
<td>Normal %</td>
<td>Involved N</td>
<td>Involved %</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------</td>
<td>----------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>Mediastinal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>135</td>
<td>56%</td>
<td>158</td>
<td>68%</td>
</tr>
<tr>
<td>Involved</td>
<td>105</td>
<td>43%</td>
<td>71</td>
<td>30%</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>2</td>
<td>1%</td>
<td>5</td>
<td>2%</td>
</tr>
<tr>
<td>Pulmonary hilar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>204</td>
<td>84%</td>
<td>197</td>
<td>84%</td>
</tr>
<tr>
<td>Involved</td>
<td>35</td>
<td>14%</td>
<td>31</td>
<td>13%</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>3</td>
<td>1%</td>
<td>6</td>
<td>3%</td>
</tr>
<tr>
<td>Para-aortic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>132</td>
<td>54%</td>
<td>140</td>
<td>60%</td>
</tr>
<tr>
<td>Involved</td>
<td>109</td>
<td>45%</td>
<td>90</td>
<td>38%</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>1</td>
<td>0%</td>
<td>4</td>
<td>2%</td>
</tr>
<tr>
<td>Mesenteric</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>155</td>
<td>64%</td>
<td>151</td>
<td>65%</td>
</tr>
<tr>
<td>Involved</td>
<td>84</td>
<td>35%</td>
<td>79</td>
<td>34%</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>2</td>
<td>1%</td>
<td>4</td>
<td>2%</td>
</tr>
<tr>
<td>Iliac right</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>204</td>
<td>84%</td>
<td>195</td>
<td>83%</td>
</tr>
<tr>
<td>Involved</td>
<td>37</td>
<td>15%</td>
<td>32</td>
<td>14%</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>1</td>
<td>0%</td>
<td>7</td>
<td>3%</td>
</tr>
<tr>
<td>Iliac left</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>203</td>
<td>84%</td>
<td>184</td>
<td>79%</td>
</tr>
<tr>
<td>Involved</td>
<td>38</td>
<td>16%</td>
<td>43</td>
<td>18%</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>1</td>
<td>0%</td>
<td>7</td>
<td>3%</td>
</tr>
<tr>
<td>Splenic Hilar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>221</td>
<td>91%</td>
<td>202</td>
<td>86%</td>
</tr>
<tr>
<td>Involved</td>
<td>18</td>
<td>7%</td>
<td>23</td>
<td>10%</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>3</td>
<td>1%</td>
<td>7</td>
<td>3%</td>
</tr>
<tr>
<td>Other nodal involvement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>218</td>
<td>90%</td>
<td>209</td>
<td>89%</td>
</tr>
<tr>
<td>Yes</td>
<td>17</td>
<td>7%</td>
<td>22</td>
<td>9%</td>
</tr>
<tr>
<td>Arm of treatment</td>
<td>Arm of treatment</td>
<td>Number of patients</td>
<td>Randomization Number</td>
<td>Other nodal involvement</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
<td>--------------------</td>
<td>-----------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>ARM A / R-ICE</td>
<td>8</td>
<td>5003101051648</td>
<td>Yes</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>ARM B / R-DHAP</td>
<td>3</td>
<td>5003101161407</td>
<td>Yes</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>ARM A / R-ICE</td>
<td>8</td>
<td>5003101431622</td>
<td>Yes</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>ARM B / R-DHAP</td>
<td>1</td>
<td>5003102541625</td>
<td>Yes</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>ARM A / R-ICE</td>
<td>8</td>
<td>5003603201627</td>
<td>Yes</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>ARM B / R-DHAP</td>
<td>3</td>
<td>5003603201628</td>
<td>Yes</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>ARM A / R-ICE</td>
<td>11</td>
<td>5003603701010</td>
<td>Yes</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>ARM B / R-DHAP</td>
<td>2</td>
<td>5003604301013</td>
<td>Yes</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>ARM A / R-ICE</td>
<td>11</td>
<td>5003606501409</td>
<td>Yes</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>ARM B / R-DHAP</td>
<td>2</td>
<td>5003607701007</td>
<td>Yes</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>ARM A / R-ICE</td>
<td>11</td>
<td>5003610501031</td>
<td>Yes</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>ARM B / R-DHAP</td>
<td>2</td>
<td>500361301210</td>
<td>Yes</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>ARM A / R-ICE</td>
<td>11</td>
<td>5003614501002</td>
<td>Yes</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>ARM B / R-DHAP</td>
<td>2</td>
<td>5003622201022</td>
<td>Yes</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>ARM A / R-ICE</td>
<td>11</td>
<td>5003626501607</td>
<td>Yes</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>ARM B / R-DHAP</td>
<td>2</td>
<td>5003630201055</td>
<td>Yes</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>ARM A / R-ICE</td>
<td>11</td>
<td>5003649501033</td>
<td>Yes</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>ARM B / R-DHAP</td>
<td>2</td>
<td>5003101031006</td>
<td>Yes</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>ARM A / R-ICE</td>
<td>11</td>
<td>5003101031401</td>
<td>Yes</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>ARM B / R-DHAP</td>
<td>2</td>
<td>5003101031411</td>
<td>Yes</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>ARM A / R-ICE</td>
<td>11</td>
<td>5003101051050</td>
<td>Yes</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>ARM B / R-DHAP</td>
<td>2</td>
<td>5003101051405</td>
<td>Yes</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>ARM A / R-ICE</td>
<td>11</td>
<td>5003103161206</td>
<td>Yes</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>ARM B / R-DHAP</td>
<td>2</td>
<td>5003601601001</td>
<td>Yes</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>ARM A / R-ICE</td>
<td>11</td>
<td>5003601601601</td>
<td>Yes</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>ARM B / R-DHAP</td>
<td>2</td>
<td>5003603301401</td>
<td>Yes</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>ARM A / R-ICE</td>
<td>11</td>
<td>5003604301607</td>
<td>Yes</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>ARM B / R-DHAP</td>
<td>2</td>
<td>5003604901603</td>
<td>Yes</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>ARM A / R-ICE</td>
<td>11</td>
<td>5003605701404</td>
<td>Yes</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>ARM B / R-DHAP</td>
<td>2</td>
<td>5003606201033</td>
<td>Yes</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>ARM A / R-ICE</td>
<td>11</td>
<td>5003610201008</td>
<td>Yes</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>ARM B / R-DHAP</td>
<td>2</td>
<td>5003614501032</td>
<td>Yes</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>ARM A / R-ICE</td>
<td>11</td>
<td>5003615501007</td>
<td>Yes</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>ARM B / R-DHAP</td>
<td>2</td>
<td>5003616501411</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Randomization

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of treatment</th>
<th>Other nodal involvement</th>
<th>Other nodal involvement - localization</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003617201021</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>SUBCUTANEOUS LYMPH NODES</td>
</tr>
<tr>
<td>5003620201017</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>PLEURAL RIGHT</td>
</tr>
<tr>
<td>5003621501412</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>RIGHT INTERNAL MAMMARY</td>
</tr>
<tr>
<td>5003622201037</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>TUMOR IN THE SMALL PELVIS</td>
</tr>
<tr>
<td>5003623501408</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>SPLENOMEGALY</td>
</tr>
</tbody>
</table>

N = 39

Table 6.3-2 Extra-nodal involvement (FAS)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Liver</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>215</td>
<td>88</td>
<td>201</td>
</tr>
<tr>
<td>Involved</td>
<td>22</td>
<td>9</td>
<td>29</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>5</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ascites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>229</td>
<td>94</td>
<td>222</td>
</tr>
<tr>
<td>Involved</td>
<td>6</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>7</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pleural effusion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>222</td>
<td>91</td>
<td>211</td>
</tr>
<tr>
<td>Involved</td>
<td>13</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>7</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Lung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>202</td>
<td>83</td>
<td>193</td>
</tr>
<tr>
<td>Involved</td>
<td>34</td>
<td>14</td>
<td>38</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>6</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Spleen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>202</td>
<td>83</td>
<td>191</td>
</tr>
<tr>
<td>Involved</td>
<td>33</td>
<td>14</td>
<td>39</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>7</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pericardium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>233</td>
<td>96</td>
<td>220</td>
</tr>
<tr>
<td>Involved</td>
<td>2</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>7</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Arm of treatment</td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
<td>All</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Breast</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>229</td>
<td>94</td>
<td>212</td>
</tr>
<tr>
<td>Involved</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>10</td>
<td>4</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gonadal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>222</td>
<td>91</td>
<td>207</td>
</tr>
<tr>
<td>Involved</td>
<td>7</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>13</td>
<td>5</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kidney</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>226</td>
<td>93</td>
<td>215</td>
</tr>
<tr>
<td>Involved</td>
<td>10</td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>6</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Adrenal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>227</td>
<td>93</td>
<td>221</td>
</tr>
<tr>
<td>Involved</td>
<td>8</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>7</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Thyroid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>225</td>
<td>93</td>
<td>215</td>
</tr>
<tr>
<td>Involved</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>15</td>
<td>6</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Skin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>223</td>
<td>92</td>
<td>217</td>
</tr>
<tr>
<td>Involved</td>
<td>8</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>11</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>209</td>
<td>86</td>
<td>202</td>
</tr>
<tr>
<td>Involved</td>
<td>24</td>
<td>10</td>
<td>19</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>9</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tonsil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>202</td>
<td>83</td>
<td>190</td>
</tr>
<tr>
<td>Involved</td>
<td>15</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>25</td>
<td>10</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Arm of treatment</td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Cavum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>210</td>
<td>86</td>
<td>187</td>
</tr>
<tr>
<td>Involved</td>
<td>3</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>29</td>
<td>12</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Parotid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>212</td>
<td>87</td>
<td>194</td>
</tr>
<tr>
<td>Involved</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>29</td>
<td>12</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Orbit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>209</td>
<td>86</td>
<td>186</td>
</tr>
<tr>
<td>Involved</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>33</td>
<td>14</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Sinus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>209</td>
<td>86</td>
<td>181</td>
</tr>
<tr>
<td>Involved</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>33</td>
<td>14</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Oesophagus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>197</td>
<td>81</td>
<td>183</td>
</tr>
<tr>
<td>Involved</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>43</td>
<td>18</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Stomach</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>190</td>
<td>78</td>
<td>173</td>
</tr>
<tr>
<td>Involved</td>
<td>11</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>42</td>
<td>17</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Duodenum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>193</td>
<td>79</td>
<td>178</td>
</tr>
<tr>
<td>Involved</td>
<td>8</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>41</td>
<td>17</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Colon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>191</td>
<td>79</td>
<td>175</td>
</tr>
<tr>
<td>Involved</td>
<td>6</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>45</td>
<td>19</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Arm of treatment</td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
<td>All</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------</td>
<td>----------------</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Caecum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>193</td>
<td>79</td>
<td>176</td>
</tr>
<tr>
<td>Involved</td>
<td>3</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>46</td>
<td>19</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Rectum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>196</td>
<td>81</td>
<td>185</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>46</td>
<td>19</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Other extra nodal involvement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>214</td>
<td>88</td>
<td>201</td>
</tr>
<tr>
<td>Yes</td>
<td>28</td>
<td>12</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>243</td>
<td>100</td>
<td>234</td>
</tr>
</tbody>
</table>

Listing 6.3-2 Other extra-nodal involvement localizations (FAS)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of treatment</th>
<th>Other extra nodal involvement</th>
<th>Other extra nodal involvement - localization</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003101031001</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>LEFT SHOULDER MUSCLE</td>
</tr>
<tr>
<td>5003101431010</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>SOFT TISSUE</td>
</tr>
<tr>
<td>5003101441036</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>SOFT TISSUE</td>
</tr>
<tr>
<td>5003102491619</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>LARGE TUMORAL MASS (INCLUDING PROSTATE AND BLADDER)</td>
</tr>
<tr>
<td>5003601601003</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>ANTERIOR TIBIAL MUSCLE</td>
</tr>
<tr>
<td>5003601881401</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>JEJUNUM</td>
</tr>
<tr>
<td>5003603201627</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>NERVUS ULNARIS L. SINISTRI</td>
</tr>
<tr>
<td>5003603801008</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>INFRINGEMENT OF MUSC. ILIACUS L. SIN</td>
</tr>
<tr>
<td>5003603801404</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>SOFT TISSUE (LEFT) L2/L3 NEURAL FORAMEN</td>
</tr>
<tr>
<td>5003605301010</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>M. PSOAS LEFT</td>
</tr>
<tr>
<td>5003607201045</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>ANTERIOR ABDOMINAL WALL INVASION RIGHT RECTUS MUSCLE</td>
</tr>
<tr>
<td>5003607701009</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>UNPROVED APICAL RIGHT PLEURAL (POSITIVE PET EXAM)</td>
</tr>
<tr>
<td>5003608701016</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>PLEURAL</td>
</tr>
<tr>
<td>5003610301208</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>SOFT TISSUE MASS INFRINGEMENT STENO MASTOID SCALENE MUSCLES</td>
</tr>
<tr>
<td>5003611201057</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>OMENTUM MAJUS</td>
</tr>
<tr>
<td>5003612501021</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>SOFT TISSUE - RIGHT SUPERIOR BUTTOCK</td>
</tr>
<tr>
<td>5003613301210</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>RIGHT QUADRICEPS MUSCLE GROUP</td>
</tr>
<tr>
<td>5003617201042</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>PANCREAS</td>
</tr>
<tr>
<td>5003617501024</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>PELVIS (RIGHT ILIAC CREST)</td>
</tr>
<tr>
<td>5003620301011</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>CENTRAL ABDOMINAL MASS</td>
</tr>
<tr>
<td>5003620301017</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>POSTERIOR PANCREATIC PARENCHYMA</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Arm of treatment</td>
<td>Other extra nodal involvement</td>
<td>Other extra nodal involvement - localization</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------</td>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>5003620501027</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>LEFT CHEST / ABDOMINAL WALL MASS</td>
</tr>
<tr>
<td>5003621201023</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>PSOAS LEFT 3 CM</td>
</tr>
<tr>
<td>5003621201026</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>PANCREAS</td>
</tr>
<tr>
<td>5003622201022</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>DORSAL LEFT UPPER FEMORAL</td>
</tr>
<tr>
<td>5003631201035</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>RIGHT RECTUS FEMORIS MUSCLE</td>
</tr>
<tr>
<td>50033101051050</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>PANCREAS</td>
</tr>
<tr>
<td>50033101141624</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>PSOAS</td>
</tr>
<tr>
<td>50033101221057</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>PANCREAS</td>
</tr>
<tr>
<td>50033101431627</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>RIGHT THIGH</td>
</tr>
<tr>
<td>50033101601610</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>Abdominal mass</td>
</tr>
<tr>
<td>5003601401402</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>5003601601004</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>SOFT TISSUE NODULE (SUBCUTANEOUS) RIGHT UPPER BACK</td>
</tr>
<tr>
<td>5003601601602</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>LEFT UPPER QUADRANT SMALL BOWEL</td>
</tr>
<tr>
<td>5003601881602</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>MUSCLE</td>
</tr>
<tr>
<td>5003603201211</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>DIAPHRAGM LEFT SIDE</td>
</tr>
<tr>
<td>5003603301401</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>LEFT THIGH</td>
</tr>
<tr>
<td>5003603701001</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>MUSCLE HUMERUS PROX LEFT 7.5 X 6 CM</td>
</tr>
<tr>
<td>5003603801009</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>SOFT TISSUE - RIGHT ARM</td>
</tr>
<tr>
<td>5003603801010</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>PANCREAS</td>
</tr>
<tr>
<td>5003603801013</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>CHEST WALL PARASTERNAL LEFT</td>
</tr>
<tr>
<td>5003604301202</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>RIGHT FLANK MASS</td>
</tr>
<tr>
<td>50036047010602</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>PLEURA RIGHT</td>
</tr>
<tr>
<td>5003604801201</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>OMENTUM</td>
</tr>
<tr>
<td>5003604901602</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>PANCREAS</td>
</tr>
<tr>
<td>5003605301203</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>pancreas</td>
</tr>
<tr>
<td>5003605301610</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>5003606201033</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>VESICULA URINARIA</td>
</tr>
<tr>
<td>5003606201410</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>RIGHT LEG AND CALF</td>
</tr>
<tr>
<td>5003607201408</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>NASOPHARYNX</td>
</tr>
<tr>
<td>5003607201623</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>FOSSA INFRASPINATA</td>
</tr>
<tr>
<td>5003610201212</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>ILLIAC RIGHT, PSOAS MUSCLE</td>
</tr>
<tr>
<td>5003610501402</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>LEFT INFRA TEMERAL FOSSA SOFT TISSUE MASS</td>
</tr>
<tr>
<td>5003615501004</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>UPPER THIGH - RIGHT</td>
</tr>
<tr>
<td>5003617501026</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>BLADDER</td>
</tr>
<tr>
<td>5003620201017</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>5003622201014</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>RIGHT UPPER LEG MEDIAL</td>
</tr>
<tr>
<td>5003622201037</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>TUMOR IN THE SMALL PELVIS 50 X 54 MM WITH INFILTRATION OF MUSCULUS LEVATOR ANI (RIGHT) AND MUSCULUS OBTURATORIUS INTERNUS (RIGHT)</td>
</tr>
<tr>
<td>5003631201619</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

N = 61
Table 6.3-3 Codification of sites used for response evaluation, sorted by most frequent (FAS)

<table>
<thead>
<tr>
<th>Lesion Codification</th>
<th>Arm of treatment</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
<td>All</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Para-aortic / Portal</td>
<td>101</td>
<td>17%</td>
<td>70</td>
<td>13%</td>
<td>171</td>
<td>15%</td>
</tr>
<tr>
<td>Mediastinal / Paratracheal</td>
<td>87</td>
<td>14%</td>
<td>66</td>
<td>12%</td>
<td>153</td>
<td>13%</td>
</tr>
<tr>
<td>Celiac / Mesenteric</td>
<td>61</td>
<td>10%</td>
<td>56</td>
<td>10%</td>
<td>117</td>
<td>10%</td>
</tr>
<tr>
<td>Cervical / Post_cervical / Upper cervical / Pre_auricular : Left</td>
<td>46</td>
<td>8%</td>
<td>33</td>
<td>6%</td>
<td>79</td>
<td>7%</td>
</tr>
<tr>
<td>Cervical / Post_cervical / Upper cervical / Pre_auricular : Right</td>
<td>28</td>
<td>5%</td>
<td>35</td>
<td>7%</td>
<td>63</td>
<td>6%</td>
</tr>
<tr>
<td>Axillary : Left</td>
<td>34</td>
<td>6%</td>
<td>21</td>
<td>4%</td>
<td>55</td>
<td>5%</td>
</tr>
<tr>
<td>Axillary : Right</td>
<td>20</td>
<td>3%</td>
<td>20</td>
<td>4%</td>
<td>40</td>
<td>3%</td>
</tr>
<tr>
<td>Inguinal / Femoral / Retrocrural : Left</td>
<td>21</td>
<td>3%</td>
<td>19</td>
<td>4%</td>
<td>40</td>
<td>3%</td>
</tr>
<tr>
<td>External iliac / Iliac : Left</td>
<td>20</td>
<td>3%</td>
<td>20</td>
<td>4%</td>
<td>40</td>
<td>3%</td>
</tr>
<tr>
<td>Inguinal / Femoral / Retrocrural : Right</td>
<td>19</td>
<td>3%</td>
<td>18</td>
<td>3%</td>
<td>37</td>
<td>3%</td>
</tr>
<tr>
<td>Lung</td>
<td>20</td>
<td>3%</td>
<td>17</td>
<td>3%</td>
<td>37</td>
<td>3%</td>
</tr>
<tr>
<td>Liver</td>
<td>18</td>
<td>3%</td>
<td>17</td>
<td>3%</td>
<td>35</td>
<td>3%</td>
</tr>
<tr>
<td>Spleen</td>
<td>12</td>
<td>2%</td>
<td>21</td>
<td>4%</td>
<td>33</td>
<td>3%</td>
</tr>
<tr>
<td>External iliac / Iliac : Right</td>
<td>20</td>
<td>3%</td>
<td>9</td>
<td>2%</td>
<td>29</td>
<td>3%</td>
</tr>
<tr>
<td>Soft Tissues</td>
<td>13</td>
<td>2%</td>
<td>13</td>
<td>2%</td>
<td>26</td>
<td>2%</td>
</tr>
<tr>
<td>Skin</td>
<td>7</td>
<td>1%</td>
<td>14</td>
<td>3%</td>
<td>21</td>
<td>2%</td>
</tr>
<tr>
<td>Pulmonary hilar</td>
<td>8</td>
<td>1%</td>
<td>8</td>
<td>1%</td>
<td>16</td>
<td>1%</td>
</tr>
<tr>
<td>Infracavicular / Supraclavicular : Right</td>
<td>6</td>
<td>1%</td>
<td>8</td>
<td>1%</td>
<td>14</td>
<td>1%</td>
</tr>
<tr>
<td>Infracavicular / Supraclavicular : Left</td>
<td>10</td>
<td>2%</td>
<td>4</td>
<td>1%</td>
<td>14</td>
<td>1%</td>
</tr>
<tr>
<td>Kidney</td>
<td>5</td>
<td>1%</td>
<td>8</td>
<td>1%</td>
<td>13</td>
<td>1%</td>
</tr>
<tr>
<td>Tonsil / Waldeyer's ring</td>
<td>10</td>
<td>2%</td>
<td>3</td>
<td>1%</td>
<td>13</td>
<td>1%</td>
</tr>
<tr>
<td>Epitrochlear Right or Left / Other</td>
<td>4</td>
<td>1%</td>
<td>7</td>
<td>1%</td>
<td>11</td>
<td>1%</td>
</tr>
<tr>
<td>Adrenal</td>
<td>6</td>
<td>1%</td>
<td>3</td>
<td>1%</td>
<td>9</td>
<td>1%</td>
</tr>
<tr>
<td>Bone</td>
<td>5</td>
<td>1%</td>
<td>4</td>
<td>1%</td>
<td>9</td>
<td>1%</td>
</tr>
<tr>
<td>Other extra-nodal involvement</td>
<td>2</td>
<td>0%</td>
<td>7</td>
<td>1%</td>
<td>9</td>
<td>1%</td>
</tr>
<tr>
<td>Stomach</td>
<td>6</td>
<td>1%</td>
<td>2</td>
<td>0%</td>
<td>8</td>
<td>1%</td>
</tr>
<tr>
<td>Splenic hilar</td>
<td>3</td>
<td>0%</td>
<td>4</td>
<td>1%</td>
<td>7</td>
<td>1%</td>
</tr>
<tr>
<td>Pleura</td>
<td>3</td>
<td>0%</td>
<td>2</td>
<td>0%</td>
<td>5</td>
<td>0%</td>
</tr>
<tr>
<td>Gonadal</td>
<td>2</td>
<td>0%</td>
<td>3</td>
<td>1%</td>
<td>5</td>
<td>0%</td>
</tr>
<tr>
<td>Colon</td>
<td>1</td>
<td>0%</td>
<td>4</td>
<td>1%</td>
<td>5</td>
<td>0%</td>
</tr>
<tr>
<td>Breast</td>
<td>1</td>
<td>0%</td>
<td>3</td>
<td>1%</td>
<td>4</td>
<td>0%</td>
</tr>
<tr>
<td>Cervix</td>
<td>0</td>
<td>0%</td>
<td>4</td>
<td>1%</td>
<td>4</td>
<td>0%</td>
</tr>
<tr>
<td>Sinus</td>
<td>0</td>
<td>0%</td>
<td>4</td>
<td>1%</td>
<td>4</td>
<td>0%</td>
</tr>
<tr>
<td>Caeum</td>
<td>0</td>
<td>0%</td>
<td>4</td>
<td>1%</td>
<td>4</td>
<td>0%</td>
</tr>
<tr>
<td>Duodenum</td>
<td>0</td>
<td>0%</td>
<td>3</td>
<td>1%</td>
<td>3</td>
<td>0%</td>
</tr>
<tr>
<td>Thyroid</td>
<td>1</td>
<td>0%</td>
<td>1</td>
<td>0%</td>
<td>2</td>
<td>0%</td>
</tr>
<tr>
<td>Parotid</td>
<td>2</td>
<td>0%</td>
<td>0</td>
<td>0%</td>
<td>2</td>
<td>0%</td>
</tr>
<tr>
<td>Ileon</td>
<td>1</td>
<td>0%</td>
<td>1</td>
<td>0%</td>
<td>2</td>
<td>0%</td>
</tr>
</tbody>
</table>
6.4. Evaluation after complete induction treatment

Table 6.4-1 Codification of sites used for response evaluation, sorted by most frequent (induction ITT)

<table>
<thead>
<tr>
<th>Lesion Codification</th>
<th>Arm of treatment</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
<td>All</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Urinary Tract</td>
<td>2</td>
<td>0%</td>
<td>0</td>
<td>0%</td>
<td>2</td>
</tr>
<tr>
<td>Ascites</td>
<td>1</td>
<td>0%</td>
<td>0</td>
<td>0%</td>
<td>1</td>
</tr>
<tr>
<td>Pericardium</td>
<td>0</td>
<td>0%</td>
<td>1</td>
<td>0%</td>
<td>1</td>
</tr>
<tr>
<td>Oesophagus</td>
<td>1</td>
<td>0%</td>
<td>0</td>
<td>0%</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>607</td>
<td>100%</td>
<td>537</td>
<td>100%</td>
<td>1144</td>
</tr>
</tbody>
</table>

Table 6.4-1 Codification of sites used for response evaluation, sorted by most frequent (induction ITT)

<table>
<thead>
<tr>
<th>Lesion Codification</th>
<th>Arm of treatment</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
<td>All</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Para-aortic / Portal</td>
<td>95</td>
<td>17%</td>
<td>74</td>
<td>14%</td>
<td>169</td>
</tr>
<tr>
<td>Mediastinal / Paratracheal</td>
<td>82</td>
<td>14%</td>
<td>59</td>
<td>11%</td>
<td>141</td>
</tr>
<tr>
<td>Celiac / Mesenteric</td>
<td>57</td>
<td>10%</td>
<td>55</td>
<td>10%</td>
<td>112</td>
</tr>
<tr>
<td>Cervical / Post_cervical / Upper cervical / Pre_auricular : Left</td>
<td>42</td>
<td>7%</td>
<td>32</td>
<td>6%</td>
<td>74</td>
</tr>
<tr>
<td>Cervical / Post_cervical / Upper cervical / Pre_auricular : Right</td>
<td>27</td>
<td>5%</td>
<td>34</td>
<td>6%</td>
<td>61</td>
</tr>
<tr>
<td>Axillary : Left</td>
<td>33</td>
<td>6%</td>
<td>21</td>
<td>4%</td>
<td>54</td>
</tr>
<tr>
<td>External iliac / Iliac : Left</td>
<td>20</td>
<td>3%</td>
<td>20</td>
<td>4%</td>
<td>40</td>
</tr>
<tr>
<td>Inguinal / Femoral / Retrocrural : Left</td>
<td>21</td>
<td>4%</td>
<td>19</td>
<td>4%</td>
<td>40</td>
</tr>
<tr>
<td>Axillary : Right</td>
<td>19</td>
<td>3%</td>
<td>19</td>
<td>4%</td>
<td>38</td>
</tr>
<tr>
<td>Inguinal / Femoral / Retrocrural : Right</td>
<td>18</td>
<td>3%</td>
<td>17</td>
<td>3%</td>
<td>35</td>
</tr>
<tr>
<td>Spleen</td>
<td>12</td>
<td>2%</td>
<td>21</td>
<td>4%</td>
<td>33</td>
</tr>
<tr>
<td>External iliac / Iliac : Right</td>
<td>20</td>
<td>3%</td>
<td>9</td>
<td>2%</td>
<td>29</td>
</tr>
<tr>
<td>Liver</td>
<td>13</td>
<td>2%</td>
<td>16</td>
<td>3%</td>
<td>29</td>
</tr>
<tr>
<td>Soft Tissues</td>
<td>11</td>
<td>2%</td>
<td>12</td>
<td>2%</td>
<td>23</td>
</tr>
<tr>
<td>Skin</td>
<td>7</td>
<td>1%</td>
<td>14</td>
<td>3%</td>
<td>21</td>
</tr>
<tr>
<td>Pulmonary hilar</td>
<td>7</td>
<td>1%</td>
<td>8</td>
<td>2%</td>
<td>15</td>
</tr>
<tr>
<td>Tonsil / Waldeyer's ring</td>
<td>10</td>
<td>2%</td>
<td>3</td>
<td>1%</td>
<td>13</td>
</tr>
<tr>
<td>Kidney</td>
<td>5</td>
<td>1%</td>
<td>8</td>
<td>2%</td>
<td>13</td>
</tr>
<tr>
<td>Infracavicular / Supraclavicular : Left</td>
<td>9</td>
<td>2%</td>
<td>3</td>
<td>1%</td>
<td>12</td>
</tr>
<tr>
<td>Infracavicular / Supraclavicular : Right</td>
<td>6</td>
<td>1%</td>
<td>6</td>
<td>1%</td>
<td>12</td>
</tr>
<tr>
<td>Epitrochlear Right or Left / Other</td>
<td>4</td>
<td>1%</td>
<td>7</td>
<td>1%</td>
<td>11</td>
</tr>
<tr>
<td>Bone</td>
<td>5</td>
<td>1%</td>
<td>4</td>
<td>1%</td>
<td>9</td>
</tr>
<tr>
<td>Adrenal</td>
<td>6</td>
<td>1%</td>
<td>3</td>
<td>1%</td>
<td>9</td>
</tr>
<tr>
<td>Stomach</td>
<td>6</td>
<td>1%</td>
<td>2</td>
<td>0%</td>
<td>8</td>
</tr>
<tr>
<td>Other extra-nodal involvement</td>
<td>1</td>
<td>0%</td>
<td>7</td>
<td>1%</td>
<td>8</td>
</tr>
<tr>
<td>Splenic hilar</td>
<td>3</td>
<td>1%</td>
<td>4</td>
<td>1%</td>
<td>7</td>
</tr>
<tr>
<td>Not coded</td>
<td>3</td>
<td>1%</td>
<td>3</td>
<td>1%</td>
<td>6</td>
</tr>
</tbody>
</table>
6.5. Follow-up

Listing 6.5- Patients with date of last contact earlier than September 1, 2009 (MITT)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of treatment</th>
<th>Date of last contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003101131072</td>
<td>ARM A / R-ICE</td>
<td>18/01/2008</td>
</tr>
<tr>
<td>5003102341045</td>
<td>ARM A / R-ICE</td>
<td>09/06/2009</td>
</tr>
<tr>
<td>5003102491616</td>
<td>ARM A / R-ICE</td>
<td>01/06/2006</td>
</tr>
<tr>
<td>5003601201602</td>
<td>ARM A / R-ICE</td>
<td>15/01/2008</td>
</tr>
<tr>
<td>5003601401605</td>
<td>ARM A / R-ICE</td>
<td>17/06/2008</td>
</tr>
<tr>
<td>5003602501001</td>
<td>ARM A / R-ICE</td>
<td>15/05/2008</td>
</tr>
<tr>
<td>5003603201409</td>
<td>ARM A / R-ICE</td>
<td>16/02/2007</td>
</tr>
<tr>
<td>5003604301013</td>
<td>ARM A / R-ICE</td>
<td>17/06/2009</td>
</tr>
<tr>
<td>5003605901003</td>
<td>ARM A / R-ICE</td>
<td>15/07/2009</td>
</tr>
<tr>
<td>5003606301204</td>
<td>ARM A / R-ICE</td>
<td>23/06/2008</td>
</tr>
<tr>
<td>5003608301605</td>
<td>ARM A / R-ICE</td>
<td>13/09/2004</td>
</tr>
<tr>
<td>5003612501012</td>
<td>ARM A / R-ICE</td>
<td>06/11/2007</td>
</tr>
<tr>
<td>5003613301210</td>
<td>ARM A / R-ICE</td>
<td>01/08/2005</td>
</tr>
<tr>
<td>5003613301611</td>
<td>ARM A / R-ICE</td>
<td>25/05/2006</td>
</tr>
<tr>
<td>5003617201010</td>
<td>ARM A / R-ICE</td>
<td>22/08/2005</td>
</tr>
<tr>
<td>5003619301008</td>
<td>ARM A / R-ICE</td>
<td>16/07/2009</td>
</tr>
<tr>
<td>5003620301017</td>
<td>ARM A / R-ICE</td>
<td>19/05/2008</td>
</tr>
<tr>
<td>5003621501603</td>
<td>ARM A / R-ICE</td>
<td>20/08/2008</td>
</tr>
<tr>
<td>5003622001210</td>
<td>ARM A / R-ICE</td>
<td>21/05/2008</td>
</tr>
<tr>
<td>5003624501017</td>
<td>ARM A / R-ICE</td>
<td>07/11/2007</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Arm of treatment</td>
<td>Date of last contact</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>5003628201009</td>
<td>ARM A / R-ICE</td>
<td>07/04/2009</td>
</tr>
<tr>
<td>5003628201052</td>
<td>ARM A / R-ICE</td>
<td>19/09/2007</td>
</tr>
<tr>
<td>5003628201402</td>
<td>ARM A / R-ICE</td>
<td>22/04/2009</td>
</tr>
<tr>
<td>5003628201618</td>
<td>ARM A / R-ICE</td>
<td>03/06/2009</td>
</tr>
<tr>
<td>5003628201624</td>
<td>ARM A / R-ICE</td>
<td>12/05/2009</td>
</tr>
<tr>
<td>5003630201055</td>
<td>ARM A / R-ICE</td>
<td>10/11/2008</td>
</tr>
<tr>
<td>5003632201614</td>
<td>ARM A / R-ICE</td>
<td>24/05/2007</td>
</tr>
<tr>
<td>5003635201051</td>
<td>ARM A / R-ICE</td>
<td>12/06/2009</td>
</tr>
<tr>
<td>5003649501033</td>
<td>ARM A / R-ICE</td>
<td>05/11/2008</td>
</tr>
<tr>
<td>5003101031006</td>
<td>ARM B / R-DHAP</td>
<td>05/02/2007</td>
</tr>
<tr>
<td>5003601301015</td>
<td>ARM B / R-DHAP</td>
<td>18/03/2008</td>
</tr>
<tr>
<td>5003601401001</td>
<td>ARM B / R-DHAP</td>
<td>06/12/2006</td>
</tr>
<tr>
<td>5003603301401</td>
<td>ARM B / R-DHAP</td>
<td>25/08/2009</td>
</tr>
<tr>
<td>5003604701011</td>
<td>ARM B / R-DHAP</td>
<td>18/05/2009</td>
</tr>
<tr>
<td>5003604701602</td>
<td>ARM B / R-DHAP</td>
<td>21/08/2008</td>
</tr>
<tr>
<td>5003604901602</td>
<td>ARM B / R-DHAP</td>
<td>26/06/2005</td>
</tr>
<tr>
<td>5003606201410</td>
<td>ARM B / R-DHAP</td>
<td>27/01/2009</td>
</tr>
<tr>
<td>5003606201620</td>
<td>ARM B / R-DHAP</td>
<td>11/07/2008</td>
</tr>
<tr>
<td>5003606701005</td>
<td>ARM B / R-DHAP</td>
<td>30/04/2009</td>
</tr>
<tr>
<td>5003607201623</td>
<td>ARM B / R-DHAP</td>
<td>29/07/2009</td>
</tr>
<tr>
<td>5003610301209</td>
<td>ARM B / R-DHAP</td>
<td>14/03/2006</td>
</tr>
<tr>
<td>5003612501016</td>
<td>ARM B / R-DHAP</td>
<td>01/02/2008</td>
</tr>
<tr>
<td>5003615501029</td>
<td>ARM B / R-DHAP</td>
<td>04/08/2008</td>
</tr>
<tr>
<td>5003617201616</td>
<td>ARM B / R-DHAP</td>
<td>07/05/2009</td>
</tr>
<tr>
<td>5003619301006</td>
<td>ARM B / R-DHAP</td>
<td>30/04/2009</td>
</tr>
<tr>
<td>5003619501009</td>
<td>ARM B / R-DHAP</td>
<td>16/10/2008</td>
</tr>
<tr>
<td>5003622201037</td>
<td>ARM B / R-DHAP</td>
<td>23/03/2009</td>
</tr>
<tr>
<td>5003622201607</td>
<td>ARM B / R-DHAP</td>
<td>04/01/2007</td>
</tr>
<tr>
<td>5003628201002</td>
<td>ARM B / R-DHAP</td>
<td>25/03/2009</td>
</tr>
<tr>
<td>5003628201044</td>
<td>ARM B / R-DHAP</td>
<td>12/06/2009</td>
</tr>
<tr>
<td>5003628201404</td>
<td>ARM B / R-DHAP</td>
<td>20/07/2007</td>
</tr>
</tbody>
</table>

N = 52
6.6. Efficacy results

6.6.1. Primary criterion

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of treatment</th>
<th>Response after complete induction</th>
<th>Date of withdrawal</th>
<th>Treatment period at withdrawal</th>
<th>Reason for premature withdrawal</th>
<th>Other reason for premature withdrawal</th>
<th>Response at withdrawal</th>
<th>Date of death</th>
<th>Response at death</th>
<th>Nb of cycles received</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003101071647</td>
<td>ARM A / R-ICE</td>
<td>NOT EVALUATED</td>
<td>01/05/2008</td>
<td>INDUCTION PHASE</td>
<td>OTHER</td>
<td>TREATMENT OUT OF RADIOTHERAPY BETWEEN CYCLE 1 AND 2</td>
<td>COMPLETE RESPONSE</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>5003101131030</td>
<td>ARM A / R-ICE</td>
<td>NOT EVALUATED</td>
<td>16/08/2005</td>
<td>INDUCTION PHASE</td>
<td>DEATH</td>
<td></td>
<td>NOT EVALUATED</td>
<td>16/08/2005</td>
<td>NOT EVALUATED</td>
<td>2</td>
</tr>
<tr>
<td>5003101391638</td>
<td>ARM A / R-ICE</td>
<td>NOT EVALUATED</td>
<td>26/02/2007</td>
<td>INDUCTION PHASE</td>
<td>PATIENT VOLUNTARY WITHDRAWAL</td>
<td></td>
<td>NOT EVALUATED</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>5003101601404</td>
<td>ARM A / R-ICE</td>
<td>NOT EVALUATED</td>
<td>21/08/2005</td>
<td>INDUCTION PHASE</td>
<td>TREATMENT TOXICITY</td>
<td></td>
<td>NOT EVALUATED</td>
<td>05/09/2005</td>
<td>NOT EVALUATED</td>
<td>2</td>
</tr>
<tr>
<td>5003102161413</td>
<td>ARM A / R-ICE</td>
<td>-</td>
<td>05/11/2006</td>
<td>INDUCTION PHASE</td>
<td>DEATH</td>
<td></td>
<td>NOT EVALUATED</td>
<td>05/11/2006</td>
<td>NOT EVALUATED</td>
<td>1</td>
</tr>
<tr>
<td>5003603201409</td>
<td>ARM A / R-ICE</td>
<td>NOT EVALUATED</td>
<td>16/02/2007</td>
<td>INDUCTION PHASE</td>
<td>PATIENT VOLUNTARY WITHDRAWAL</td>
<td></td>
<td>NOT EVALUATED</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>5003603701004</td>
<td>ARM A / R-ICE</td>
<td>NOT EVALUATED</td>
<td>01/09/2005</td>
<td>INDUCTION PHASE</td>
<td>DEATH</td>
<td></td>
<td>NOT EVALUATED</td>
<td>01/09/2005</td>
<td>NOT EVALUATED</td>
<td>1</td>
</tr>
<tr>
<td>500360230301017</td>
<td>ARM A / R-ICE</td>
<td>-</td>
<td>19/05/2008</td>
<td>INDUCTION PHASE</td>
<td>OTHER</td>
<td>USE OF DIFFERENT CONSOLIDATION TREATMENT THAN SPECIFIED IN PROTOCOL</td>
<td>STABLE DISEASE</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>50036021301014</td>
<td>ARM A / R-ICE</td>
<td>-</td>
<td>11/11/2007</td>
<td>INDUCTION PHASE</td>
<td>TREATMENT TOXICITY</td>
<td></td>
<td>STABLE DISEASE</td>
<td>03/12/2007</td>
<td>NOT EVALUATED</td>
<td>1</td>
</tr>
<tr>
<td>50036021501603</td>
<td>ARM A / R-ICE</td>
<td>-</td>
<td>28/08/2007</td>
<td>CONSOLIDATION PHASE</td>
<td>OTHER</td>
<td>FAILURE TO RANDOMISE</td>
<td>UNCONFIRMED COMPLETE RESPONSE</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>50036022201210</td>
<td>ARM A / R-ICE</td>
<td>NOT EVALUATED</td>
<td>27/03/2006</td>
<td>INDUCTION PHASE</td>
<td>TREATMENT TOXICITY</td>
<td></td>
<td>NOT EVALUATED</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>5003602801052</td>
<td>ARM A / R-ICE</td>
<td>NOT EVALUATED</td>
<td>-</td>
<td>INDUCTION PHASE</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>50036030201055</td>
<td>ARM A / R-ICE</td>
<td>-</td>
<td>24/07/2008</td>
<td>INDUCTION PHASE</td>
<td>TREATMENT TOXICITY</td>
<td></td>
<td>COMPLETE RESPONSE</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>5003101071002</td>
<td>ARM B / R-DHAP</td>
<td>NOT EVALUATED</td>
<td>21/11/2003</td>
<td>INDUCTION PHASE</td>
<td>DEATH</td>
<td></td>
<td>NOT EVALUATED</td>
<td>21/11/2003</td>
<td>NOT EVALUATED</td>
<td>1</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Arm of treatment</td>
<td>Response after complete induction</td>
<td>Date of withdrawal</td>
<td>Treatment period at withdrawal</td>
<td>Reason for premature withdrawal</td>
<td>Other reason for premature withdrawal</td>
<td>Response at withdrawal</td>
<td>Date of death</td>
<td>Response at death</td>
<td>Nb of cycles received</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>-----------------------------------</td>
<td>--------------------</td>
<td>-----------------------------</td>
<td>---------------------------------</td>
<td>-------------------------------------</td>
<td>-----------------------</td>
<td>---------------</td>
<td>------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>5003101071607</td>
<td>ARM B / R-DHAP</td>
<td>NOT EVALUATED</td>
<td>16/01/2004</td>
<td>INDUCTION PHASE</td>
<td>TREATMENT TOXICITY</td>
<td></td>
<td>NOT EVALUATED</td>
<td>04/06/2009</td>
<td>PROGRESSIVE DISEASE</td>
<td>1</td>
</tr>
<tr>
<td>5003603801013</td>
<td>ARM B / R-DHAP</td>
<td>NOT EVALUATED</td>
<td>15/02/2007</td>
<td>INDUCTION PHASE</td>
<td>TREATMENT TOXICITY</td>
<td></td>
<td>NOT EVALUATED</td>
<td>24/04/2007</td>
<td>PARTIAL RESPONSE</td>
<td>2</td>
</tr>
<tr>
<td>5003604701012</td>
<td>ARM B / R-DHAP</td>
<td>-</td>
<td>04/05/2007</td>
<td>INDUCTION PHASE</td>
<td>DEATH</td>
<td></td>
<td>NOT EVALUATED</td>
<td>04/05/2007</td>
<td>NOT EVALUATED</td>
<td>1</td>
</tr>
<tr>
<td>5003607301622</td>
<td>ARM B / R-DHAP</td>
<td>-</td>
<td>26/01/2007</td>
<td>INDUCTION PHASE</td>
<td>DEATH</td>
<td></td>
<td>NOT EVALUATED</td>
<td>26/01/2007</td>
<td>NOT EVALUATED</td>
<td>2</td>
</tr>
<tr>
<td>5003610701403</td>
<td>ARM B / R-DHAP</td>
<td>-</td>
<td>06/10/2008</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>RECURRENT IN FU-PHASE 6 MONTHS AFTER TRANSPLANT</td>
<td>NOT EVALUATED</td>
<td>04/05/2007</td>
<td>PROGRESSIVE DISEASE</td>
<td>3</td>
</tr>
<tr>
<td>5003615501007</td>
<td>ARM B / R-DHAP</td>
<td>NOT EVALUATED</td>
<td>23/02/2007</td>
<td>INDUCTION PHASE</td>
<td>OTHER</td>
<td>CVA</td>
<td>NOT EVALUATED</td>
<td>25/05/2007</td>
<td>PROGRESSIVE DISEASE</td>
<td>1</td>
</tr>
<tr>
<td>5003616201413</td>
<td>ARM B / R-DHAP</td>
<td>-</td>
<td>03/06/2008</td>
<td>INDUCTION PHASE</td>
<td>TREATMENT TOXICITY</td>
<td></td>
<td>NOT EVALUATED</td>
<td>20/08/2008</td>
<td>NOT EVALUATED</td>
<td>1</td>
</tr>
<tr>
<td>5003617201616</td>
<td>ARM B / R-DHAP</td>
<td>NOT EVALUATED</td>
<td>14/10/2005</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td></td>
<td>NOT EVALUATED</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>5003619501010</td>
<td>ARM B / R-DHAP</td>
<td>NOT EVALUATED</td>
<td>06/04/2007</td>
<td>INDUCTION PHASE</td>
<td>DEATH</td>
<td></td>
<td>NOT EVALUATED</td>
<td>06/04/2007</td>
<td>NOT EVALUATED</td>
<td>2</td>
</tr>
<tr>
<td>5003623501405</td>
<td>ARM B / R-DHAP</td>
<td>NOT EVALUATED</td>
<td>26/07/2007</td>
<td>INDUCTION PHASE</td>
<td>DEATH</td>
<td></td>
<td>DEATH WITHOUT PROGRESSION</td>
<td>26/07/2007</td>
<td>NOT EVALUATED</td>
<td>1</td>
</tr>
</tbody>
</table>

N = 24
Table 6.6-1 Primary criterion – Overall response rate by arm according to prior rituximab (induction ITT)

<table>
<thead>
<tr>
<th>Prior treatment with Rituximab</th>
<th>Arm of treatment</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Response after complete induction</td>
<td>CR/CRu/PR</td>
<td>66</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>19</td>
<td>22</td>
</tr>
<tr>
<td>Yes</td>
<td>CR/CRu/PR</td>
<td>87</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>67</td>
<td>44</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>239</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 6.6-2 Primary criterion – Overall response rate by arm according to failure from diagnosis (induction ITT)

<table>
<thead>
<tr>
<th>Failure from diagnosis</th>
<th>Arm of treatment</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Response after complete induction</td>
<td>CR/CRu/PR</td>
<td>71</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>74</td>
<td>51</td>
</tr>
<tr>
<td>>= 12 months</td>
<td>CR/CRu/PR</td>
<td>82</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>239</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 6.6-3 Primary criterion – Overall response rate by arm according to country (induction ITT)

<table>
<thead>
<tr>
<th>Country</th>
<th>Arm of treatment</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Gela</td>
<td>CR/CRu/PR</td>
<td>50</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>27</td>
<td>35</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>77</td>
<td>100</td>
</tr>
<tr>
<td>Germany</td>
<td>CR/CRu/PR</td>
<td>29</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>24</td>
<td>45</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>53</td>
<td>100</td>
</tr>
<tr>
<td>Australia</td>
<td>CR/CRu/PR</td>
<td>18</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>10</td>
<td>36</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>28</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>158</td>
<td>100</td>
</tr>
</tbody>
</table>
Table 6.6-4 Primary criterion – Overall response rate by arm according age adjusted IPI (induction ITT)

<table>
<thead>
<tr>
<th>Age-adjusted IPI</th>
<th>Response after complete induction</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td><2</td>
<td>CR/CRu/PR</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>43</td>
<td>30</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>141</td>
<td>100</td>
</tr>
<tr>
<td>>=2</td>
<td>CR/CRu/PR</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>41</td>
<td>45</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>91</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>232</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 6.6-5 Primary criterion – Complete response rate by arm according to prior rituximab (induction ITT)

<table>
<thead>
<tr>
<th>Prior treatment with Rituximab</th>
<th>Response after complete induction</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>CR/CRu</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>41</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>44</td>
<td>52</td>
</tr>
<tr>
<td>Yes</td>
<td>CR/CRu</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>47</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>107</td>
<td>69</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>239</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 6.6-6 Primary criterion – Complete response rate by arm according to failure from diagnosis (induction ITT)

<table>
<thead>
<tr>
<th>Failure from diagnosis</th>
<th>Response after complete induction</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 12 months</td>
<td>CR/CRu</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>110</td>
<td>76</td>
</tr>
<tr>
<td>>= 12 months</td>
<td>CR/CRu</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>53</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>41</td>
<td>44</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>239</td>
<td>100</td>
</tr>
</tbody>
</table>
Table 6.6-7 Primary criterion – Complete response rate by arm according to country (induction ITT)

<table>
<thead>
<tr>
<th>Country</th>
<th>Response after complete induction</th>
<th>Arm of treatment</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CR/CRu</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Gela</td>
<td></td>
<td>32</td>
<td>42</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>45</td>
<td>58</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>77</td>
<td>100</td>
<td>77</td>
</tr>
<tr>
<td>Germany</td>
<td></td>
<td>15</td>
<td>28</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>38</td>
<td>72</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>53</td>
<td>100</td>
<td>54</td>
</tr>
<tr>
<td>Australia</td>
<td></td>
<td>11</td>
<td>39</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>17</td>
<td>61</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>28</td>
<td>100</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>158</td>
<td>100</td>
<td>160</td>
</tr>
</tbody>
</table>

Table 6.6-8 Primary criterion – Complete response rate by arm according to age adjusted IPI (induction ITT)

<table>
<thead>
<tr>
<th>Age-adjusted IPI</th>
<th>Response after complete induction</th>
<th>Arm of treatment</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td><2</td>
<td>CR/CRu</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60</td>
<td>43</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>81</td>
<td>57</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>141</td>
<td>100</td>
<td>137</td>
</tr>
<tr>
<td>>=2</td>
<td>CR/CRu</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>64</td>
<td>70</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>91</td>
<td>100</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>232</td>
<td>100</td>
<td>223</td>
</tr>
</tbody>
</table>
Listing 6.6-2 Induction - Patients who died during treatment phase (induction ITT)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of treatment</th>
<th>First Randomization Date</th>
<th>Date of withdrawal</th>
<th>Treatment period at withdrawal</th>
<th>Reason for premature withdrawal</th>
<th>Date of death</th>
<th>Reason for death</th>
<th>Response at death</th>
<th>Response after complete induction (raw data from CRF)</th>
<th>Nb of cycles received</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003101071002</td>
<td>ARM B / R-DHAP</td>
<td>16/10/2003</td>
<td>21/11/2003</td>
<td>INDUCTION PHASE</td>
<td>DEATH</td>
<td>21/11/2003</td>
<td>TOXICITY OF STUDY TREATMENT</td>
<td>NOT EVALUATED</td>
<td>NOT EVALUATED</td>
<td>1</td>
</tr>
<tr>
<td>5003101131030</td>
<td>ARM A / R-ICE</td>
<td>16/06/2005</td>
<td>16/08/2005</td>
<td>INDUCTION PHASE</td>
<td>DEATH</td>
<td>16/08/2005</td>
<td>TOXICITY OF STUDY TREATMENT</td>
<td>NOT EVALUATED</td>
<td>NOT EVALUATED</td>
<td>2</td>
</tr>
<tr>
<td>5003101281017</td>
<td>ARM A / R-ICE</td>
<td>18/11/2004</td>
<td>10/12/2004</td>
<td>INDUCTION PHASE</td>
<td>TREATMENT TOXICITY</td>
<td>12/01/2005</td>
<td>LYMPHOMA</td>
<td>PROGRESSIVE DISEASE</td>
<td>PROGRESSIVE DISEASE</td>
<td>1</td>
</tr>
<tr>
<td>5003101601404</td>
<td>ARM A / R-ICE</td>
<td>04/07/2005</td>
<td>21/08/2005</td>
<td>INDUCTION PHASE</td>
<td>TREATMENT TOXICITY</td>
<td>05/09/2005</td>
<td>TOXICITY OF STUDY TREATMENT</td>
<td>NOT EVALUATED</td>
<td>NOT EVALUATED</td>
<td>2</td>
</tr>
<tr>
<td>5003603201001</td>
<td>ARM B / R-DHAP</td>
<td>11/03/2004</td>
<td>03/05/2004</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>13/05/2004</td>
<td>TOXICITY OF STUDY TREATMENT</td>
<td>STABLE DISEASE</td>
<td>STABLE DISEASE</td>
<td>3</td>
</tr>
<tr>
<td>5003603701004</td>
<td>ARM A / R-ICE</td>
<td>12/08/2005</td>
<td>01/09/2005</td>
<td>INDUCTION PHASE</td>
<td>DEATH</td>
<td>01/09/2005</td>
<td>TOXICITY OF STUDY TREATMENT</td>
<td>NOT EVALUATED</td>
<td>NOT EVALUATED</td>
<td>1</td>
</tr>
<tr>
<td>5003603901001</td>
<td>ARM B / R-DHAP</td>
<td>06/10/2004</td>
<td>14/11/2004</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>19/11/2004</td>
<td>LYMPHOMA</td>
<td>PROGRESSIVE DISEASE</td>
<td>PROGRESSIVE DISEASE</td>
<td>1</td>
</tr>
<tr>
<td>5003604701012</td>
<td>ARM B / R-DHAP</td>
<td>19/04/2007</td>
<td>04/05/2007</td>
<td>INDUCTION PHASE</td>
<td>DEATH</td>
<td>04/05/2007</td>
<td>TOXICITY OF STUDY TREATMENT</td>
<td>NOT EVALUATED</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>5003605301601</td>
<td>ARM A / R-ICE</td>
<td>05/04/2004</td>
<td>20/06/2004</td>
<td>INDUCTION PHASE</td>
<td>DEATH</td>
<td>20/06/2004</td>
<td>CONCURRENT ILLNESS</td>
<td>UNCONFIRMED COMPLETE RESPONSE</td>
<td>UNCONFIRMED COMPLETE RESPONSE</td>
<td>3</td>
</tr>
<tr>
<td>5003614501013</td>
<td>ARM B / R-DHAP</td>
<td>20/04/2007</td>
<td>21/07/2007</td>
<td>INDUCTION PHASE</td>
<td>DEATH</td>
<td>21/07/2007</td>
<td>OTHER REASON</td>
<td>PROGRESSIVE DISEASE</td>
<td>PROGRESSIVE DISEASE</td>
<td>3</td>
</tr>
<tr>
<td>5003617501006</td>
<td>ARM B / R-DHAP</td>
<td>01/12/2006</td>
<td>12/01/2007</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>04/02/2007</td>
<td>LYMPHOMA</td>
<td>PROGRESSIVE DISEASE</td>
<td>PROGRESSIVE DISEASE</td>
<td>1</td>
</tr>
<tr>
<td>5003617501026</td>
<td>ARM B / R-DHAP</td>
<td>06/12/2007</td>
<td>07/01/2008</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>24/01/2008</td>
<td>LYMPHOMA</td>
<td>PROGRESSIVE DISEASE</td>
<td>PROGRESSIVE DISEASE</td>
<td>1</td>
</tr>
<tr>
<td>5003619501010</td>
<td>ARM B / R-DHAP</td>
<td>14/02/2007</td>
<td>06/04/2007</td>
<td>INDUCTION PHASE</td>
<td>DEATH</td>
<td>06/04/2007</td>
<td>TOXICITY OF STUDY TREATMENT</td>
<td>NOT EVALUATED</td>
<td>NOT EVALUATED</td>
<td>2</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Arm of treatment</td>
<td>First Randomization Date</td>
<td>Date of withdrawal</td>
<td>Treatment period at withdrawal</td>
<td>Reason for premature withdrawal</td>
<td>Date of death</td>
<td>Reason for death</td>
<td>Response at death</td>
<td>Response after complete induction (raw data from CRF)</td>
<td>Nb of cycles received</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>--------------------------</td>
<td>--------------------</td>
<td>--------------------------------</td>
<td>---------------------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>---</td>
<td>----------------------</td>
</tr>
<tr>
<td>5003623501405</td>
<td>ARM B / R-DHAP</td>
<td>05/07/2007</td>
<td>26/07/2007</td>
<td>INDUCTION PHASE</td>
<td>DEATH</td>
<td>26/07/2007</td>
<td>LYMPHOMA</td>
<td>NOT EVALUATED</td>
<td>NOT EVALUATED</td>
<td>1</td>
</tr>
<tr>
<td>5003631201011</td>
<td>ARM B / R-DHAP</td>
<td>03/12/2004</td>
<td>25/12/2004</td>
<td>INDUCTION PHASE</td>
<td>TREATMENT TOXICITY</td>
<td>29/12/2004</td>
<td>LYMPHOMA</td>
<td>PROGRESSIVE DISEASE</td>
<td>PROGRESSIVE DISEASE</td>
<td>1</td>
</tr>
</tbody>
</table>

N = 18
Table 6.6-9 Primary criterion – Overall response rate (including all deaths) by arm according to prior rituximab
(induction ITT)

<table>
<thead>
<tr>
<th>Prior treatment with Rituximab</th>
<th>Arm of treatment</th>
<th>N</th>
<th>%</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>ARM A / R-ICE</td>
<td>65</td>
<td>76</td>
<td>71</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>ARM B / R-DHAP</td>
<td>20</td>
<td>24</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>87</td>
<td>56</td>
<td>77</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>CR/CRu/PR</td>
<td>67</td>
<td>44</td>
<td>71</td>
<td>48</td>
</tr>
<tr>
<td>Total</td>
<td>ARM A / R-ICE</td>
<td>239</td>
<td>100</td>
<td>230</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>ARM B / R-DHAP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6.6-10 Primary criterion – Overall response rate (including all deaths) by arm according to failure from
diagnosis (induction ITT)

<table>
<thead>
<tr>
<th>Failure from diagnosis</th>
<th>Arm of treatment</th>
<th>N</th>
<th>%</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 12 months</td>
<td>ARM A / R-ICE</td>
<td>71</td>
<td>49</td>
<td>64</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>ARM B / R-DHAP</td>
<td>74</td>
<td>51</td>
<td>67</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>CR/CRu/PR</td>
<td>81</td>
<td>86</td>
<td>84</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>ARM A / R-ICE</td>
<td>239</td>
<td>100</td>
<td>230</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>ARM B / R-DHAP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6.6-11 Primary criterion – Overall response rate (including all deaths) by arm according country
(induction ITT)

<table>
<thead>
<tr>
<th>Country</th>
<th>Arm of treatment</th>
<th>N</th>
<th>%</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gela</td>
<td>ARM A / R-ICE</td>
<td>50</td>
<td>65</td>
<td>50</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>ARM B / R-DHAP</td>
<td>27</td>
<td>35</td>
<td>27</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>CR/CRu/PR</td>
<td>77</td>
<td>100</td>
<td>77</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>ARM A / R-ICE</td>
<td>29</td>
<td>55</td>
<td>30</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>ARM B / R-DHAP</td>
<td>24</td>
<td>45</td>
<td>24</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>CR/CRu/PR</td>
<td>53</td>
<td>100</td>
<td>54</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>ARM A / R-ICE</td>
<td>17</td>
<td>61</td>
<td>24</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>ARM B / R-DHAP</td>
<td>11</td>
<td>39</td>
<td>5</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>CR/CRu/PR</td>
<td>28</td>
<td>100</td>
<td>29</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>ARM A / R-ICE</td>
<td>158</td>
<td>100</td>
<td>160</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>ARM B / R-DHAP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 6.6-12 Primary criterion – Overall response rate (including all deaths) by arm according to age adjusted IPI (induction ITT)

<table>
<thead>
<tr>
<th>Age-adjusted IPI</th>
<th>Response after complete induction (including deaths for all patients)</th>
<th>ARM A / R-ICE</th>
<th>%</th>
<th>ARM B / R-DHAP</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td><2</td>
<td>CR/CRu/PR</td>
<td>98</td>
<td>70</td>
<td>100</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>43</td>
<td>30</td>
<td>37</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>141</td>
<td>100</td>
<td>137</td>
<td>100</td>
</tr>
<tr>
<td>>=2</td>
<td>CR/CRu/PR</td>
<td>49</td>
<td>54</td>
<td>45</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>42</td>
<td>46</td>
<td>41</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>91</td>
<td>100</td>
<td>86</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>232</td>
<td>100</td>
<td>223</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 6.6-13 Primary criterion – Complete response rate (including all deaths) by arm according to prior rituximab (induction ITT)

<table>
<thead>
<tr>
<th>Prior treatment with Rituximab</th>
<th>Response after complete induction (including deaths for all patients)</th>
<th>ARM A / R-ICE</th>
<th>%</th>
<th>ARM B / R-DHAP</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>CR/CRu/PR</td>
<td>40</td>
<td>47</td>
<td>43</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>45</td>
<td>53</td>
<td>39</td>
<td>48</td>
</tr>
<tr>
<td>Yes</td>
<td>CR/CRu/PR</td>
<td>47</td>
<td>31</td>
<td>42</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>107</td>
<td>69</td>
<td>106</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>239</td>
<td>100</td>
<td>230</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 6.6-14 Primary criterion – Complete response rate (including all deaths) by arm according to failure from diagnosis (induction ITT)

<table>
<thead>
<tr>
<th>Failure from diagnosis</th>
<th>Response after complete induction (including deaths for all patients)</th>
<th>ARM A / R-ICE</th>
<th>%</th>
<th>ARM B / R-DHAP</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 12 months</td>
<td>CR/CRu/PR</td>
<td>35</td>
<td>24</td>
<td>31</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>110</td>
<td>76</td>
<td>100</td>
<td>76</td>
</tr>
<tr>
<td>>= 12 months</td>
<td>CR/CRu/PR</td>
<td>52</td>
<td>55</td>
<td>54</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>42</td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>239</td>
<td>100</td>
<td>230</td>
<td>100</td>
</tr>
</tbody>
</table>
Table 6.6-15 Primary criterion – Complete response rate (including all deaths) by arm according to country (induction ITT)

<table>
<thead>
<tr>
<th>Country</th>
<th>Response after complete induction (including deaths for all patients)</th>
<th>Arm of treatment</th>
<th>Arm of treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Gela</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CR/CRu</td>
<td>32</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>42</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>45</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>58</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>77</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Germany</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CR/CRu</td>
<td>15</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>38</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>72</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>53</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Australia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CR/CRu</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>36</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>64</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>28</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>158</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 6.6-16 Primary criterion – Complete response rate (including all deaths) by arm according to age adjusted IPI (induction ITT)

<table>
<thead>
<tr>
<th>Age-adjusted IPI</th>
<th>Response after complete induction (including deaths for all patients)</th>
<th>Arm of treatment</th>
<th>Arm of treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td><2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CR/CRu</td>
<td>60</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td></td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>81</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td></td>
<td>57</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>141</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>>=2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CR/CRu</td>
<td>26</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>65</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td></td>
<td>71</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>91</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>232</td>
<td>223</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
Table 6.6-3 Primary criterion – Other cause of collection failure (induction ITT)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of treatment</th>
<th>Response after complete induction (raw data from CRF)</th>
<th>first collection date</th>
<th>Collected Cells</th>
<th>Collection failure</th>
<th>Specify other cause for collection failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003101141065</td>
<td>ARM A / R-ICE</td>
<td>STABLE DISEASE</td>
<td>ND</td>
<td>-</td>
<td>Yes</td>
<td>NO COLLECTION DURING THE STUDY AS COLLECTION HAD BEEN DONE BEFORE</td>
</tr>
<tr>
<td>5003101171644</td>
<td>ARM A / R-ICE</td>
<td>COMPLETE RESPONSE</td>
<td>06/04/2008</td>
<td>3.08</td>
<td>Yes</td>
<td>CELL VIABILITY ISSUE</td>
</tr>
<tr>
<td>5003101541415</td>
<td>ARM B / R-DHAP</td>
<td>PARTIAL RESPONSE</td>
<td>21/06/2005</td>
<td>5.1</td>
<td>Yes</td>
<td>NO COLLECTION DURING THE STUDY : ALREADY HARVESTED IN MAY 2005 (5.1 10^6 CD34/KG) ENOUGH CELLS</td>
</tr>
<tr>
<td>5003102541052</td>
<td>ARM A / R-ICE</td>
<td>COMPLETE RESPONSE</td>
<td>09/01/2006</td>
<td>15.09</td>
<td>Yes</td>
<td>COLLECTION DONE BEFORE INCLUSION</td>
</tr>
<tr>
<td>5003601501407</td>
<td>ARM A / R-ICE</td>
<td>PARTIAL RESPONSE</td>
<td>ND</td>
<td>-</td>
<td>Yes</td>
<td>COLLECTION ALREADY ON 23/08/2005</td>
</tr>
<tr>
<td>5003601601001</td>
<td>ARM B / R-DHAP</td>
<td>PARTIAL RESPONSE</td>
<td>05/06/2006</td>
<td>6.1</td>
<td>Yes</td>
<td>WEST NILE VIRUS DISCOVERED DURING COLLECTION</td>
</tr>
<tr>
<td>5003601601402</td>
<td>ARM B / R-DHAP</td>
<td>COMPLETE RESPONSE</td>
<td>31/12/2004</td>
<td>0.9</td>
<td>Yes</td>
<td>ADVERSE REACTION, PATIENT EXPIRED</td>
</tr>
<tr>
<td>5003604801402</td>
<td>ARM B / R-DHAP</td>
<td>COMPLETE RESPONSE</td>
<td>19/11/2003</td>
<td>9.42</td>
<td>Yes</td>
<td>1ST COLLECTION DATE : BACK-UP !</td>
</tr>
<tr>
<td>5003617501024</td>
<td>ARM A / R-ICE</td>
<td>PARTIAL RESPONSE</td>
<td>15/02/2008</td>
<td>0</td>
<td>Yes</td>
<td>INCORRECT DOSE OF G-CSF PRESCRIBED</td>
</tr>
<tr>
<td>5003621201023</td>
<td>ARM A / R-ICE</td>
<td>PARTIAL RESPONSE</td>
<td>10/01/2006</td>
<td>-</td>
<td>Yes</td>
<td>NO STEM CELL LEACHATE INTO THE PERIPHERAL BLOOD</td>
</tr>
</tbody>
</table>

N = 10

Table 6.6-17 Complete response rate adjusted with successful mobilization (induction ITT)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>N</th>
<th>%</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM A / R-ICE</td>
<td>76</td>
<td>32</td>
<td>75</td>
<td>33</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>11</td>
<td>5</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 6.6-18 Mobilization Adjusted Complete Response Rate (induction ITT)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>Nb patients</th>
<th>Nb responders with successful mobilization</th>
<th>MARR (%)</th>
<th>95% CI lower</th>
<th>95% CI upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM A / R-ICE</td>
<td>239</td>
<td>163</td>
<td>68.2</td>
<td>61.9</td>
<td>74.1</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>230</td>
<td>155</td>
<td>67.4</td>
<td>60.9</td>
<td>73.4</td>
</tr>
</tbody>
</table>

Table 6.6-19 Difference between Mobilization Adjusted Complete Response Rates (induction ITT)

<table>
<thead>
<tr>
<th>Difference between MARR (%)</th>
<th>95% CI lower</th>
<th>95% CI upper</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-ICE vs R-DHAP</td>
<td>0.8</td>
<td>-7.6</td>
<td>9.3</td>
</tr>
</tbody>
</table>
6.6.2. Secondary criteria

Listing 6.6-4 Consolidation – Responder patients presenting with no collection failure but no BEAM or ASCT (induction ITT)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of treatment</th>
<th>Response after complete induction</th>
<th>Collection failure</th>
<th>Date of withdrawal</th>
<th>Treatment period at withdrawal</th>
<th>Reason for premature withdrawal</th>
<th>Other reason for premature withdrawal</th>
<th>Response at withdrawal</th>
<th>Nb of cycles received</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003101071020</td>
<td>ARM A / R-ICE</td>
<td>PARTIAL RESPONSE</td>
<td>No</td>
<td>20/07/2005</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>5003101071414</td>
<td>ARM B / R-DHAP</td>
<td>COMPLETE RESPONSE</td>
<td>No</td>
<td>16/02/2007</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>COMPLETE RESPONSE</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>50031011141406</td>
<td>ARM A / R-ICE</td>
<td>UNCONFIRMED COMPLETE RESPONSE</td>
<td>No</td>
<td>20/12/2005</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>50031011161028</td>
<td>ARM B / R-DHAP</td>
<td>COMPLETE RESPONSE</td>
<td>No</td>
<td>22/08/2005</td>
<td>INDUCTION PHASE</td>
<td>TREATMENT TOXICITY</td>
<td>COMPLETE RESPONSE</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>5003101431204</td>
<td>ARM B / R-DHAP</td>
<td>UNCONFIRMED COMPLETE RESPONSE</td>
<td>No</td>
<td>13/02/2004</td>
<td>INDUCTION PHASE</td>
<td>TREATMENT TOXICITY</td>
<td>UNCONFIRMED COMPLETE RESPONSE</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>5003102321024</td>
<td>ARM A / R-ICE</td>
<td>UNCONFIRMED COMPLETE RESPONSE</td>
<td>No</td>
<td>17/08/2005</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>5003601801603</td>
<td>ARM B / R-DHAP</td>
<td>PARTIAL RESPONSE</td>
<td>No</td>
<td>09/03/2005</td>
<td>INDUCTION PHASE</td>
<td>TREATMENT TOXICITY</td>
<td>PARTIAL RESPONSE</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>5003604301607</td>
<td>ARM B / R-DHAP</td>
<td>PARTIAL RESPONSE</td>
<td>No</td>
<td>27/10/2004</td>
<td>INDUCTION PHASE</td>
<td>PATIENT VOLUNTARY WITHDRAWAL</td>
<td>PARTIAL RESPONSE</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>5003605301601</td>
<td>ARM A / R-ICE</td>
<td>UNCONFIRMED COMPLETE RESPONSE</td>
<td>No</td>
<td>20/06/2004</td>
<td>INDUCTION PHASE</td>
<td>DEATH</td>
<td>UNCONFIRMED COMPLETE RESPONSE</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>5003605701404</td>
<td>ARM B / R-DHAP</td>
<td>COMPLETE RESPONSE</td>
<td>No</td>
<td>04/04/2008</td>
<td>INDUCTION PHASE</td>
<td>INDUCTION TREATMENT FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>5003609301608</td>
<td>ARM A / R-ICE</td>
<td>PARTIAL RESPONSE</td>
<td>No</td>
<td>25/01/2005</td>
<td>INDUCTION PHASE</td>
<td>OTHER</td>
<td>INVESTIGATOR’S DECISION (REQUIRES 4TH CYCLE OF INDUCTION)</td>
<td>PARTIAL RESPONSE</td>
<td>3</td>
</tr>
<tr>
<td>5003612501016</td>
<td>ARM B / R-DHAP</td>
<td>PARTIAL RESPONSE</td>
<td>No</td>
<td>12/09/2007</td>
<td>INDUCTION PHASE</td>
<td>OTHER</td>
<td>RESPONSE NOT ENOUGH, THERE IS STILL BULKY DISEASE</td>
<td>PARTIAL RESPONSE</td>
<td>3</td>
</tr>
<tr>
<td>5003617501606</td>
<td>ARM A / R-ICE</td>
<td>PARTIAL RESPONSE</td>
<td>No</td>
<td>15/02/2008</td>
<td>INDUCTION PHASE</td>
<td>OTHER</td>
<td>TRANSPLANT CENTRE WOULD NOT TRANSPLANT PATIENT AS PATIENT WAS PET POSITIVE</td>
<td>PARTIAL RESPONSE</td>
<td>3</td>
</tr>
<tr>
<td>5003628201624</td>
<td>ARM A / R-ICE</td>
<td>COMPLETE RESPONSE</td>
<td>No</td>
<td>06/03/2007</td>
<td>INDUCTION PHASE</td>
<td>PATIENT VOLUNTARY WITHDRAWAL</td>
<td>COMPLETE RESPONSE</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

N = 14
Listing 6.6-5 Consolidation – Non responder patients presenting with ASCT (induction ITT)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of treatment</th>
<th>Response after complete induction</th>
<th>BEAM - date of first administration</th>
<th>Transplantation date</th>
<th>Date of 2nd randomization</th>
<th>Nb of cycles received</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003605701601</td>
<td>ARM A / R-ICE</td>
<td>STABLE DISEASE</td>
<td>03/06/2005</td>
<td>09/06/2005</td>
<td>25/05/2005</td>
<td>3</td>
</tr>
<tr>
<td>5003621501603</td>
<td>ARM A / R-ICE</td>
<td>.</td>
<td>01/08/2007</td>
<td>08/08/2007</td>
<td>.</td>
<td>3</td>
</tr>
<tr>
<td>5003604701002</td>
<td>ARM B / R-DHAP</td>
<td>STABLE DISEASE</td>
<td>10/05/2005</td>
<td>17/05/2005</td>
<td>19/05/2005</td>
<td>3</td>
</tr>
<tr>
<td>5003608701008</td>
<td>ARM B / R-DHAP</td>
<td>STABLE DISEASE</td>
<td>24/04/2006</td>
<td>01/05/2006</td>
<td>19/05/2006</td>
<td>3</td>
</tr>
<tr>
<td>5003608701603</td>
<td>ARM B / R-DHAP</td>
<td>STABLE DISEASE</td>
<td>15/05/2008</td>
<td>21/05/2008</td>
<td>28/05/2008</td>
<td>3</td>
</tr>
<tr>
<td>5003610701403</td>
<td>ARM B / R-DHAP</td>
<td>.</td>
<td>03/03/2008</td>
<td>03/03/2008</td>
<td>28/03/2008</td>
<td>3</td>
</tr>
<tr>
<td>5003621501412</td>
<td>ARM B / R-DHAP</td>
<td>STABLE DISEASE</td>
<td>08/10/2008</td>
<td>14/10/2008</td>
<td>01/10/2008</td>
<td>3</td>
</tr>
</tbody>
</table>

N = 9

6.6.3. Non study or new treatment out of progression

Listing 6.6-6 New treatment out of progression - Chemotherapy (induction ITT)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of treatment</th>
<th>Chemotherapy</th>
<th>Date of chemotherapy</th>
<th>Specify chemotherapy</th>
<th>Nb of cycles of chemotherapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003101021014</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>30/11/2004</td>
<td>ENDOXAN (1 CYCLE) + ICE (1 CYCLE ON 14122004)</td>
<td>2</td>
</tr>
<tr>
<td>5003101031007</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>20/04/2004</td>
<td>DHAX</td>
<td>4</td>
</tr>
<tr>
<td>5003101051068</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>02/10/2007</td>
<td>DHAP + 1 ETOPOSIDE IFOSFAMIDE</td>
<td>2</td>
</tr>
<tr>
<td>50031010515603</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>11/02/2004</td>
<td>R-ICE</td>
<td>3</td>
</tr>
<tr>
<td>5003101071647</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>03/07/2008</td>
<td>ICE</td>
<td>-</td>
</tr>
<tr>
<td>50031011141065</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>27/07/2007</td>
<td>DHAOX (OXALOPLATINE, CYTARABINE, DEXAMETHASONE)</td>
<td>2</td>
</tr>
<tr>
<td>5003101331077</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>26/06/2008</td>
<td>DHAP</td>
<td>2</td>
</tr>
<tr>
<td>5003101481403</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>07/12/2005</td>
<td>R-CHOP</td>
<td>1</td>
</tr>
<tr>
<td>5003601601002</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>13/03/2007</td>
<td>EPOCH</td>
<td>2</td>
</tr>
<tr>
<td>5003603201406</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>-</td>
<td>DEXA-BEAM</td>
<td>-</td>
</tr>
<tr>
<td>5003603801406</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>12/08/2008</td>
<td>R-GFOX</td>
<td>4</td>
</tr>
<tr>
<td>5003609301608</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>05/02/2005</td>
<td>ICE</td>
<td>1</td>
</tr>
<tr>
<td>5003612501012</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>06/11/2007</td>
<td>VINBLASTINE, METHOTREXATE, BLEOMYCIN, LOMUSTINE, CHLORAMBUCIL</td>
<td>3</td>
</tr>
<tr>
<td>5003615501201</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>04/12/2006</td>
<td>GDCVP</td>
<td>3</td>
</tr>
<tr>
<td>5003617201042</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>22/03/2007</td>
<td>R-DHAP</td>
<td>1</td>
</tr>
<tr>
<td>5003617501606</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>02/03/2008</td>
<td>MINI BEAM</td>
<td>1</td>
</tr>
<tr>
<td>5003621201023</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>13/02/2006</td>
<td>DEXA-BEAM</td>
<td>1</td>
</tr>
<tr>
<td>5003621301014</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>21/11/2007</td>
<td>ICE</td>
<td>1</td>
</tr>
<tr>
<td>5003622201210</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>29/03/2006</td>
<td>R-DHAP</td>
<td>2</td>
</tr>
<tr>
<td>5003632201054</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>08/07/2008</td>
<td>RITUXIMAB</td>
<td>2</td>
</tr>
<tr>
<td>5003635201051</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>-</td>
<td>2 X R-DHAP + 2 X R-GEM OX</td>
<td>4</td>
</tr>
<tr>
<td>5003101031006</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>28/03/2004</td>
<td>MIV</td>
<td>2</td>
</tr>
<tr>
<td>5003101031411</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>11/12/2006</td>
<td>DHAP N°4</td>
<td>1</td>
</tr>
<tr>
<td>5003101051503</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>03/07/2007</td>
<td>R-DHAP</td>
<td>3</td>
</tr>
<tr>
<td>5003101220170</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>01/01/2008</td>
<td>DHAP</td>
<td>1</td>
</tr>
<tr>
<td>5003101391613</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>10/07/2004</td>
<td>2 COPADEM + 3 VAD (16/04/2005)</td>
<td>5</td>
</tr>
</tbody>
</table>
Randomization Number

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of treatment</th>
<th>Chemotherapy</th>
<th>Date of chemotherapy</th>
<th>Specify chemotherapy</th>
<th>Nb of cycles of chemotherapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>50033101431204</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>19/03/2004</td>
<td>R-ICE (FROM 19 TO 21/03/2004)</td>
<td>1</td>
</tr>
<tr>
<td>5003602801016</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>04/10/2007</td>
<td>R-GIFOX</td>
<td>1</td>
</tr>
<tr>
<td>5003603001013</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>15/02/2007</td>
<td>R-ICE</td>
<td>1</td>
</tr>
<tr>
<td>5003605201603</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>-</td>
<td>DHAP</td>
<td>3</td>
</tr>
<tr>
<td>5003610201008</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>20/01/2005</td>
<td>IMMUNO-CHEMOTHERAPY (B-ALL PROTOCOL) VINCRI STINE, MTX, CYCLOPHOSPHAMIDE, DOXORUBICINE, DEXAMETHASONE</td>
<td>2</td>
</tr>
<tr>
<td>5003610201112</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>-</td>
<td>RITUXIMAB, VINCIR STINE, METHOTREXATE, IFOSFAMIDE, CYTARABIN, ETOPOSIDE (GMALL-B-ALL-PROTOCOL)</td>
<td>2</td>
</tr>
</tbody>
</table>

| N = 38 |

Radiotherapy (induction ITT)

Listing 6.6-7 New treatment out of progression - Radiotherapy (induction ITT)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of treatment</th>
<th>Radiotherapy</th>
<th>Date of radiotherapy</th>
<th>Site of radiotherapy</th>
<th>Dose of radiotherapy (Gy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003603001201</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>16/08/2004</td>
<td>RIGHT ADRENAL GLAND</td>
<td>30</td>
</tr>
<tr>
<td>5003617201048</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>11/10/2007</td>
<td>MEDIASTINUM</td>
<td>46</td>
</tr>
<tr>
<td>5003628201009</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>05/08/2005</td>
<td>ABDOMINAL RESIDUAL MASS</td>
<td>-</td>
</tr>
<tr>
<td>50036101391207</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>19/06/2006</td>
<td>LEFT NASAL FOSSA</td>
<td>40</td>
</tr>
<tr>
<td>5003601301613</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>12/11/2004</td>
<td>COELIOMESENTERIC</td>
<td>40</td>
</tr>
<tr>
<td>5003604162053</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>22/01/2007</td>
<td>MEDIASTINUM</td>
<td>40</td>
</tr>
<tr>
<td>5003601401001</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>02/05/2004</td>
<td>LEFT PART OF ABDOMEN</td>
<td>50</td>
</tr>
<tr>
<td>5003601601001</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>07/07/2006</td>
<td>PARATRACHEAL REGION</td>
<td>31</td>
</tr>
<tr>
<td>5003601801603</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>24/03/2005</td>
<td>NECK</td>
<td>40</td>
</tr>
<tr>
<td>5003604901007</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>05/10/2008</td>
<td>MEDIASTINUM</td>
<td>40</td>
</tr>
<tr>
<td>5003617201049</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>14/11/2007</td>
<td>ABDOMINAL LN</td>
<td>36</td>
</tr>
<tr>
<td>5003619501009</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>20/07/2007</td>
<td>RIGHT PERINEPHRIC MASS : PET POSITIVE 17/APR/2007</td>
<td>40</td>
</tr>
<tr>
<td>5003622201037</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>-</td>
<td>RESIDUAL FINDINGS IN SMALL PELVIS</td>
<td>36</td>
</tr>
<tr>
<td>5003623501408</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>02/06/2008</td>
<td>LEFT GROIN</td>
<td>-</td>
</tr>
</tbody>
</table>

| N = 18 |
Listing 6.6-8 New treatment out of progression - Immunotherapy (induction ITT)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of treatment</th>
<th>Immunotherapy</th>
<th>Date of immunotherapy</th>
<th>Specify immunotherapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003101021014</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>14/12/2004</td>
<td>RITUXIMAB WITH ICE</td>
</tr>
<tr>
<td>5003101051068</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>02/10/2007</td>
<td>RITUXIMAB ON 02/10/2007 AND 25/10/2007 AND 05/12/2007</td>
</tr>
<tr>
<td>5003101071647</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>03/07/2008</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003101311077</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>26/06/2008</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003609301608</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>05/02/2005</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003617201042</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>24/04/2007</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003621201023</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>13/02/2006</td>
<td>RITUXIMAB 1 CYCLE</td>
</tr>
<tr>
<td>5003622201210</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>11/07/2006</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003635201051</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>-</td>
<td>RITUXIMAB IN COMBINATION WITH CHEMOTHERAPY (SEE ABOVE)</td>
</tr>
<tr>
<td>5003101031411</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>11/12/2006</td>
<td>RITUXIMAB N°4 X 1</td>
</tr>
<tr>
<td>5003101221070</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>01/01/2008</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003601601001</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>07/11/2006</td>
<td>RITUXIMAB WEEKLY 4 CYCLES</td>
</tr>
<tr>
<td>5003610201008</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>19/01/2005</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003616501411</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>09/01/2009</td>
<td>RITUXIMAB MAINTENANCE 700 MG GIVEN ON 09/01/2009 AND 03/04/2009</td>
</tr>
<tr>
<td>5003622201037</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>23/04/2007</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003635201411</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>-</td>
<td>IN COMBINATION WITH CHEMOTHERAPY (SEE ABOVE)</td>
</tr>
</tbody>
</table>

N = 16

Listing 6.6-9 New treatment out of progression - Transplant (induction ITT)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of treatment</th>
<th>Transplantation</th>
<th>Date of transplantation</th>
<th>Conditioning Regimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003101013007</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>-</td>
<td>BEAM</td>
</tr>
<tr>
<td>5003101051068</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>09/01/2008</td>
<td>BEAM</td>
</tr>
<tr>
<td>5003101071647</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>06/09/2008</td>
<td>BEAM</td>
</tr>
<tr>
<td>5003101441074</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>13/02/2008</td>
<td>BEAM + ALLO TRANSPLANTATION ON 27/06/2008</td>
</tr>
<tr>
<td>5003101481403</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>13/01/2006</td>
<td>BEAM</td>
</tr>
<tr>
<td>5003102491616</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>25/10/2004</td>
<td>BEAM STARTED ON 19/10/2004</td>
</tr>
<tr>
<td>5003601401401</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>21/09/2004</td>
<td>BEAC</td>
</tr>
<tr>
<td>5003603801202</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>15/02/2005</td>
<td>BEAM ON 08/02/2005</td>
</tr>
<tr>
<td>5003604301618</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>07/06/2006</td>
<td>BEAM STARTED 01/06/2006 : 557 MG BCNU, 1520 MG ETOPOSIDE, 2960 MG CYTARABINE, 260 MG MELPHALAN</td>
</tr>
<tr>
<td>5003604901006</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>29/03/2007</td>
<td>FLUDARABINE 50 MG DAYS -6 TO -2 / MELPHALAN 80 MG DAYS -3 TO -2</td>
</tr>
<tr>
<td>5003560301612</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>21/06/2005</td>
<td>BEAM ON 15/06/2005</td>
</tr>
<tr>
<td>5003609301608</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>23/03/2005</td>
<td>BEAM</td>
</tr>
<tr>
<td>5003617201042</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>26/04/2007</td>
<td>DEXA BEAM + STEM CELL RETRANSFUSION (NO HD TREATMENT)</td>
</tr>
<tr>
<td>5003617201048</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>04/01/2008</td>
<td>IBRITUMOMAB TIUXETAN, ALEMTUZUMAB, FLU, MEL</td>
</tr>
<tr>
<td>5003617501606</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>16/05/2008</td>
<td>BEAM BCNU 552 MG, ETOPOSIDE 1840 MG, CYTARABINE 1840, MG MELPHALAN 258 MG, CD34 = 5.89 10^6/KG</td>
</tr>
<tr>
<td>5003622201210</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>24/05/2006</td>
<td>BEAM STARTED ON 17/05/2006</td>
</tr>
<tr>
<td>5003628201003</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>22/10/2004</td>
<td>BEAM</td>
</tr>
<tr>
<td>5003628201009</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>04/03/2005</td>
<td>BEAM</td>
</tr>
<tr>
<td>5003642501410</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>-</td>
<td>BEAM</td>
</tr>
</tbody>
</table>
Randomization Table

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of treatment</th>
<th>Transplantation</th>
<th>Date of transplantation</th>
<th>Conditioning Regimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003101031411</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>31/01/2007</td>
<td>BEAM (24/01/2007)</td>
</tr>
<tr>
<td>5003101071414</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>18/04/2007</td>
<td>BEAM ON 12/04/2007</td>
</tr>
<tr>
<td>5003101221070</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>06/02/2008</td>
<td>BEAM</td>
</tr>
<tr>
<td>5003101391613</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>09/09/2004</td>
<td>BEAM</td>
</tr>
<tr>
<td>5003101431204</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>28/04/2004</td>
<td>CBV NOVANTRONE FROM 20 TO 24/04/2004</td>
</tr>
<tr>
<td>5003603201034</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>07/11/2006</td>
<td>BEAM STARTED ON 31/10/2006</td>
</tr>
<tr>
<td>5003603801013</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>17/04/2007</td>
<td>BEAM REDUCED 40%</td>
</tr>
<tr>
<td>5003606201622</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>19/03/2007</td>
<td>BONE MARROW TRANSPLANT AFTER COND. BEAM</td>
</tr>
<tr>
<td>5003610201008</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>-</td>
<td>BEAM</td>
</tr>
<tr>
<td>5003610201212</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>-</td>
<td>BEAM</td>
</tr>
<tr>
<td>5003612501016</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>01/02/2008</td>
<td>BEAM CHEMOTHERAPY</td>
</tr>
<tr>
<td>5003616501411</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>07/10/2008</td>
<td>BEAM</td>
</tr>
<tr>
<td>5003622201037</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>22/12/2006</td>
<td>BEAM ON 15/12/2006</td>
</tr>
<tr>
<td>5003628201002</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>24/11/2004</td>
<td>BEAM</td>
</tr>
</tbody>
</table>

N = 35

Listing 6.6-10 New treatment out of progression - Other therapy (induction ITT)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of treatment</th>
<th>Other treatment</th>
<th>Date of other treatment</th>
<th>Specify other treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003101021014</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>17/02/2005</td>
<td>ZEVALIN</td>
</tr>
<tr>
<td>5003101441074</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>25/08/2008</td>
<td>DLI</td>
</tr>
</tbody>
</table>

N = 2
6.6.4. Progression/relapse

Table 6.6-20 Progression/relapse n°1 – Extra-nodal involvement (induction ITT)

<table>
<thead>
<tr>
<th></th>
<th>Arm of treatment</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARM A / R-ICE</td>
<td></td>
<td>ARM B / R-DHAP</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Bone marrow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Not Done</td>
<td>24</td>
<td>31</td>
<td>37</td>
</tr>
<tr>
<td>Yes</td>
<td>12</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>No</td>
<td>41</td>
<td>53</td>
<td>26</td>
</tr>
<tr>
<td>Blood</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Not Done</td>
<td>6</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Yes</td>
<td>8</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>No</td>
<td>63</td>
<td>82</td>
<td>59</td>
</tr>
<tr>
<td>Bone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Not Done</td>
<td>11</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>Yes</td>
<td>13</td>
<td>17</td>
<td>12</td>
</tr>
<tr>
<td>No</td>
<td>52</td>
<td>68</td>
<td>50</td>
</tr>
<tr>
<td>Skin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Not Done</td>
<td>5</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Yes</td>
<td>8</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>No</td>
<td>64</td>
<td>83</td>
<td>57</td>
</tr>
<tr>
<td>Liver</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Not Done</td>
<td>5</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Yes</td>
<td>16</td>
<td>21</td>
<td>16</td>
</tr>
<tr>
<td>No</td>
<td>56</td>
<td>73</td>
<td>50</td>
</tr>
<tr>
<td>Ascite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Not Done</td>
<td>5</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Yes</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>No</td>
<td>68</td>
<td>88</td>
<td>62</td>
</tr>
<tr>
<td>Pleural effusion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Done</td>
<td>5</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Yes</td>
<td>15</td>
<td>19</td>
<td>8</td>
</tr>
<tr>
<td>No</td>
<td>57</td>
<td>74</td>
<td>57</td>
</tr>
<tr>
<td>Lung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Done</td>
<td>4</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Yes</td>
<td>19</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>Arm of treatment</td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>No</td>
<td>54</td>
<td>70</td>
<td>47</td>
</tr>
<tr>
<td>Spleen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Not Done</td>
<td>3</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Yes</td>
<td>11</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>No</td>
<td>62</td>
<td>81</td>
<td>57</td>
</tr>
<tr>
<td>Pericardium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Not Done</td>
<td>6</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Yes</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>No</td>
<td>68</td>
<td>88</td>
<td>63</td>
</tr>
<tr>
<td>Breast</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Not Done</td>
<td>8</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Yes</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>No</td>
<td>68</td>
<td>88</td>
<td>61</td>
</tr>
<tr>
<td>Gonadal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Not Done</td>
<td>10</td>
<td>13</td>
<td>7</td>
</tr>
<tr>
<td>Yes</td>
<td>7</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>No</td>
<td>60</td>
<td>78</td>
<td>59</td>
</tr>
<tr>
<td>Kidney</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Not Done</td>
<td>6</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Yes</td>
<td>5</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>No</td>
<td>65</td>
<td>84</td>
<td>60</td>
</tr>
<tr>
<td>Adrenal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Not Done</td>
<td>6</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Yes</td>
<td>3</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>No</td>
<td>68</td>
<td>88</td>
<td>61</td>
</tr>
<tr>
<td>Thyroid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Not Done</td>
<td>12</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>Yes</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>No</td>
<td>64</td>
<td>83</td>
<td>60</td>
</tr>
<tr>
<td>ORL area</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Not Done</td>
<td>12</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>Yes</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Arm of treatment</td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>--------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Digestive area</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Not Done</td>
<td>13</td>
<td>17</td>
<td>8</td>
</tr>
<tr>
<td>Yes</td>
<td>11</td>
<td>14</td>
<td>11</td>
</tr>
<tr>
<td>No</td>
<td>53</td>
<td>69</td>
<td>50</td>
</tr>
<tr>
<td>CNS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Not Done</td>
<td>17</td>
<td>22</td>
<td>14</td>
</tr>
<tr>
<td>Yes</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>No</td>
<td>56</td>
<td>73</td>
<td>50</td>
</tr>
<tr>
<td>Total</td>
<td>77</td>
<td>100</td>
<td>70</td>
</tr>
</tbody>
</table>

Table 6.6-21 Progression/relapse n°1 – Nodal involvement (induction ITT)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Cervical right</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>Involved</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Missing</td>
<td>72</td>
<td>76</td>
</tr>
<tr>
<td>Cervical left</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>Involved</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Missing</td>
<td>72</td>
<td>76</td>
</tr>
<tr>
<td>Supraclavicular right</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>Involved</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Missing</td>
<td>72</td>
<td>76</td>
</tr>
<tr>
<td>Supraclavicular left</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>Involved</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Missing</td>
<td>72</td>
<td>76</td>
</tr>
<tr>
<td>Axillary right</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>Involved</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Arm of treatment</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>------------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Missing</td>
<td>72</td>
<td>76</td>
</tr>
<tr>
<td>Axillary left</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>Involved</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Missing</td>
<td>71</td>
<td>75</td>
</tr>
<tr>
<td>Inguinal right</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>Involved</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Missing</td>
<td>72</td>
<td>76</td>
</tr>
<tr>
<td>Inguinal left</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>Involved</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Missing</td>
<td>72</td>
<td>76</td>
</tr>
<tr>
<td>Mediastinal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>Involved</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Missing</td>
<td>72</td>
<td>76</td>
</tr>
<tr>
<td>Pulmonary hilar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>Involved</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Missing</td>
<td>73</td>
<td>77</td>
</tr>
<tr>
<td>Para-ortic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>Involved</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Missing</td>
<td>72</td>
<td>76</td>
</tr>
<tr>
<td>Mesenteric</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>Involved</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Missing</td>
<td>72</td>
<td>76</td>
</tr>
<tr>
<td>Iliac right</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>Involved</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Arm of treatment</td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Missing</td>
<td>72</td>
<td>76</td>
</tr>
</tbody>
</table>

Iliac left

<table>
<thead>
<tr>
<th></th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>Involved</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Missing</td>
<td>72</td>
<td>76</td>
</tr>
</tbody>
</table>

Splenic Hilar

<table>
<thead>
<tr>
<th></th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>Involved</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Missing</td>
<td>72</td>
<td>76</td>
</tr>
</tbody>
</table>

Other nodal involvement

<table>
<thead>
<tr>
<th></th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>Yes</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Missing</td>
<td>74</td>
<td>78</td>
</tr>
</tbody>
</table>

TOTAL

95 | 100 | 76 | 100

Listing 6.6-11 Progression/relapse n°1 – Other nodal involvement (induction ITT)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of treatment</th>
<th>Other nodal involvement</th>
<th>Other nodal involvement - localization</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003101161407</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>RIGHT CRURAL</td>
</tr>
<tr>
<td>5003101621609</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>SUB CLAVICULAR LEFT</td>
</tr>
<tr>
<td>5003605701601</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>KIDNEY HILUS LEFT</td>
</tr>
<tr>
<td>5003606201605</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>INTERAORTOCAVAL</td>
</tr>
<tr>
<td>5003649501033</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>PORTA HEPATIS</td>
</tr>
<tr>
<td>50036032101211</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>PREHEPATIC</td>
</tr>
<tr>
<td>5003604301607</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>PARAVERTEBRAL</td>
</tr>
<tr>
<td>5003617301619</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>SUBMANDIBULAR RIGHT</td>
</tr>
<tr>
<td>5003635201411</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>LIVER HILUS</td>
</tr>
<tr>
<td>N = 9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6.6-22 Progression/relapse n°1 – Extra-nodal involvement bis (induction ITT)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Liver</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>Involved</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Missing</td>
<td>60</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>Arm of treatment</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
<td>--------------</td>
</tr>
<tr>
<td></td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Ascites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>17</td>
<td>22</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Missing</td>
<td>60</td>
<td>78</td>
</tr>
<tr>
<td>Pleural effusion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>Involved</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Missing</td>
<td>60</td>
<td>78</td>
</tr>
<tr>
<td>Lung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>Involved</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Missing</td>
<td>60</td>
<td>78</td>
</tr>
<tr>
<td>Spleen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>16</td>
<td>21</td>
</tr>
<tr>
<td>Involved</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Missing</td>
<td>60</td>
<td>78</td>
</tr>
<tr>
<td>Pericardium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>16</td>
<td>21</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Missing</td>
<td>60</td>
<td>78</td>
</tr>
<tr>
<td>Breast</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>16</td>
<td>21</td>
</tr>
<tr>
<td>Involved</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Missing</td>
<td>60</td>
<td>78</td>
</tr>
<tr>
<td>Gonadal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>16</td>
<td>21</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Missing</td>
<td>60</td>
<td>78</td>
</tr>
<tr>
<td>Kidney</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>15</td>
<td>19</td>
</tr>
<tr>
<td>Involved</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Missing</td>
<td>60</td>
<td>78</td>
</tr>
<tr>
<td>Adrenal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>16</td>
<td>21</td>
</tr>
<tr>
<td>Involved</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Side</td>
<td>Arm of treatment</td>
<td>ARM A / R-ICE</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Missing</td>
<td>60</td>
<td>78</td>
</tr>
<tr>
<td>Thyroid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Missing</td>
<td>60</td>
<td>78</td>
</tr>
<tr>
<td>Skin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>Involved</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Missing</td>
<td>60</td>
<td>78</td>
</tr>
<tr>
<td>Bone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>Involved</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Missing</td>
<td>60</td>
<td>78</td>
</tr>
<tr>
<td>Tonsil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Missing</td>
<td>61</td>
<td>79</td>
</tr>
<tr>
<td>Cavum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Missing</td>
<td>61</td>
<td>79</td>
</tr>
<tr>
<td>Parotid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Missing</td>
<td>61</td>
<td>79</td>
</tr>
<tr>
<td>Orbit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Missing</td>
<td>61</td>
<td>79</td>
</tr>
<tr>
<td>Sinus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>Involved</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Missing</td>
<td>61</td>
<td>79</td>
</tr>
<tr>
<td>Oesophagus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Arm of treatment</td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Missing</td>
<td>61</td>
<td>79</td>
</tr>
<tr>
<td>Stomach</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Missing</td>
<td>61</td>
<td>79</td>
</tr>
<tr>
<td>Duodenum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>Involved</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Missing</td>
<td>61</td>
<td>79</td>
</tr>
<tr>
<td>Colon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>Involved</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Missing</td>
<td>61</td>
<td>79</td>
</tr>
<tr>
<td>Caecum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>Involved</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Missing</td>
<td>61</td>
<td>79</td>
</tr>
<tr>
<td>Rectum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>Involved</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Missing</td>
<td>61</td>
<td>79</td>
</tr>
<tr>
<td>Other extra-nodal involvement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>No</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>Missing</td>
<td>61</td>
<td>79</td>
</tr>
<tr>
<td>TOTAL</td>
<td>77</td>
<td>100</td>
</tr>
</tbody>
</table>

Listing 6.6-12 Progression/relapse n°1 – Other extra-nodal involvement (induction ITT)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of treatment</th>
<th>Progression/relapse number</th>
<th>Other extra-nodal involvement - localization</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003101491042</td>
<td>ARM A / R-ICE</td>
<td>1</td>
<td>BLADDER</td>
</tr>
<tr>
<td>5003101641618</td>
<td>ARM A / R-ICE</td>
<td>1</td>
<td>ENDOMETRIUM</td>
</tr>
<tr>
<td>5003611201057</td>
<td>ARM A / R-ICE</td>
<td>1</td>
<td>ABDOMINAL MUSCLES</td>
</tr>
<tr>
<td>5003620301011</td>
<td>ARM A / R-ICE</td>
<td>1</td>
<td>CENTRAL ABDOMINAL MASS</td>
</tr>
<tr>
<td>5003603201211</td>
<td>ARM B / R-DHAP</td>
<td>1</td>
<td>DIAPHRAGM</td>
</tr>
<tr>
<td>5003606201410</td>
<td>ARM B / R-DHAP</td>
<td>1</td>
<td>RIGHT KNEE AND CALF</td>
</tr>
<tr>
<td>5003606301606</td>
<td>ARM B / R-DHAP</td>
<td>1</td>
<td>OMENTUM</td>
</tr>
</tbody>
</table>
Table 6.6-23 Progression/relapse n°1 – Documentation (induction ITT)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>Histological documentation</th>
<th>Cytological documentation</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM A / R-ICE</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Not Done</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Yes</td>
<td>46</td>
<td>35</td>
<td>30</td>
</tr>
<tr>
<td>No</td>
<td>85</td>
<td>64</td>
<td>87</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Not Done</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Yes</td>
<td>26</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>No</td>
<td>102</td>
<td>77</td>
<td>95</td>
</tr>
<tr>
<td>Total</td>
<td>132</td>
<td>100</td>
<td>117</td>
</tr>
</tbody>
</table>

Listing 6.6-13 Progression/relapse n°1 - Chemotherapy (induction ITT)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of treatment</th>
<th>Chemotherapy</th>
<th>Date of chemotherapy</th>
<th>Specify chemotherapy</th>
<th>Nb of cycles of chemotherapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003101021008</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>13/07/2004</td>
<td>DEXAMETHASONE-GEMOX</td>
<td>1</td>
</tr>
<tr>
<td>5003101021027</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>28/07/2005</td>
<td>DHAOX</td>
<td>2</td>
</tr>
<tr>
<td>5003101021605</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>28/05/2004</td>
<td>R-GEMOX</td>
<td>8</td>
</tr>
<tr>
<td>5003101021631</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>14/06/2007</td>
<td>R-GEMOX</td>
<td>8</td>
</tr>
<tr>
<td>5003101031001</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>11/03/2004</td>
<td>ONCOVIN + CELTIPOT</td>
<td>-</td>
</tr>
<tr>
<td>5003101051004</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>22/04/2004</td>
<td>VEPESIDE + CHLORAMINOPHENE</td>
<td>2</td>
</tr>
<tr>
<td>5003101051075</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>25/06/2008</td>
<td>REVLIMID / DEXAMETHASONE</td>
<td>2</td>
</tr>
<tr>
<td>5003101071029</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>16/06/2006</td>
<td>GEMOX</td>
<td>4</td>
</tr>
<tr>
<td>5003101071059</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>21/02/2007</td>
<td>DHAOX</td>
<td>2</td>
</tr>
<tr>
<td>5003101091602</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>10/01/2005</td>
<td>DHAP</td>
<td>3</td>
</tr>
<tr>
<td>5003101131062</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>06/05/2007</td>
<td>DHAP</td>
<td>1</td>
</tr>
<tr>
<td>5003101141406</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>04/01/2006</td>
<td>3 DHAOX + 4 CHOP</td>
<td>7</td>
</tr>
<tr>
<td>5003101161407</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>28/03/2007</td>
<td>DHAP (1 CYCLE) THEN DEXAMETHASONE + CYTARABINE + ETOPOSIDE (1 CYCLE) THEN CYCLOPHOSPHAMIDE + MITOXANTRONE + VINCRISTINE + DEXAMETHASONE</td>
<td>3</td>
</tr>
<tr>
<td>5003101221043</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>08/04/2006</td>
<td>DHAP DOXORUBICINE</td>
<td>1</td>
</tr>
<tr>
<td>5003101281017</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>13/12/2004</td>
<td>DHAP</td>
<td>-</td>
</tr>
<tr>
<td>5003101281033</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>12/01/2006</td>
<td>DHAP</td>
<td>2</td>
</tr>
<tr>
<td>5003101281208</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>29/03/2006</td>
<td>DHAP</td>
<td>-</td>
</tr>
<tr>
<td>5003101351040</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>11/03/2006</td>
<td>HYPER C-VAD</td>
<td>2</td>
</tr>
<tr>
<td>5003101391309</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>04/04/2006</td>
<td>CYCLOPHOSPHAMIDE HIGH DOSE AND VINBLASTIN</td>
<td>2</td>
</tr>
<tr>
<td>5003101391201</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>23/12/2003</td>
<td>DHAP + COPADEM</td>
<td>5</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Arm of treatment</td>
<td>Chemotherapy</td>
<td>Date of chemotherapy</td>
<td>Specify chemotherapy</td>
<td>Nb of cycles of chemotherapy</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>--------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>5003101431046</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>13/06/2006</td>
<td>DHAP</td>
<td>3</td>
</tr>
<tr>
<td>5003101431622</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>03/04/2008</td>
<td>CYP (1 CYCLE) DHAP (3 CYCLES) CARBO DHAP (1 CYCLE) GEMOX (1 CYCLE)</td>
<td>6</td>
</tr>
<tr>
<td>5003101441036</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>12/01/2006</td>
<td>CYSPLATINE + ARAC + RITUXIMAB / UNTIL 29/3/06</td>
<td>3</td>
</tr>
<tr>
<td>5003101491042</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>04/08/2006</td>
<td>LOW DOSE CYCLOPHOSPHAMIDE, 15/09/06 : HOELZER BLOK A, 30/10/06 : HOELZER BLOK D, GEMCITABINE 15/01/07 AND 26/01/07</td>
<td>-</td>
</tr>
<tr>
<td>5003101621026</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>12/03/2007</td>
<td>RITUXIMAB - DEXAMETHASONE CISPLATINE CYTARABINE</td>
<td>6</td>
</tr>
<tr>
<td>5003101621609</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>13/11/2006</td>
<td>R CHOP</td>
<td>6</td>
</tr>
<tr>
<td>5003101621615</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>04/05/2005</td>
<td>DHAP</td>
<td>4</td>
</tr>
<tr>
<td>5003101641618</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>25/01/2007</td>
<td>GEMCITABINE - OXALIPLATIN</td>
<td>8</td>
</tr>
<tr>
<td>5003102161036</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>12/01/2006</td>
<td>CISPLATINE + ARAC + RITUXIMAB / UNTIL 29/3/06</td>
<td>3</td>
</tr>
<tr>
<td>5003102341049</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>08/09/2007</td>
<td>CYTARABINE - ETOPOSIDE - MITOXANTRONE - IFOSFAMIDE - MITOOGUAZONE</td>
<td>1</td>
</tr>
<tr>
<td>5003102341061</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>10/01/2008</td>
<td>CYTARABINE, ETOPOSIDE, MITOXANTRONE, IFOSFAMIDE, METHOTREXATE</td>
<td>3</td>
</tr>
<tr>
<td>5003102341416</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>08/02/2007</td>
<td>VIM - CYTARABIN</td>
<td>3</td>
</tr>
<tr>
<td>5003102341641</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>12/11/2009</td>
<td>CHOP</td>
<td>3</td>
</tr>
<tr>
<td>5003102541052</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>10/01/2007</td>
<td>DHAP</td>
<td>1</td>
</tr>
<tr>
<td>5003102541625</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>01/02/2008</td>
<td>ESAP</td>
<td>4</td>
</tr>
<tr>
<td>5003601201041</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>-</td>
<td>GEMOX -> GEMCITABINE / OXALIPLATIN</td>
<td>2</td>
</tr>
<tr>
<td>5003601401003</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>26/06/2006</td>
<td>TROPHOSPHAMID 100 MG X 1 CONTINUOUSLY TO 16/07/2006</td>
<td>-</td>
</tr>
<tr>
<td>5003601401006</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>05/03/2008</td>
<td>CYCLOPHOSPHAMIDE PER ORAL CONTINUOUS TREATEMENT TOGETHER WITH METHOTREXATE 2 DAYS / WEEK</td>
<td>-</td>
</tr>
<tr>
<td>5003601401401</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>15/12/2005</td>
<td>VINCRIISTINE, DOXORUBICIN, DEXAMETHASONE</td>
<td>4</td>
</tr>
<tr>
<td>5003601401603</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>28/11/2007</td>
<td>DOXORUBICIN (LIPOSOMAL) + GEMCITABINE TO 3/4-08 + ISOFSFAMIDE 100 MG PO DAILY DOSE</td>
<td>6</td>
</tr>
<tr>
<td>5003601401605</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>17/06/2008</td>
<td>MITOOGUAZONE, IFOSFAMIDE, ETOPOSID, METHOTREXATE</td>
<td>4</td>
</tr>
<tr>
<td>5003601601003</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>16/11/2007</td>
<td>PALLIATIVE CYCLOPHOSPHAMIDE</td>
<td>3</td>
</tr>
<tr>
<td>5003601601005</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>11/09/2008</td>
<td>ORAL CYCLOPHOSPHAMIDE / ETOPOSIDE X 7 DAYS</td>
<td>1</td>
</tr>
<tr>
<td>5003601881401</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>11/08/2007</td>
<td>DEXAMETHASONE / CYTARABINE / PLATINE</td>
<td>4</td>
</tr>
<tr>
<td>5003602201601</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>01/04/2006</td>
<td>DHAP DOSE REDUCED</td>
<td>2</td>
</tr>
<tr>
<td>5003602801001</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>25/03/2004</td>
<td>HYPER C-VAD / HD-MTX-ARA-C + RITUXIMAB</td>
<td>2</td>
</tr>
<tr>
<td>5003602801101</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>15/07/2007</td>
<td>HIGH DOSE MTX + ARA-C</td>
<td>1</td>
</tr>
<tr>
<td>5003602801403</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>24/03/2009</td>
<td>R-ESAP</td>
<td>1</td>
</tr>
<tr>
<td>5003602801605</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>24/09/2008</td>
<td>R-GDP</td>
<td>5</td>
</tr>
<tr>
<td>5003602901201</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>-</td>
<td>GEMSAR</td>
<td>1</td>
</tr>
<tr>
<td>5003602901401</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>-</td>
<td>GEMSAR</td>
<td>2</td>
</tr>
<tr>
<td>5003603201038</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>-</td>
<td>SEE COPY</td>
<td>-</td>
</tr>
<tr>
<td>5003603201628</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>-</td>
<td>CHOP</td>
<td>5</td>
</tr>
<tr>
<td>5003603701010</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>16/08/2006</td>
<td>ARM A, R-DHAP</td>
<td>1</td>
</tr>
<tr>
<td>5003603801002</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>05/03/2010</td>
<td>R-MINE</td>
<td>1</td>
</tr>
<tr>
<td>5003603801203</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>17/08/2005</td>
<td>ESHAP</td>
<td>1</td>
</tr>
<tr>
<td>5003603801406</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>13/11/2008</td>
<td>P.O. ETOPOSIDE</td>
<td>3</td>
</tr>
<tr>
<td>5003603801602</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>13/10/2006</td>
<td>R-FND</td>
<td>4</td>
</tr>
<tr>
<td>5003603801608</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>03/11/2008</td>
<td>R-MEGA CHOP</td>
<td>3</td>
</tr>
<tr>
<td>5003604201204</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>25/08/2004</td>
<td>Gemcitabin</td>
<td>4</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Arm of treatment</td>
<td>Chemotherapy</td>
<td>Date of chemotherapy</td>
<td>Specify chemotherapy</td>
<td>Nb of cycles of chemotherapy</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>--------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>5003604301602</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>17/08/2006</td>
<td>2 CYCLES OF FLUDARABINE + 6 CYCLES OF CEOP</td>
<td>8</td>
</tr>
<tr>
<td>5003604801014</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>21/04/2007</td>
<td>DHAP</td>
<td>1</td>
</tr>
<tr>
<td>5003604801205</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>10/08/2006</td>
<td>R-DHAP</td>
<td>4</td>
</tr>
<tr>
<td>5003605201006</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>18/01/2005</td>
<td>DHAP</td>
<td>1</td>
</tr>
<tr>
<td>5003606201605</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>05/01/2006</td>
<td>GEMCITABINE / OXALIPLATIN</td>
<td>5</td>
</tr>
<tr>
<td>5003606301612</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>27/02/2006</td>
<td>RDHAP THEN RICE</td>
<td>2</td>
</tr>
<tr>
<td>5003607201032</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>25/07/2006</td>
<td>GMALL-PROTOCOL</td>
<td>1</td>
</tr>
<tr>
<td>5003607501403</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>13/07/2007</td>
<td>GEMCITABINE CISPLATIN</td>
<td>3</td>
</tr>
<tr>
<td>5003607701007</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>29/04/2006</td>
<td>DHAP</td>
<td>1</td>
</tr>
<tr>
<td>5003607701009</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>28/07/2006</td>
<td>ARA-C HIGH DOSE</td>
<td>1</td>
</tr>
<tr>
<td>5003609201058</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>18/09/2008</td>
<td>DEXA-Beam</td>
<td>1</td>
</tr>
<tr>
<td>5003610201007</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>-</td>
<td>2 X B ALL PROTOCOL</td>
<td>2</td>
</tr>
<tr>
<td>5003610201206</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>21/06/2006</td>
<td>DHAP</td>
<td>2</td>
</tr>
<tr>
<td>5003610201612</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>19/06/2005</td>
<td>HD-MTX, IFOSFAMIDE, CYTARABIN, TENIPOSIDE, DEXAMETHASONE</td>
<td>1</td>
</tr>
<tr>
<td>5003610301208</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>24/09/2004</td>
<td>GEMCITABINE / VINOXELBINE</td>
<td>1</td>
</tr>
<tr>
<td>5003610501031</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>30/07/2008</td>
<td>GEMCITABINE, VINOXELBINE</td>
<td>1</td>
</tr>
<tr>
<td>5003611201057</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>27/07/2008</td>
<td>GEMCITABINE + OXALIPLATINE</td>
<td>1</td>
</tr>
<tr>
<td>5003612501015</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>-</td>
<td>LOW DOSE CHEMOTHERAPY (SHAMASH REGIMEN)</td>
<td>4</td>
</tr>
<tr>
<td>5003615501018</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>15/10/2007</td>
<td>GEMCITABINE DASCARBAZINE CYCLOPHOSPHAMIDE VINCristine PREDNISOLONE</td>
<td>1</td>
</tr>
<tr>
<td>5003615501028</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>02/05/2008</td>
<td>GEMCITABINE, DASCARBAZINE, CYCLOPHOSPHAMIDE, VINCristine, PREDNISOLONE</td>
<td>3</td>
</tr>
<tr>
<td>5003615501404</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>20/08/2007</td>
<td>GDCVP (GEMCITABINE, DASCARBAZINE, CYCLOPHOSPHAMIDE, VINCristine, PREDNISOLONE)</td>
<td>2</td>
</tr>
<tr>
<td>5003617201004</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>26/11/2004</td>
<td>1 CYCLE CYTARABINE / MITOXANTRONE 12/04 + 1 CYCLE R-GEMOX 01/05</td>
<td>2</td>
</tr>
<tr>
<td>5003617201010</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>25/02/2005</td>
<td>DEXA-BEAM + VINCristin</td>
<td>2</td>
</tr>
<tr>
<td>5003617201039</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>23/01/2007</td>
<td>DEXA-BEAM</td>
<td>1</td>
</tr>
<tr>
<td>5003619301621</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>24/10/2007</td>
<td>R-VGF</td>
<td>4</td>
</tr>
<tr>
<td>5003620301011</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>03/01/2008</td>
<td>GEMCITABINE / VINOXELBINE</td>
<td>3</td>
</tr>
<tr>
<td>5003621201020</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>28/04/2006</td>
<td>DEXAMETHASONE / CYTARABINE / METHOTREXATE</td>
<td>2</td>
</tr>
<tr>
<td>5003621201026</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>17/02/2006</td>
<td>DEXA - BEAM</td>
<td>1</td>
</tr>
<tr>
<td>5003622201022</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>24/02/2006</td>
<td>R-DHAP / HIGH-DOSE MTX NB CYCLES 1</td>
<td>2</td>
</tr>
<tr>
<td>5003622201403</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>10/07/2006</td>
<td>FLUDARABIN / CYCLOPHOSPHAMID</td>
<td>2</td>
</tr>
<tr>
<td>5003631201035</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>-</td>
<td>DHAP</td>
<td>5</td>
</tr>
<tr>
<td>5003632201054</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>29/09/2008</td>
<td>GEMCITABINE</td>
<td>3</td>
</tr>
<tr>
<td>5003633201036</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>07/12/2006</td>
<td>DEXA-BEAM</td>
<td>-</td>
</tr>
<tr>
<td>5003642501030</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>06/05/2008</td>
<td>GEMCITABINE / DHAP</td>
<td>3</td>
</tr>
<tr>
<td>5003643501202</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>11/06/2008</td>
<td>MINI BEAM</td>
<td>1</td>
</tr>
<tr>
<td>5003649501033</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>10/09/2008</td>
<td>OXALIPLATIN + GEMCITABINE</td>
<td>-</td>
</tr>
<tr>
<td>5003310121038</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>19/12/2006</td>
<td>GEMOX</td>
<td>4</td>
</tr>
<tr>
<td>5003310131019</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>02/02/2005</td>
<td>MIV</td>
<td>3</td>
</tr>
<tr>
<td>5003310131067</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>14/06/2007</td>
<td>MIV X 2 THEN GEMCITABINE - VINOXELBINE X 1, ESHAP X 1</td>
<td>4</td>
</tr>
<tr>
<td>5003310131401</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>14/04/2005</td>
<td>MIV</td>
<td>2</td>
</tr>
<tr>
<td>5003310151050</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>15/01/2007</td>
<td>CYCLOPHOSPHAMIDE + ETOPOSIDE</td>
<td>1</td>
</tr>
<tr>
<td>5003310151063</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>31/03/2008</td>
<td>R-GEMOX</td>
<td>4</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Arm of treatment</td>
<td>Chemotherapy</td>
<td>Date of chemotherapy</td>
<td>Specify chemotherapy</td>
<td>Nb of cycles of chemotherapy</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------</td>
<td>--------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>5003101071051</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>19/09/2006</td>
<td>1 ICE + 1 GEMOX</td>
<td>1</td>
</tr>
<tr>
<td>5003101071073</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>28/11/2007</td>
<td>ICE</td>
<td>1</td>
</tr>
<tr>
<td>5003101071408</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>29/11/2006</td>
<td>GEMOX</td>
<td>4</td>
</tr>
<tr>
<td>5003101071417</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>09/08/2008</td>
<td>GEMOX</td>
<td>1</td>
</tr>
<tr>
<td>5003101071607</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>17/03/2004</td>
<td>HOLOXAN- VP16</td>
<td>6</td>
</tr>
<tr>
<td>500310109101022</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>05/07/2005</td>
<td>VEPESIDE / CARBOPLATINE / IFOSFAMIDE (ICE)</td>
<td>1</td>
</tr>
<tr>
<td>5003101091025</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>01/08/2005</td>
<td>CYTARABINE / DEXAMETHASONE</td>
<td>1</td>
</tr>
<tr>
<td>5003101091626</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>17/10/2005</td>
<td>(R)ICE</td>
<td>3</td>
</tr>
<tr>
<td>5003101141402</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>01/09/2005</td>
<td>IFOSFAMIDE ETOPOSIDE MESNA</td>
<td>4</td>
</tr>
<tr>
<td>5003101141624</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>10/06/2009</td>
<td>ENDOXAN AND SOLUMEDROL FOLLOWING BY CHOP 1 CYCLE AND CVP</td>
<td>1</td>
</tr>
<tr>
<td>5003101221057</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>08/02/2007</td>
<td>MIME DOXORUBICINE</td>
<td>2</td>
</tr>
<tr>
<td>5003101221070</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>07/05/2008</td>
<td>MINE : FAILURE, THEN DOXORUBICINE + BLEOMYCINE 11/09/2008</td>
<td>2</td>
</tr>
<tr>
<td>5003101221639</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>27/04/2007</td>
<td>MIME</td>
<td>3</td>
</tr>
<tr>
<td>5003101251015</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>26/12/2004</td>
<td>IVAM X 1 / IVA X 2</td>
<td>3</td>
</tr>
<tr>
<td>5003101251035</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>17/07/2006</td>
<td>IVAM + 3 ETOPOSIDE/CYCLOPHOSPHAMIDE</td>
<td>5</td>
</tr>
<tr>
<td>5003101251044</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>18/05/2006</td>
<td>IVAM</td>
<td>1</td>
</tr>
<tr>
<td>5003101391032</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>03/08/2005</td>
<td>R-ICE</td>
<td>1</td>
</tr>
<tr>
<td>5003101391048</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>25/09/2006</td>
<td>APLIDINE</td>
<td>2</td>
</tr>
<tr>
<td>5003101391613</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>16/04/2005</td>
<td>2 VAD + 1 MTX</td>
<td>2</td>
</tr>
<tr>
<td>5003101431204</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>04/11/2005</td>
<td>CARYOLYSINE ONCOVIN NATULAN / ADRIA-VELBE-BLEOMYCINE</td>
<td>-</td>
</tr>
<tr>
<td>5003101601066</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>27/07/2007</td>
<td>ICE</td>
<td>2</td>
</tr>
<tr>
<td>5003101601076</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>25/04/2008</td>
<td>R-DHAP X2 + BOD X1 + VIM X1</td>
<td>4</td>
</tr>
<tr>
<td>5003101641018</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>06/04/2005</td>
<td>ICE</td>
<td>2</td>
</tr>
<tr>
<td>5003101641047</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>04/07/2006</td>
<td>ICE</td>
<td>2</td>
</tr>
<tr>
<td>5003101641079</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>13/08/2008</td>
<td>COPADEM</td>
<td>2</td>
</tr>
<tr>
<td>5003102181031</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>08/09/2005</td>
<td>RICE</td>
<td>2</td>
</tr>
<tr>
<td>5003102341003</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>05/02/2004</td>
<td>HCVAD : ENDOXAN, DEXAMETHASONE, DOXORUBICINE (INDUCTION)</td>
<td>2</td>
</tr>
<tr>
<td>5003102411054</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>04/09/2007</td>
<td>RITUXIMAB + ETOPOSIDE + IFOSFAMIDE</td>
<td>2</td>
</tr>
<tr>
<td>5003102541016</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>22/11/2004</td>
<td>IFOSFAMIDE, GEMCITABINE</td>
<td>3</td>
</tr>
<tr>
<td>5003102541640</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>11/09/2007</td>
<td>RACVBP</td>
<td>3</td>
</tr>
<tr>
<td>5003103161041</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>20/04/2007</td>
<td>ETOPOSIDE + IFOSFAMIDE</td>
<td>4</td>
</tr>
<tr>
<td>5003601201018</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>07/10/2005</td>
<td>ICE</td>
<td>2</td>
</tr>
<tr>
<td>5003601401402</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>19/09/2005</td>
<td>CHOR / CYTOSAR</td>
<td>4</td>
</tr>
<tr>
<td>5003601601062</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>14/08/2008</td>
<td>GEMATABINE W/ RITUXIMAB + DACETUZUMAB (INVESTIGATIONAL)</td>
<td>5</td>
</tr>
<tr>
<td>5003601801003</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>26/01/2005</td>
<td>RICE</td>
<td>2</td>
</tr>
<tr>
<td>5003602801204</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>10/03/2005</td>
<td>VIN-BLEO (VINCRISTIN, BLEOMYCIN, PREDNISON)</td>
<td>1</td>
</tr>
<tr>
<td>5003603801007</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>22/05/2006</td>
<td>MINIDEXA BEAM</td>
<td>1</td>
</tr>
<tr>
<td>5003603801010</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>07/11/2006</td>
<td>ICE</td>
<td>1</td>
</tr>
<tr>
<td>5003604201056</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>18/06/2009</td>
<td>B-ALL</td>
<td>-</td>
</tr>
<tr>
<td>5003604301057</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>04/03/2010</td>
<td>ETOPOSIDE</td>
<td>-</td>
</tr>
<tr>
<td>5003604801006</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>07/06/2006</td>
<td>R-ICE</td>
<td>2</td>
</tr>
<tr>
<td>5003605201003</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>12/05/2005</td>
<td>CHOP</td>
<td>3</td>
</tr>
<tr>
<td>5003605301203</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>16/06/2004</td>
<td>VINCristine and BLEOMycin</td>
<td>2</td>
</tr>
</tbody>
</table>
Randomization

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of treatment</th>
<th>Chemotherapy</th>
<th>Date of chemotherapy</th>
<th>Specify chemotherapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003605701404</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>29/04/2008</td>
<td>METHOTREXATE (MTX)</td>
</tr>
<tr>
<td>5003606201033</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>24/08/2006</td>
<td>3 X ICE (NO RESPONSE), 2 X GEMCITABIN / IRINOTECAN : MR</td>
</tr>
<tr>
<td>5003606201407</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>23/11/2006</td>
<td>GEMCITABINE / IRINOTECAN</td>
</tr>
<tr>
<td>5003606201410</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>01/06/2007</td>
<td>DEXABEAM</td>
</tr>
<tr>
<td>5003606201609</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>-</td>
<td>ICE</td>
</tr>
<tr>
<td>5003606301606</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>18/01/2005</td>
<td>GEMCITABINE, VINORELBINE COMBINATION</td>
</tr>
<tr>
<td>5003606701005</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>24/05/2006</td>
<td>VINORELBINE - GEMCITABINE</td>
</tr>
<tr>
<td>5003607201408</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>22/10/2008</td>
<td>R-GEMOX</td>
</tr>
<tr>
<td>5003607301603</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>27/06/2006</td>
<td>VINCRI STINE 2 MG EVERY 2 OR 3 WEEKS / DEXAMETHASONE 40 MG DAILY FOR FOUR DAYS EVERY THREE WEEKS</td>
</tr>
<tr>
<td>5003607501401</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>19/06/2007</td>
<td>GEMCITABINE + CISPLATIN DEXAMETHASONE</td>
</tr>
<tr>
<td>5003609301620</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>26/11/2007</td>
<td>R-ICE</td>
</tr>
<tr>
<td>5003610701403</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>20/11/2008</td>
<td>R-ICE</td>
</tr>
<tr>
<td>5003611301003</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>23/01/2006</td>
<td>FLUDARABINE / MITOZONTRONE / DEXAMETHASONE</td>
</tr>
<tr>
<td>5003612501019</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>29/11/2007</td>
<td>METHOTREXATE</td>
</tr>
<tr>
<td>5003614301407</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>24/06/2009</td>
<td>ICE</td>
</tr>
<tr>
<td>5003615501004</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>08/01/2007</td>
<td>ESHAP</td>
</tr>
<tr>
<td>5003615501029</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>30/05/2008</td>
<td>GEMCITABINE, DACARB AZINE, CYCLOPHOSPHAMIDE, VINCRI STINE, PREDNISOLONE</td>
</tr>
<tr>
<td>5003617201021</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>30/05/2005</td>
<td>R-BENDAMUSTIN</td>
</tr>
<tr>
<td>5003617201024</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>03/01/2006</td>
<td>DEXA-BEAM</td>
</tr>
<tr>
<td>5003617201043</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>24/09/2007</td>
<td>2 G VINCRI STIN FOLLOWED BY 6EM DEX OX</td>
</tr>
<tr>
<td>5003617301619</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>09/05/2007</td>
<td>GEMCITABINE : IFOSFAMIDE ; PREDNISOLONE</td>
</tr>
<tr>
<td>5003618301005</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>05/07/2006</td>
<td>GEMCITABINE VINORELBINE</td>
</tr>
<tr>
<td>5003619301016</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>04/04/2008</td>
<td>VGIF-R</td>
</tr>
<tr>
<td>5003620201017</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>18/08/2005</td>
<td>R-DEXA BEAM</td>
</tr>
<tr>
<td>5003628201044</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>05/08/2008</td>
<td>R-ICE, R-CHOP, GEMCITABINE / VINORELBINE</td>
</tr>
<tr>
<td>5003628201046</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>10/10/2007</td>
<td>GEMCITABINE / ENZASTAURIN / OXALIPLATIN / RITUXIMAB : SD</td>
</tr>
<tr>
<td>5003630201040</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>16/06/2007</td>
<td>RITUXIMAB - GEMCITABINE - OXALIPLATIN</td>
</tr>
<tr>
<td>5003631201012</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>13/01/2006</td>
<td>PREPHASE CYCLOPHOSPHAMIDE / DOSE REDUCED ICE 3 X FOLLOWED BY BENDAMUSTINE DEXAMETHASONE / FOLLOWED BY GEMCITABINE VINORELBINE</td>
</tr>
<tr>
<td>5003631201619</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>13/09/2006</td>
<td>ICE C IFOSFAMIDE 50%</td>
</tr>
<tr>
<td>5003635201411</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>-</td>
<td>R-GEMOX</td>
</tr>
<tr>
<td>5003636201047</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>17/08/2007</td>
<td>R-ICE</td>
</tr>
</tbody>
</table>

N = 177

Listing 6.6-14 Progression/relapse n°1 - Radiotherapy (induction ITT)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of treatment</th>
<th>Radiotherapy</th>
<th>Date of radiotherapy</th>
<th>Site of radiotherapy</th>
<th>Dose of radiotherapy (Gy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003101020127</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>07/11/2005</td>
<td>MEDIASTINAL</td>
<td>46</td>
</tr>
<tr>
<td>5003101031001</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>16/01/2004</td>
<td>LEFT ARM</td>
<td>47</td>
</tr>
<tr>
<td>5003101071020</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>05/09/2005</td>
<td>TONSIL RIGHT AND CERVICAL RIGHT</td>
<td>40</td>
</tr>
<tr>
<td>5003101071029</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>-</td>
<td>EXTERNAL BEAM RADIATION (AXILLAR, SUSCLAVICULAR RIGHT, MEDIASTINAL)</td>
<td>20</td>
</tr>
<tr>
<td>5003101071059</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>26/01/2007</td>
<td>SHOULDER LEFT AND LEFT AXILLAR</td>
<td>30</td>
</tr>
<tr>
<td>5003101161407</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>-</td>
<td>RIGHT LEG</td>
<td>36</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Arm of treatment</td>
<td>Radiotherapy</td>
<td>Date of radiotherapy</td>
<td>Site of radiotherapy</td>
<td>Dose of radiotherapy (Gy)</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------</td>
<td>--------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>5003101211023</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>19/07/2005</td>
<td>MEDIASTINAL AND LEFT SUPRACLAVICULAR</td>
<td>40</td>
</tr>
<tr>
<td>5003101351040</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>23/05/2006</td>
<td>MEDIASTINUM</td>
<td>-</td>
</tr>
<tr>
<td>50031014301046</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>16/10/2006</td>
<td>MESENTERIC (RESIDUAL MASS)</td>
<td>40</td>
</tr>
<tr>
<td>5003601201041</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>-</td>
<td>MEDIASTINAL LYMPH NODES</td>
<td>-</td>
</tr>
<tr>
<td>5003601601005</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>29/07/2008</td>
<td>LEFT PELVIC WALL</td>
<td>37</td>
</tr>
<tr>
<td>50036016011401</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>28/07/2008</td>
<td>RADIOTHERAPY : LEFT CHEST WALL, ENFACE FOR LOW GRADE FOLLICULAR LYMPHOMA</td>
<td>36</td>
</tr>
<tr>
<td>5003602901601</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>-</td>
<td>RIGHT ADRENAL</td>
<td>-</td>
</tr>
<tr>
<td>5003603210025</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>-</td>
<td>MEDIASTINAL</td>
<td>40</td>
</tr>
<tr>
<td>5003603210038</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>10/09/2007</td>
<td>TOTAL BODY</td>
<td>4</td>
</tr>
<tr>
<td>5003603701006</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>07/04/2006</td>
<td>THORAX WOUND</td>
<td>42</td>
</tr>
<tr>
<td>5003603701010</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>13/09/2006</td>
<td>LESSER PELVIS, INGUINAL RIGHT</td>
<td>30</td>
</tr>
<tr>
<td>5003603801015</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>25/06/2007</td>
<td>MEDIASTINUM</td>
<td>40</td>
</tr>
<tr>
<td>5003603801202</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>20/02/2006</td>
<td>BONE LESIONS</td>
<td>30</td>
</tr>
<tr>
<td>5003603801203</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>16/05/2005</td>
<td>RIGHT INGUINA AND RIGHT IliAC REGION</td>
<td>40</td>
</tr>
<tr>
<td>5003604201020</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>19/11/2004</td>
<td>cervical right : 40 Gy, paraaortic: 40 Gy, cervical left : 32 Gy, frontal right : 24 Gy</td>
<td>40</td>
</tr>
<tr>
<td>5003604301013</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>17/06/2009</td>
<td>RIGHT FOREARM</td>
<td>20</td>
</tr>
<tr>
<td>5003604901005</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>17/07/2006</td>
<td>ILIAC BONE</td>
<td>36</td>
</tr>
<tr>
<td>5003605201006</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>-</td>
<td>BULKY LYMPHOMA HYPOGASTRIUM</td>
<td>-</td>
</tr>
<tr>
<td>5003605901003</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>10/10/2007</td>
<td>LEFT UPPER NECK</td>
<td>25</td>
</tr>
<tr>
<td>5003606701003</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>09/03/2006</td>
<td>MESENTERIC MASS</td>
<td>40</td>
</tr>
<tr>
<td>5003607201032</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>22/08/2006</td>
<td>CERVICAL LEFT</td>
<td>65</td>
</tr>
<tr>
<td>5003609201058</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>14/08/2008</td>
<td>MEDIASTINUM</td>
<td>2</td>
</tr>
<tr>
<td>5003610301617</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>-</td>
<td>RIGHT INGUINAL REGION</td>
<td>-</td>
</tr>
<tr>
<td>5003615301004</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>20/12/2005</td>
<td>ABDOMEN</td>
<td>40</td>
</tr>
<tr>
<td>5003615501201</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>09/02/2007</td>
<td>ABDOMEN</td>
<td>29</td>
</tr>
<tr>
<td>5003617201010</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>22/08/2005</td>
<td>-</td>
<td>36</td>
</tr>
<tr>
<td>5003617201039</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>03/04/2007</td>
<td>PARA-AORTIC</td>
<td>45</td>
</tr>
<tr>
<td>5003621201020</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>27/06/2006</td>
<td>TONSILLA RIGHT, ZONA LEG LEFT</td>
<td>8</td>
</tr>
<tr>
<td>5003621201026</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>-</td>
<td>ABDOMINAL</td>
<td>9</td>
</tr>
<tr>
<td>5003628201003</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>06/12/2004</td>
<td>ABDOMINAL MASSES</td>
<td>48</td>
</tr>
<tr>
<td>5003628201005</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>16/10/2008</td>
<td>LEFT SHANK</td>
<td>30</td>
</tr>
<tr>
<td>5003642501030</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>22/10/2008</td>
<td>MEDIASTINUM</td>
<td>30</td>
</tr>
<tr>
<td>5003610301067</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>28/08/2007</td>
<td>MEDIASTINUM</td>
<td>40</td>
</tr>
<tr>
<td>5003610301401</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>-</td>
<td>ENCEPHALON</td>
<td>45</td>
</tr>
<tr>
<td>50036101091626</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>16/01/2006</td>
<td>RIGHT AXILLARY</td>
<td>40</td>
</tr>
<tr>
<td>5003611131060</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>12/06/2007</td>
<td>CARINA LESION AND MEDIASTINUM</td>
<td>44</td>
</tr>
<tr>
<td>5003612501015</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>14/06/2005</td>
<td>MESENTERIC MASS</td>
<td>36</td>
</tr>
<tr>
<td>5003612501044</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>22/06/2006</td>
<td>CERVICAL</td>
<td>42</td>
</tr>
<tr>
<td>5003613901032</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>29/08/2005</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>5003624110054</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>16/10/2007</td>
<td>LEFT IliAC + LEFT INGUINAL</td>
<td>40</td>
</tr>
<tr>
<td>5003612411069</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>20/02/2008</td>
<td>CERVICO SUB CLAVICULAR GANGLION + WALDEVER RING</td>
<td>36</td>
</tr>
<tr>
<td>5003610251016</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>26/01/2005</td>
<td>ABDOMINAL</td>
<td>40</td>
</tr>
</tbody>
</table>
Randomization Number | Arm of treatment | Radiotherapy | Date of radiotherapy | Site of radiotherapy | Dose of radiotherapy (Gy)
--- | --- | --- | --- | --- | ---
5003601201201 | ARM B / R-DHAP | Yes | 24/06/2004 | LUNG RIGHT SIDE, CERVICAL BOTH SIDES | 36
5003601801003 | ARM B / R-DHAP | Yes | 17/05/2005 | INGUINAL + ILIAC | 39
5003602001204 | ARM B / R-DHAP | Yes | 05/03/2005 | RIGHT SHOULDER, MEDIASTINUM | 30
5003603001007 | ARM B / R-DHAP | Yes | 19/06/2006 | MEDIASTINUM + SUPRACLAVICULAR REGION | 21
5003603801009 | ARM B / R-DHAP | Yes | 11/12/2006 | RIGHT AXILLA AND RIGHT ARM | 40
5003604001006 | ARM B / R-DHAP | Yes | 04/09/2006 | | 44
5003604801405 | ARM B / R-DHAP | Yes | 15/04/2008 | PARA-AORTIC | 40
5003604901004 | ARM B / R-DHAP | Yes | 29/04/2007 | D8 AND APARASPINAL MASS | 40
5003605301203 | ARM B / R-DHAP | Yes | 25/05/2004 | THYROID | 18
5003605301610 | ARM B / R-DHAP | Yes | 29/05/2006 | LEFT NECK | 30
5003605701404 | ARM B / R-DHAP | Yes | 08/08/2008 | WHOLE BRAIN | 36
5003606301606 | ARM B / R-DHAP | Yes | 15/04/2005 | ABDOMINAL TUMOR MASS | 5
5003606701005 | ARM B / R-DHAP | Yes | 06/03/2006 | RIGHT FOREARM | 30
5003607201408 | ARM B / R-DHAP | Yes | 27/01/2009 | NASOPHARYNX, LEFT CERVICAL SUBMENTAL, SUPRACLAVICULAR BDS | 40
5003608701008 | ARM B / R-DHAP | Yes | 06/07/2006 | AXILLA RIGHT | 40
5003609301620 | ARM B / R-DHAP | Yes | 05/06/2008 | PARANASAL SINUSES | 36
5003612301623 | ARM B / R-DHAP | Yes | 14/04/2008 | BASE OF BRAIN | 12
5003614301407 | ARM B / R-DHAP | Yes | 07/03/2010 | PARA-AORTIC NODES | 30
5003616501003 | ARM B / R-DHAP | Yes | 18/04/2008 | ENTIRE SPINE C2-L3 INCLUSIVE | 30
5003618301005 | ARM B / R-DHAP | Yes | 09/08/2006 | RIGHT HEMIPELVIS | 30
5003619301016 | ARM B / R-DHAP | Yes | 08/05/2008 | DUODENUM AND PANCREAS | 31
5003620201017 | ARM B / R-DHAP | Yes | 22/11/2005 | INVOLVED SITE ABDOMINAL | 36
5003621501412 | ARM B / R-DHAP | Yes | 09/11/2009 | CHEST WALL | 25
5003628201044 | ARM B / R-DHAP | Yes | 01/02/2009 | CERVICAL MASS | -
5003632201015 | ARM B / R-DHAP | Yes | 15/07/2005 | LEFT SOLE OF FOOT, LEFT LOWER LEG, LEFT THIGH | 21

N = 74

Listing 6.6-15 Progression/relapse n°1 - Immunotherapy (induction ITT)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of treatment</th>
<th>Immunotherapy</th>
<th>Date of immunotherapy</th>
<th>Specify immunotherapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003101021027</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>28/07/2005</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003101021631</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>14/06/2007</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003101051075</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>03/06/2008</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003101071020</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>05/03/2006</td>
<td>MABTHERA AND ZEVALIN (THE 09.03.06)</td>
</tr>
<tr>
<td>5003101091602</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>13/01/2005</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003101131062</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>06/05/2007</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003101141406</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>04/01/2006</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003101161407</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>28/03/2007</td>
<td>RITUXIMAB THEN ANTI CD20</td>
</tr>
<tr>
<td>5003101281017</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>13/12/2004</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003101281033</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>12/01/2006</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003101281208</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>29/03/2006</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003101351040</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>03/05/2006</td>
<td>MABTHERA</td>
</tr>
<tr>
<td>5003101431046</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>13/06/2006</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003101431622</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>09/04/2008</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Arm of treatment</td>
<td>Immunotherapy</td>
<td>Date of immunotherapy</td>
<td>Specify immunotherapy</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>---------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>5003101481403</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>04/02/2008</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003101621615</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>27/08/2005</td>
<td>RITUXIMAB 8 CURES</td>
</tr>
<tr>
<td>5003101641618</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>25/01/2007</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003102161078</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>14/08/2008</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003102341641</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>12/11/2009</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003102541625</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>01/02/2008</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003602901601</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>17/01/2006</td>
<td>MABTHERA</td>
</tr>
<tr>
<td>5003603701010</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>16/08/2006</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003603801602</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>13/10/2006</td>
<td>RITUXIMAB IN COMBINATION WITH FND</td>
</tr>
<tr>
<td>5003604801205</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>10/08/2006</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003605701601</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>28/07/2006</td>
<td>RITUXIMAB (STOP: 04.08.2006)</td>
</tr>
<tr>
<td>5003606301612</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>27/02/2008</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003611201057</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>26/07/2008</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003615501014</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>12/03/2008</td>
<td>OFATUMOMAB</td>
</tr>
<tr>
<td>5003617201010</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>07/04/2005</td>
<td>ZEVALIN + RITUXIMAB</td>
</tr>
<tr>
<td>5003617201039</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>19/01/2007</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003621201020</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>08/05/2006</td>
<td>MABTHERA 2 CYCLES</td>
</tr>
<tr>
<td>5003621201023</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>30/05/2006</td>
<td>RITUXIMAB 1 CYCLE</td>
</tr>
<tr>
<td>5003621201026</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>16/02/2006</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003622201022</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>03/06/2006</td>
<td>RITUXIMAB / CYCLOSPORIN (DATE NK)</td>
</tr>
<tr>
<td>5003649501033</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>09/09/2008</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003101021038</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>18/12/2006</td>
<td>RITUXIMAB (4 CYCLES)</td>
</tr>
<tr>
<td>5003101031019</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>02/02/2005</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003101031067</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>14/06/2007</td>
<td>R X 3</td>
</tr>
<tr>
<td>5003101071051</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>19/09/2006</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003101071073</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>28/11/2007</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003101071408</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>05/04/2007</td>
<td>IBRITUMOMAB TIUXETAN + RITUXIMAB</td>
</tr>
<tr>
<td>5003101071607</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>17/03/2004</td>
<td>MABTHERA</td>
</tr>
<tr>
<td>5003101091022</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>05/07/2005</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003101091626</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>17/10/2005</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003101141624</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>10/06/2009</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003101221070</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>05/08/2008</td>
<td>OFATUMUMAB</td>
</tr>
<tr>
<td>5003101251015</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>26/12/2004</td>
<td>RITUXIMAB X 3</td>
</tr>
<tr>
<td>5003101251035</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>17/07/2006</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003101251044</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>18/05/2006</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003101601066</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>27/07/2007</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003101641018</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>06/04/2005</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003101641047</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>04/07/2006</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003101641079</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>13/08/2008</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003102341003</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>05/02/2004</td>
<td>MABTHERA</td>
</tr>
<tr>
<td>5003601201018</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>05/10/2005</td>
<td>RITUXIMAB 2X</td>
</tr>
<tr>
<td>5003601601602</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>14/08/2008</td>
<td>RITUXIMAB W/GEMCITABINE AND DACETUZUMAB (INVESTIGATIONAL)</td>
</tr>
<tr>
<td>5003601801003</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>26/01/2005</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Arm of treatment</td>
<td>Immunotherapy</td>
<td>Date of immunotherapy</td>
<td>Specify immunotherapy</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>----------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>5003605201603</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>12/05/2005</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003606201410</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>01/06/2007</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003606201609</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>-</td>
<td>RITUXIMAB EVERY 3 MONTHS</td>
</tr>
<tr>
<td>5003606301606</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>30/06/2005</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003606701005</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>17/07/2006</td>
<td>17/07 TO 05/09/06 RITUXIMAB (1X/MONTH / 5 CYCLES) + 03/10 AND 01/11/06, 30/11/06, 24/01 AND 21/03/07</td>
</tr>
<tr>
<td>5003609301620</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>26/11/2007</td>
<td>RITUXIMAB (IN CONJUNCTION WITH CHEMOTHERAPY)</td>
</tr>
<tr>
<td>5003611301003</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>24/01/2006</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003617201043</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>26/09/2007</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003618301005</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>-</td>
<td>RITUXIMAB</td>
</tr>
</tbody>
</table>

N = 67

Listing 6.6-16 Progression/relapse n°1 - Transplant (induction ITT)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of treatment</th>
<th>Transplantation</th>
<th>Date of transplantation</th>
<th>Conditioning Regimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003101141406</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>30/05/2006</td>
<td>BEAM</td>
</tr>
<tr>
<td>5003101351040</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>16/05/2006</td>
<td>BEAM</td>
</tr>
<tr>
<td>5003101431046</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>05/09/2006</td>
<td>BEAM</td>
</tr>
<tr>
<td>5003101441036</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>10/11/2005</td>
<td>BEAM ON 03/11/2005</td>
</tr>
<tr>
<td>5003102341061</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>26/05/2008</td>
<td>FLUDARABINE, ENDOXAN, IRRADIATION</td>
</tr>
<tr>
<td>5003102341416</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>09/05/2007</td>
<td>BEAM</td>
</tr>
<tr>
<td>5003102341641</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>18/02/2010</td>
<td>IBRITUMOMAB TIUXETAN (ETUDE ZEVALLO)</td>
</tr>
<tr>
<td>5003102491619</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>06/09/2007</td>
<td>FLUDARABINE BUSULFAN AND ATG</td>
</tr>
<tr>
<td>5003102541625</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>02/06/2008</td>
<td>BEAM</td>
</tr>
<tr>
<td>5003601881401</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>11/12/2007</td>
<td>FLUDARABINE / BUSULFAN / SAL</td>
</tr>
<tr>
<td>5003602301001</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>28/04/2004</td>
<td>BEAM</td>
</tr>
<tr>
<td>5003602501001</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>03/01/2007</td>
<td>BEAM STARTED ON 28/12/2006</td>
</tr>
<tr>
<td>5003602601001</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>31/07/2004</td>
<td>BEAM</td>
</tr>
<tr>
<td>5003602801605</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>16/04/2009</td>
<td>FLUDARABIN, BUSULFAN, ANTITHYMOCYTE GLOBULIN</td>
</tr>
<tr>
<td>5003602901201</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>19/05/2004</td>
<td>FLUDARABIN ATG RADIATION</td>
</tr>
<tr>
<td>5003603201025</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>27/04/2006</td>
<td>BEAM ON 21/04/2006</td>
</tr>
<tr>
<td>5003603201038</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>19/09/2007</td>
<td>MELPHALAN + FLUDARABIN</td>
</tr>
<tr>
<td>5003603801602</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>08/03/2007</td>
<td>TBI + ALEMTUZUMAB + CYCLOPHOSPHAMIDE</td>
</tr>
<tr>
<td>5003603801608</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>28/01/2009</td>
<td>FLAMSA + TBI</td>
</tr>
<tr>
<td>5003604801205</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>22/12/2006</td>
<td>BU-CY</td>
</tr>
<tr>
<td>5003608701016</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>12/08/2008</td>
<td>ZBEAM / 3.45 (CD34 X 10^6/KG)</td>
</tr>
<tr>
<td>5003610201007</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>11/03/2005</td>
<td>FLUDARABIN, BUSULFAN CYCLOPHOSPHAMID</td>
</tr>
<tr>
<td>5003610201612</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>15/07/2005</td>
<td>BEAM</td>
</tr>
<tr>
<td>5003617201010</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>21/04/2005</td>
<td>BEAM</td>
</tr>
<tr>
<td>5003622201022</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>05/05/2006</td>
<td>FLUDARABIN / BCNU / MELPHALAN / RITUXIMAB</td>
</tr>
<tr>
<td>5003633201036</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>05/04/2007</td>
<td>BEAM</td>
</tr>
<tr>
<td>5003649501033</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>05/11/2008</td>
<td>BEAM : CARMUSTINE, ETOPOSIDE, CYTARINE, MELPHALAN, STARTED 30/10/2008</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Arm of treatment</td>
<td>Transplantation</td>
<td>Date of transplantation</td>
<td>Conditioning Regimen</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>-----------------</td>
<td>------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>5003101131060</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>02/05/2007</td>
<td>TRANSPLANTATION OF CELLS INFUSED CD34+</td>
</tr>
<tr>
<td>5003101122057</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>11/04/2007</td>
<td>CBV AUTOGRAFT N°1 (CSH) + 2ND AUTOGRAFT CSH 14/06/07 CBV</td>
</tr>
<tr>
<td>5003101221639</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>10/08/2007</td>
<td>Z-BEAM</td>
</tr>
<tr>
<td>5003101601066</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>10/09/2007</td>
<td>BEAM</td>
</tr>
<tr>
<td>5003101610047</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>08/09/2006</td>
<td>BEAM</td>
</tr>
<tr>
<td>5003102341003</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>07/07/2004</td>
<td>BEAM SANS ARACYTINE</td>
</tr>
<tr>
<td>5003102541640</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>21/04/2008</td>
<td>CPA, FLUDA, ATG, MPD, CYCLO</td>
</tr>
<tr>
<td>5003601201018</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>19/12/2005</td>
<td>BEAM</td>
</tr>
<tr>
<td>5003601201020</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>13/08/2004</td>
<td>BEAM</td>
</tr>
<tr>
<td>5003601601062</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>14/01/2009</td>
<td>CYCLOPHOSPHAMIDE, FLUDARABINE, METHOTREXATE</td>
</tr>
<tr>
<td>5003601801003</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>05/04/2005</td>
<td>BEAM</td>
</tr>
<tr>
<td>5003603201050</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>17/01/2008</td>
<td>BEAM ON 11/01/2008</td>
</tr>
<tr>
<td>5003603801007</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>04/08/2006</td>
<td>BEAM</td>
</tr>
<tr>
<td>5003604701002</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>30/12/2005</td>
<td>POMP</td>
</tr>
<tr>
<td>5003606201033</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>29/12/2006</td>
<td>CARMUSTINE, CYTARABIN, ETOPOSID, MELPHALAN, RITUXIMAB</td>
</tr>
<tr>
<td>5003606201047</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>19/03/2007</td>
<td>HD MELPHALAN</td>
</tr>
<tr>
<td>50036062010410</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>08/08/2007</td>
<td>BEAM</td>
</tr>
<tr>
<td>5003610201212</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>-</td>
<td>BYLDDYLAN, FLUDARABIN, CYCLOPHOSPHAMID, ALLOG TX TAMIIJENPENDER</td>
</tr>
<tr>
<td>5003611301002</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>10/11/2004</td>
<td>BEAM</td>
</tr>
<tr>
<td>5003617201021</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>13/11/2007</td>
<td>FLUDARABIN, BUSULFAN, CYCLOPHOSPHAMIDE, ATG</td>
</tr>
<tr>
<td>5003617201024</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>20/04/2006</td>
<td>IBRITUMOMAB TIUXETAN, FLUDARABINE, MELPHALAN, ALEMTUZUMAB</td>
</tr>
<tr>
<td>5003619301006</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>05/10/2006</td>
<td>BEAM</td>
</tr>
<tr>
<td>5003625501020</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>30/01/2008</td>
<td>BEAM STARTED ON 22/01/2008</td>
</tr>
<tr>
<td>5003628201046</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>25/02/2008</td>
<td>ALLO TRANSPLANTATION (AFTER CEPHALIN / FLUDARABIN / MELPHALAN)</td>
</tr>
<tr>
<td>5003632201005</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>18/08/2005</td>
<td>BEAM</td>
</tr>
<tr>
<td>5003636201047</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>12/10/2007</td>
<td>BEAM BONU</td>
</tr>
</tbody>
</table>

N = 55

Listing 6.6-17 Progression/relapse n°1 – Other treatments (induction ITT)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of treatment</th>
<th>Other treatment</th>
<th>Date of other treatment</th>
<th>Specify other treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003101021631</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>07/02/2008</td>
<td>IBRITUMOMAB TIUXETAN</td>
</tr>
<tr>
<td>5003101031001</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>23/12/2003</td>
<td>CORTICOIDES</td>
</tr>
<tr>
<td>5003101131062</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>14/05/2007</td>
<td>METHOTREXATE INTRATECAL</td>
</tr>
<tr>
<td>5003101141065</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>-</td>
<td>PALLIATIVE TREATMENT (WITH CORTICOIDES)</td>
</tr>
<tr>
<td>5003101351040</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>03/05/2006</td>
<td>DHAP</td>
</tr>
<tr>
<td>5003603801202</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>19/01/2006</td>
<td>CORTICOSTEROIDS - DEXAMETHASONE</td>
</tr>
<tr>
<td>5003605701601</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>28/07/2006</td>
<td>IBRITUMOMAB TIUXETAN (STOP : 04.08.2006)</td>
</tr>
<tr>
<td>5003606301612</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>21/05/2008</td>
<td>RITUXIMAB THREE MONTHLY PLANNED X 8 TREATMENTS</td>
</tr>
<tr>
<td>5003613701402</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>01/12/2010</td>
<td>MABTHERA</td>
</tr>
<tr>
<td>5003617201010</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>-</td>
<td>RELAPSE INTRAABDOMINAL, PULMONIC / 1 CYCLE R-GEM-OX-DEXA / 11/05 DEXAMETHASONE / CYCLOPHOSPHAMIDE : PALLIATIVE INTENTION</td>
</tr>
<tr>
<td>5003621201020</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>09/05/2006</td>
<td>MTX HIGH DOSE 2 CYCLES</td>
</tr>
</tbody>
</table>
Table 6.6-24 Progression/relapse n°2 – Period (induction ITT)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>Period of Progression / Relapse</th>
<th>N</th>
<th>%</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM A / R-ICE</td>
<td>Treatment Period</td>
<td>2</td>
<td>10</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>Follow Up Period</td>
<td>19</td>
<td>90</td>
<td>19</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>Missing</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>21</td>
<td>100</td>
<td>22</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 6.6-25 Progression/relapse n°2 – Involvement (induction ITT)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>Initial involvement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARM A / R-ICE</td>
</tr>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Missing</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Arm of treatment</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>ARM A / R-ICE</td>
</tr>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>New involvement</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
</tr>
<tr>
<td>Yes</td>
<td>13</td>
</tr>
<tr>
<td>No</td>
<td>8</td>
</tr>
<tr>
<td>Nodal involvement</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
</tr>
<tr>
<td>Yes</td>
<td>13</td>
</tr>
<tr>
<td>No</td>
<td>8</td>
</tr>
<tr>
<td>Extra-nodal involvement</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
</tr>
<tr>
<td>Yes</td>
<td>14</td>
</tr>
<tr>
<td>No</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>21</td>
</tr>
</tbody>
</table>

Table 6.6-26 Progression/relapse n°2 – Extra-nodal involvement (induction ITT)

<table>
<thead>
<tr>
<th></th>
<th>Arm of treatment</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Bone marrow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Not Done</td>
<td>6</td>
<td>43</td>
<td>7</td>
</tr>
<tr>
<td>Yes</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>No</td>
<td>8</td>
<td>57</td>
<td>4</td>
</tr>
<tr>
<td>Blood</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Not Done</td>
<td>2</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>Yes</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>No</td>
<td>12</td>
<td>86</td>
<td>10</td>
</tr>
<tr>
<td>Bone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Not Done</td>
<td>4</td>
<td>29</td>
<td>2</td>
</tr>
<tr>
<td>Yes</td>
<td>1</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>No</td>
<td>9</td>
<td>64</td>
<td>8</td>
</tr>
<tr>
<td>Skin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Not Done</td>
<td>3</td>
<td>21</td>
<td>1</td>
</tr>
<tr>
<td>Yes</td>
<td>3</td>
<td>21</td>
<td>5</td>
</tr>
<tr>
<td>No</td>
<td>8</td>
<td>57</td>
<td>7</td>
</tr>
<tr>
<td>Liver</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Condition</td>
<td>Arm of treatment</td>
<td>Arm A / R-ICE</td>
<td>Arm B / R-DHAP</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Not Done</td>
<td>2</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>Yes</td>
<td>2</td>
<td>14</td>
<td>5</td>
</tr>
<tr>
<td>No</td>
<td>10</td>
<td>71</td>
<td>7</td>
</tr>
<tr>
<td>Ascite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Not Done</td>
<td>3</td>
<td>21</td>
<td>1</td>
</tr>
<tr>
<td>No</td>
<td>11</td>
<td>79</td>
<td>11</td>
</tr>
<tr>
<td>Pleural effusion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Not Done</td>
<td>1</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Yes</td>
<td>2</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>No</td>
<td>11</td>
<td>79</td>
<td>9</td>
</tr>
<tr>
<td>Lung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Not Done</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Yes</td>
<td>3</td>
<td>21</td>
<td>1</td>
</tr>
<tr>
<td>No</td>
<td>11</td>
<td>79</td>
<td>10</td>
</tr>
<tr>
<td>Spleen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Not Done</td>
<td>1</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Yes</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>No</td>
<td>13</td>
<td>93</td>
<td>9</td>
</tr>
<tr>
<td>Pericardium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Not Done</td>
<td>3</td>
<td>21</td>
<td>2</td>
</tr>
<tr>
<td>No</td>
<td>11</td>
<td>79</td>
<td>10</td>
</tr>
<tr>
<td>Breast</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Not Done</td>
<td>3</td>
<td>21</td>
<td>2</td>
</tr>
<tr>
<td>No</td>
<td>11</td>
<td>79</td>
<td>10</td>
</tr>
<tr>
<td>Gonadal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Not Done</td>
<td>4</td>
<td>29</td>
<td>3</td>
</tr>
<tr>
<td>Yes</td>
<td>1</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>No</td>
<td>9</td>
<td>64</td>
<td>9</td>
</tr>
<tr>
<td>Kidney</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Not Done</td>
<td>2</td>
<td>14</td>
<td>4</td>
</tr>
<tr>
<td>Yes</td>
<td>1</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>No</td>
<td>11</td>
<td>79</td>
<td>8</td>
</tr>
</tbody>
</table>
Table 6.6-27 Progression/relapse n°2 – Nodal involvement (induction ITT)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Adrenal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Not Done</td>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td>Yes</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>No</td>
<td>10</td>
<td>71</td>
</tr>
<tr>
<td>Thyroid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Not Done</td>
<td>4</td>
<td>29</td>
</tr>
<tr>
<td>No</td>
<td>10</td>
<td>71</td>
</tr>
<tr>
<td>ORL area</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Not Done</td>
<td>4</td>
<td>29</td>
</tr>
<tr>
<td>Yes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>No</td>
<td>10</td>
<td>71</td>
</tr>
<tr>
<td>Digestive area</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Not Done</td>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td>Yes</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>No</td>
<td>9</td>
<td>64</td>
</tr>
<tr>
<td>CNS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Not Done</td>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td>Yes</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>No</td>
<td>10</td>
<td>71</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Cervical right</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>10</td>
<td>77</td>
</tr>
<tr>
<td>Involved</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cervical left</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>10</td>
<td>77</td>
</tr>
<tr>
<td>Involved</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Location</td>
<td>Arm of treatment</td>
<td>Arm of treatment</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Supraclavicular right</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>11</td>
<td>85</td>
</tr>
<tr>
<td>Involved</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Supraclavicular left</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>11</td>
<td>85</td>
</tr>
<tr>
<td>Involved</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Axillary right</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>11</td>
<td>85</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Axillary left</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>10</td>
<td>77</td>
</tr>
<tr>
<td>Involved</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Inguinal right</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>12</td>
<td>92</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Inguinal left</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>11</td>
<td>85</td>
</tr>
<tr>
<td>Involved</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mediastinal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>9</td>
<td>69</td>
</tr>
<tr>
<td>Involved</td>
<td>4</td>
<td>31</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pulmonary hilar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>12</td>
<td>92</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Para-ortic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>8</td>
<td>62</td>
</tr>
<tr>
<td>Involved</td>
<td>4</td>
<td>31</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Arm of treatment</td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mesenteric</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>10</td>
<td>77</td>
</tr>
<tr>
<td>Involved</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Iliac right</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>11</td>
<td>85</td>
</tr>
<tr>
<td>Involved</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Iliac left</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>11</td>
<td>85</td>
</tr>
<tr>
<td>Involved</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Splenic Hilar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>10</td>
<td>77</td>
</tr>
<tr>
<td>Involved</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other nodal involvement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>10</td>
<td>77</td>
</tr>
<tr>
<td>Yes</td>
<td>3</td>
<td>23</td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>13</td>
<td>100</td>
</tr>
</tbody>
</table>

Listing 6.6-18 Progression/relapse n°2 – Other nodal involvement (induction ITT)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of treatment</th>
<th>Other nodal involvement</th>
<th>Other nodal involvement - localization</th>
<th>Other nodal involvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003101021027</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>PRECARDIAC NODE</td>
<td>-</td>
</tr>
<tr>
<td>5003101491042</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>RETROPERITONEAL</td>
<td>-</td>
</tr>
<tr>
<td>5003605701601</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>KIDNEY HILUS LEFT</td>
<td>-</td>
</tr>
<tr>
<td>5003615501029</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>COELIAC</td>
<td>-</td>
</tr>
</tbody>
</table>

N = 4
Table 6.6-28 Progression/relapse n°2 – Extra-nodal involvement bis (induction ITT)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Liver</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>10</td>
<td>71</td>
</tr>
<tr>
<td>Involved</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Ascites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>10</td>
<td>71</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Pleural effusion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>10</td>
<td>71</td>
</tr>
<tr>
<td>Involved</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Lung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>10</td>
<td>71</td>
</tr>
<tr>
<td>Involved</td>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Spleen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>13</td>
<td>93</td>
</tr>
<tr>
<td>Involved</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Pericardium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>10</td>
<td>71</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Breast</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>10</td>
<td>71</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Gonadal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>9</td>
<td>64</td>
</tr>
<tr>
<td>Involved</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Kidney</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>10</td>
<td>71</td>
</tr>
<tr>
<td>Arm of treatment</td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Involved</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Adrenal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>10</td>
<td>71</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Thyroid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>9</td>
<td>64</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>4</td>
<td>29</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Skin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>8</td>
<td>57</td>
</tr>
<tr>
<td>Involved</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Bone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>8</td>
<td>57</td>
</tr>
<tr>
<td>Involved</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>4</td>
<td>29</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Tonsil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>7</td>
<td>50</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>6</td>
<td>43</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Cavum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>6</td>
<td>43</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>7</td>
<td>50</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Parotid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>7</td>
<td>50</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>6</td>
<td>43</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Orbit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>7</td>
<td>50</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>6</td>
<td>43</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Sinus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>6</td>
<td>43</td>
</tr>
<tr>
<td>Involved</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Arm of treatment</td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>7</td>
<td>50</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Oesophagus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>7</td>
<td>50</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>6</td>
<td>43</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Stomach</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>6</td>
<td>43</td>
</tr>
<tr>
<td>Involved</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>6</td>
<td>43</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Duodenum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>7</td>
<td>50</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>6</td>
<td>43</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Colon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>7</td>
<td>50</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>6</td>
<td>43</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Caecum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>7</td>
<td>50</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>6</td>
<td>43</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Rectum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>7</td>
<td>50</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>6</td>
<td>43</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Other extra-nodal involvement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>5</td>
<td>36</td>
</tr>
<tr>
<td>No</td>
<td>7</td>
<td>50</td>
</tr>
<tr>
<td>Missing</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>TOTAL</td>
<td>14</td>
<td>100</td>
</tr>
</tbody>
</table>

Listing 6.6-19 Progression/relapse n°2 – Other extra-nodal involvement (induction ITT)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of treatment</th>
<th>Progression/relapse number</th>
<th>Other extra-nodal involvement 1 - localization</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003101491042</td>
<td>ARM A / R-ICE</td>
<td>2</td>
<td>BLADDER</td>
</tr>
<tr>
<td>5003101641618</td>
<td>ARM A / R-ICE</td>
<td>2</td>
<td>UTERUS</td>
</tr>
<tr>
<td>5003602801001</td>
<td>ARM A / R-ICE</td>
<td>2</td>
<td>CNS</td>
</tr>
<tr>
<td>5003605701601</td>
<td>ARM A / R-ICE</td>
<td>2</td>
<td>INFRINGEMENT WALL ILEUM</td>
</tr>
<tr>
<td>5003615501028</td>
<td>ARM A / R-ICE</td>
<td>2</td>
<td>PERICARDIAL EFFUSION</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Arm of treatment</td>
<td>Progression/relapse number</td>
<td>Other extra-nodal involvement 1 - localization</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N = 5</td>
</tr>
</tbody>
</table>

Table 6.6-29 Progression/relapse n°2 – Documentation (induction ITT)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Histological documentation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Yes</td>
<td>5</td>
<td>24</td>
</tr>
<tr>
<td>No</td>
<td>16</td>
<td>76</td>
</tr>
<tr>
<td>Cytological documentation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Yes</td>
<td>4</td>
<td>19</td>
</tr>
<tr>
<td>No</td>
<td>17</td>
<td>81</td>
</tr>
<tr>
<td>Total</td>
<td>21</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 6.6-30 Progression/relapse n°2 – Individual factors of IPI (induction ITT)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>LDH > Upper Limit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Not Done</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>Yes</td>
<td>9</td>
<td>43</td>
</tr>
<tr>
<td>No</td>
<td>9</td>
<td>43</td>
</tr>
<tr>
<td>Stage III - IV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Not Done</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Yes</td>
<td>8</td>
<td>38</td>
</tr>
<tr>
<td>No</td>
<td>12</td>
<td>57</td>
</tr>
<tr>
<td>PS >= 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Not Done</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Yes</td>
<td>6</td>
<td>29</td>
</tr>
<tr>
<td>No</td>
<td>14</td>
<td>67</td>
</tr>
<tr>
<td>Extra-nodal sites >= 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Not Done</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Yes</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>No</td>
<td>17</td>
<td>81</td>
</tr>
<tr>
<td>Total</td>
<td>21</td>
<td>100</td>
</tr>
</tbody>
</table>
Table 6.6-31 Progression/relapse n°2 – Treatment (induction ITT)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Progression / Relapse treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Yes</td>
<td>19</td>
<td>90</td>
</tr>
<tr>
<td>No</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>21</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 6.6-32 Progression/relapse n°2 – Type of treatment (induction ITT)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Chemotherapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>16</td>
<td>84</td>
</tr>
<tr>
<td>No</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>Radiotherapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>5</td>
<td>26</td>
</tr>
<tr>
<td>Yes</td>
<td>7</td>
<td>37</td>
</tr>
<tr>
<td>No</td>
<td>7</td>
<td>37</td>
</tr>
<tr>
<td>Immunotherapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>Yes</td>
<td>8</td>
<td>42</td>
</tr>
<tr>
<td>No</td>
<td>8</td>
<td>42</td>
</tr>
<tr>
<td>Transplantation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>5</td>
<td>26</td>
</tr>
<tr>
<td>Yes</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>No</td>
<td>13</td>
<td>68</td>
</tr>
<tr>
<td>Other treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>5</td>
<td>26</td>
</tr>
<tr>
<td>Yes</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>No</td>
<td>13</td>
<td>68</td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
<td>100</td>
</tr>
</tbody>
</table>

Listing 6.6-20 Progression/relapse n°2 - Chemotherapy (induction ITT)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of treatment</th>
<th>Chemotherapy</th>
<th>Date of chemotherapy</th>
<th>Specify chemotherapy</th>
<th>Nb of cycles of chemotherapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003101021027</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>30/01/2006</td>
<td>GEMOX</td>
<td>3</td>
</tr>
<tr>
<td>5003101021605</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>11/04/2006</td>
<td>TAXOL - TOPOTECAN</td>
<td>6</td>
</tr>
<tr>
<td>5003101021631</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>28/05/2008</td>
<td>DHAOX</td>
<td>4</td>
</tr>
<tr>
<td>5003101071020</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>30/06/2006</td>
<td>GEMOX</td>
<td>4</td>
</tr>
<tr>
<td>5003101131409</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>09/05/2007</td>
<td>R-GEMOX</td>
<td>1</td>
</tr>
<tr>
<td>5003101161407</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>-</td>
<td>CYTARABINE-ETOPOSIDE-DEXAMETHASONE</td>
<td>-</td>
</tr>
</tbody>
</table>
Randomization

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of treatment</th>
<th>Chemotherapy</th>
<th>Date of chemotherapy</th>
<th>Specify chemotherapy</th>
<th>Nb of cycles of chemotherapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>50031010431622</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>05/08/2008</td>
<td>CHOP</td>
<td>3</td>
</tr>
<tr>
<td>50031010491042</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>15/01/2007</td>
<td>GEMCITABINE</td>
<td>-</td>
</tr>
<tr>
<td>50031011641618</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>03/08/2007</td>
<td>DHAP</td>
<td>3</td>
</tr>
<tr>
<td>5003102341061</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>17/02/2010</td>
<td>DHAP</td>
<td>-</td>
</tr>
<tr>
<td>5003102341416</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>04/12/2007</td>
<td>ANTIBODIES ANTI CD20 - PROTOCOL ROCHE</td>
<td>3</td>
</tr>
<tr>
<td>5003102491619</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>04/08/2008</td>
<td>IFOSFAMIDE + ETOPOSIDE</td>
<td>-</td>
</tr>
<tr>
<td>5003602901601</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>12/07/2006</td>
<td>VINCristin and BLEOMycin</td>
<td>1</td>
</tr>
<tr>
<td>5003604801205</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>09/08/2007</td>
<td>IVE</td>
<td>1</td>
</tr>
<tr>
<td>5003605701601</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>27/11/2006</td>
<td>CVP (= COP) + RITUXIMAB (STOP 18/12/2006)</td>
<td>2</td>
</tr>
<tr>
<td>5003615501014</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>29/08/2008</td>
<td>GCVP (GEMCITABINE, CYCLOPHOSPHAMIDE, VINCristine, PREDNISOLONE)</td>
<td>6</td>
</tr>
<tr>
<td>5003101031401</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>06/06/2005</td>
<td>PCOP</td>
<td>3</td>
</tr>
<tr>
<td>5003101091626</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>16/11/2006</td>
<td>GEMOX</td>
<td>5</td>
</tr>
<tr>
<td>5003101141624</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>04/02/2010</td>
<td>DHAOX</td>
<td>1</td>
</tr>
<tr>
<td>5003101221057</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>13/03/2008</td>
<td>Navelbine</td>
<td>-</td>
</tr>
<tr>
<td>5003101641047</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>29/03/2007</td>
<td>GEMOX</td>
<td>4</td>
</tr>
<tr>
<td>5003101641079</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>26/09/2008</td>
<td>CYTARABINE, ETOPOSIDE</td>
<td>2</td>
</tr>
<tr>
<td>5003102341003</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>06/09/2004</td>
<td>GEMCITABINE - OXALIPLATINE - RITUXIMAB</td>
<td>3</td>
</tr>
<tr>
<td>5003601801003</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>12/09/2005</td>
<td>CVP</td>
<td>3</td>
</tr>
<tr>
<td>5003603201050</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>18/07/2008</td>
<td>SEE MEDICAL REPORT PAGE 2 AND 3 (B-ALL-PROTOCOL)</td>
<td>3</td>
</tr>
<tr>
<td>5003605301610</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>02/11/2006</td>
<td>CVP REFRACTORY / 2ND LINE : 4 CEPP (MINUS CYCLOPHOSPHAMIDE) ON 04/01/2007</td>
<td>3</td>
</tr>
<tr>
<td>5003605701404</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>16/01/2009</td>
<td>CHOP</td>
<td>3</td>
</tr>
<tr>
<td>5003611301002</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>20/12/2004</td>
<td>CYTARABINE AND METHOTREXATE (INTRATHECAL)</td>
<td>22</td>
</tr>
</tbody>
</table>

\[N = 28 \]

Listing 6.6-21 Progression/relapse n°2 - Radiotherapy (induction ITT)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of treatment</th>
<th>Radiotherapy</th>
<th>Date of radiotherapy</th>
<th>Site of radiotherapy</th>
<th>Dose of radiotherapy (Gy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003101021631</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>07/10/2008</td>
<td>TOTAL BODY IRRADIATION</td>
<td>2</td>
</tr>
<tr>
<td>5003102341416</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>28/01/2008</td>
<td>MEDIASTINAL</td>
<td>-</td>
</tr>
<tr>
<td>5003602901601</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>-</td>
<td>RIGHT ADRENA L AND LEFT LEG (SKIN)</td>
<td>-</td>
</tr>
<tr>
<td>5003603801202</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>13/05/2008</td>
<td>RIGHT KNEE + FEMUR</td>
<td>30</td>
</tr>
<tr>
<td>5003604801205</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>24/09/2007</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>5003632201054</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>05/12/2008</td>
<td>LEFT DISTAL SHANK</td>
<td>30</td>
</tr>
<tr>
<td>5003643501202</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>04/08/2008</td>
<td>RIGHT NECK AND SUPRACLAVICULAR AREA</td>
<td>30</td>
</tr>
<tr>
<td>5003101221057</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>-</td>
<td>MEDIASTINAL + ABDOMEN</td>
<td>-</td>
</tr>
<tr>
<td>5003101641079</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>24/11/2008</td>
<td>ABDOMINAL (ILIAC RIGHT)</td>
<td>30</td>
</tr>
<tr>
<td>5003606701005</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>02/05/2007</td>
<td>RIGHT THIGH (20 GY) + DORSAL LESION (20 GY)</td>
<td>20</td>
</tr>
<tr>
<td>5003602301620</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>11/03/2009</td>
<td>LEFT ABDOMINAL WALL AND RIGHT NECK</td>
<td>40</td>
</tr>
<tr>
<td>5003632201015</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>06/10/2005</td>
<td>HYPODERMIC : INGUINAL, THIGH, LOWER LEG, SOLE OF FOOT, FOOT : LEFT SIDE</td>
<td>20</td>
</tr>
</tbody>
</table>

\[N = 12 \]

Listing 6.6-22 Progression/relapse n°2 - Immunotherapy (induction ITT)
Randomization Table

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of treatment</th>
<th>Immunotherapy</th>
<th>Date of immunotherapy</th>
<th>Specify immunotherapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003101641047</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>20/09/2007</td>
<td>RITUXIMAB / OFATUMUMAB</td>
</tr>
<tr>
<td>5003609301620</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>-</td>
<td>RITUXIMAB MAINTENANCE ON GOING</td>
</tr>
<tr>
<td>5003632201015</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>23/02/2006</td>
<td>MABTHERA</td>
</tr>
</tbody>
</table>

Listing 6.6-23 Progression/relapse n°2 – Transplant (induction ITT)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of treatment</th>
<th>Transplantation</th>
<th>Date of transplantation</th>
<th>Conditioning Regimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003101021631</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>09/10/2008</td>
<td>SEATTLE</td>
</tr>
<tr>
<td>5003605701404</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>09/03/2009</td>
<td>BEAM</td>
</tr>
</tbody>
</table>

Listing 6.6-24 Progression/relapse n°2 – Other treatments (induction ITT)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of treatment</th>
<th>Other treatment</th>
<th>Date of other treatment</th>
<th>Specify other treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003102491619</td>
<td>ARM A / R-ICE</td>
<td>Yes</td>
<td>11/08/2008</td>
<td>DONOR LYMPHOCYTES INFUSIONS</td>
</tr>
<tr>
<td>5003101071607</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>21/04/2006</td>
<td>SURGERY INGUINAL NODE</td>
</tr>
<tr>
<td>5003605301610</td>
<td>ARM B / R-DHAP</td>
<td>Yes</td>
<td>-</td>
<td>PALLIATIVE CARE</td>
</tr>
</tbody>
</table>

Table 6.6-33 Progression/relapse n°2 – Response after additional treatments (induction ITT)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>Response after new treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>COMPLETE RESPONSE</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>N 1 % 5</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>N 3 % 18</td>
</tr>
<tr>
<td></td>
<td>UNCONFIRMED COMPLETE RESPONSE</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>N 1 % 5</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>N 0 % 0</td>
</tr>
<tr>
<td></td>
<td>PARTIAL RESPONSE</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>N 3 % 16</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>N 0 % 0</td>
</tr>
<tr>
<td></td>
<td>STABLE DISEASE</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>N 1 % 5</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>N 1 % 6</td>
</tr>
<tr>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>N 10 % 53</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>N 10 % 59</td>
</tr>
<tr>
<td></td>
<td>NOT EVALUATED</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>N 2 % 11</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>N 2 % 12</td>
</tr>
<tr>
<td></td>
<td>Missing</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>N 1 % 5</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>N 1 % 6</td>
</tr>
<tr>
<td></td>
<td>Total</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>N 19 % 100</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>N 17 % 100</td>
</tr>
</tbody>
</table>
6.7. Safety evaluation

**6.7.1. **Extent of exposure to trial medication

Table 6.7-1 Induction – Frequency of percentage of planned dose received by cycle for Rituximab (induction safety population)

<table>
<thead>
<tr>
<th>Rituximab: Dose received (% of planned dose)</th>
<th>Actual arm of induction</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Cycle 1 <75%</td>
<td>23</td>
<td>10</td>
<td>21</td>
</tr>
<tr>
<td>[75-90%]</td>
<td>3</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>[90-110%]</td>
<td>211</td>
<td>88</td>
<td>201</td>
</tr>
<tr>
<td>[110-125%]</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>>125%</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>239</td>
<td>100</td>
<td>228</td>
</tr>
<tr>
<td>Cycle 2 <75%</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>[75-90%]</td>
<td>5</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>[90-110%]</td>
<td>215</td>
<td>96</td>
<td>202</td>
</tr>
<tr>
<td>[110-125%]</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>>125%</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>225</td>
<td>100</td>
<td>212</td>
</tr>
<tr>
<td>Cycle 3 <75%</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>[75-90%]</td>
<td>3</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>[90-110%]</td>
<td>197</td>
<td>97</td>
<td>185</td>
</tr>
<tr>
<td>[110-125%]</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>>125%</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>204</td>
<td>100</td>
<td>193</td>
</tr>
</tbody>
</table>

Table 6.7-2 Induction – Frequency of percentage of planned dose received by cycle for ICE regimen (induction safety population)

<table>
<thead>
<tr>
<th>Etoposide: Dose received (% of planned dose)</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle 1 <75%</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>[75-90%]</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>[90-110%]</td>
<td>226</td>
<td>95</td>
</tr>
<tr>
<td>[110-125%]</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>>125%</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>239</td>
<td>100</td>
</tr>
<tr>
<td>Cycle 2 <75%</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>[75-90%]</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>[90-110%]</td>
<td>211</td>
<td>94</td>
</tr>
<tr>
<td>[110-125%]</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>>125%</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>225</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Etoposide: Dose received (% of planned dose)</td>
<td>N</td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
<td>----</td>
</tr>
<tr>
<td>Cycle 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td><75%</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>[75-90%]</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>[90-110%]</td>
<td></td>
<td>189</td>
</tr>
<tr>
<td>[110-125%]</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>>125%</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>204</td>
</tr>
<tr>
<td>Carboplatine: Dose received (% of planned dose)</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Cycle 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td><75%</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>[75-90%]</td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>[90-110%]</td>
<td></td>
<td>142</td>
</tr>
<tr>
<td>[110-125%]</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>>125%</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>238</td>
</tr>
<tr>
<td>Cycle 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td><75%</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>[75-90%]</td>
<td></td>
<td>39</td>
</tr>
<tr>
<td>[90-110%]</td>
<td></td>
<td>124</td>
</tr>
<tr>
<td>[110-125%]</td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>>125%</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>224</td>
</tr>
<tr>
<td>Cycle 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td><75%</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>[75-90%]</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>[90-110%]</td>
<td></td>
<td>116</td>
</tr>
<tr>
<td>[110-125%]</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>>125%</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>203</td>
</tr>
<tr>
<td>Ihosfamide: Dose received (% of planned dose)</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Cycle 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td><75%</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>[75-90%]</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>[90-110%]</td>
<td></td>
<td>226</td>
</tr>
<tr>
<td>[110-125%]</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>>125%</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>238</td>
</tr>
<tr>
<td>Cycle 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td><75%</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>[75-90%]</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>[90-110%]</td>
<td></td>
<td>209</td>
</tr>
<tr>
<td>[110-125%]</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>>125%</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>224</td>
</tr>
</tbody>
</table>
Table 6.7-3 Induction – Frequency of percentage of planned dose received by cycle for R-DHAP (induction safety population)

<table>
<thead>
<tr>
<th>Drug</th>
<th>Cycle</th>
<th><75%</th>
<th>[75-90%]</th>
<th>[90-110%]</th>
<th>[110-125%]</th>
<th>>125%</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etoposide</td>
<td>Cycle 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>202</td>
</tr>
<tr>
<td></td>
<td><75%</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[75-90%]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[90-110%]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[110-125%]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>>125%</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>202</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

<p>| Dexamethasone | Cycle 1 | <75% | [75-90%] | [90-110%] | [110-125%] | >125% | Total |
| | Cycle 2 | <75% | [75-90%] | [90-110%] | [110-125%] | >125% | Total |
| | Cycle 3 | <75% | [75-90%] | [90-110%] | [110-125%] | >125% | Total |
| Cisplatine | Cycle 1 | <75% | [75-90%] | [90-110%] | [110-125%] | >125% | Total |
| | Cycle 2 | <75% | [75-90%] | [90-110%] | [110-125%] | >125% | Total |</p>
<table>
<thead>
<tr>
<th></th>
<th>Dexamethasone: Dose received (% of planned dose)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle 3</td>
<td><75%</td>
<td>23</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>[75-90%]</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>[90-110%]</td>
<td>153</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>[110-125%]</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>>125%</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>194</td>
<td>100</td>
</tr>
</tbody>
</table>

Cycle 1	<75%	11	5
	[75-90%]	11	5
	[90-110%]	205	90
	[110-125%]	1	0
	>125%	0	0
	Total	228	100

Cycle 2	<75%	11	5
	[75-90%]	9	4
	[90-110%]	191	91
	[110-125%]	0	0
	>125%	0	0
	Total	211	100

Cycle 3	<75%	10	5
	[75-90%]	8	4
	[90-110%]	176	91
	[110-125%]	0	0
	>125%	0	0
	Total	194	100
Table 6.7-4 Induction – G-CSF: number of days (induction safety population)

<table>
<thead>
<tr>
<th>G-CSF - nb of days</th>
<th>Actual arm of induction</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>179</td>
<td>186</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>6.8</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td>Std</td>
<td>2.76</td>
<td>2.73</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>8.0</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>21</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Cycle 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>185</td>
<td>184</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>7.0</td>
<td>7.2</td>
<td></td>
</tr>
<tr>
<td>Std</td>
<td>2.89</td>
<td>2.79</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>8.0</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>16</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Cycle 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>181</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>8.9</td>
<td>8.5</td>
<td></td>
</tr>
<tr>
<td>Std</td>
<td>3.06</td>
<td>4.27</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>8.0</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>20</td>
<td>43</td>
<td></td>
</tr>
</tbody>
</table>

Table 6.7-5 Induction – G-CSF: dose at 3rd cycle (induction safety population)

<table>
<thead>
<tr>
<th>G-CSF - dosage (µg/day)</th>
<th>Actual arm of induction</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>180</td>
<td>167</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>560.9</td>
<td>535.4</td>
<td></td>
</tr>
<tr>
<td>Std</td>
<td>857.04</td>
<td>884.73</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>480.0</td>
<td>368.0</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>8</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>6000</td>
<td>6000</td>
<td></td>
</tr>
<tr>
<td>BCNU : Dose received (% of planned dose)</td>
<td>Actual arm of induction</td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td><75%</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>[75-90%]</td>
<td>5</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>[90-110%]</td>
<td>114</td>
<td>93</td>
<td>118</td>
</tr>
<tr>
<td>[110-125%]</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>>125%</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>122</td>
<td>100</td>
<td>131</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Etoposide : Dose received (% of planned dose)</th>
<th>Actual arm of induction</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td><75%</td>
<td>7</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>[75-90%]</td>
<td>6</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>[90-110%]</td>
<td>103</td>
<td>84</td>
<td>107</td>
</tr>
<tr>
<td>[110-125%]</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>>125%</td>
<td>6</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>122</td>
<td>100</td>
<td>131</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Melphalan : Dose received (% of planned dose)</th>
<th>Actual arm of induction</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td><75%</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>[75-90%]</td>
<td>3</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>[90-110%]</td>
<td>116</td>
<td>95</td>
<td>119</td>
</tr>
<tr>
<td>[110-125%]</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>>125%</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>122</td>
<td>100</td>
<td>131</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cytarabine : Dose received (% of planned dose)</th>
<th>Actual arm of induction</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td><75%</td>
<td>25</td>
<td>20</td>
<td>17</td>
</tr>
<tr>
<td>[75-90%]</td>
<td>2</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>[90-110%]</td>
<td>94</td>
<td>77</td>
<td>103</td>
</tr>
<tr>
<td>[110-125%]</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>>125%</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>122</td>
<td>100</td>
<td>131</td>
</tr>
</tbody>
</table>
Listing 6.7-1 Consolidation – Other types of growth factors (induction safety population)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Actual arm of induction</th>
<th>Other Growth Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003101051056</td>
<td>ARM A / R-ICE</td>
<td>NEULASTA</td>
</tr>
<tr>
<td>5003102541052</td>
<td>ARM A / R-ICE</td>
<td>PEGFILGASTRIM 6 MG</td>
</tr>
<tr>
<td>5003619301621</td>
<td>ARM A / R-ICE</td>
<td>PEG - GCSF</td>
</tr>
<tr>
<td>5003101051050</td>
<td>ARM B / R-DHAP</td>
<td>PEGFILGASTRIM</td>
</tr>
<tr>
<td>5003102541636</td>
<td>ARM B / R-DHAP</td>
<td>PEGFILGRASTIM 6 MG</td>
</tr>
<tr>
<td>5003607201408</td>
<td>ARM B / R-DHAP</td>
<td>LENOGRASTIM (+ MUG-CSF)</td>
</tr>
</tbody>
</table>

N = 6

Table 6.7-7 Consolidation – G-CSF: day of administration (induction safety population)

<table>
<thead>
<tr>
<th>G-CSF</th>
<th>Actual arm of induction</th>
<th>ARM A / R-ICE</th>
<th>%</th>
<th>ARM B / R-DHAP</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAY 1</td>
<td></td>
<td>N 23</td>
<td>27%</td>
<td>N 14</td>
<td>15%</td>
</tr>
<tr>
<td>DAY 5</td>
<td></td>
<td>N 24</td>
<td>28%</td>
<td>N 26</td>
<td>29%</td>
</tr>
<tr>
<td>OTHER</td>
<td></td>
<td>N 38</td>
<td>44%</td>
<td>N 50</td>
<td>55%</td>
</tr>
<tr>
<td>Missing</td>
<td></td>
<td>N 1</td>
<td>1%</td>
<td>N 1</td>
<td>1%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>N 86</td>
<td>100%</td>
<td>N 91</td>
<td>100%</td>
</tr>
</tbody>
</table>

GELARC
6.7.2. Overview of toxicity profile

Table 6.7-8 Incidence of induction toxicities by grade and cycle (induction safety population)

<table>
<thead>
<tr>
<th>Cycle number</th>
<th>Grade allergy</th>
<th>Grade auditory</th>
<th>Grade blood</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>All Tox.</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1 N</td>
<td>10</td>
<td>228</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>% 4</td>
<td>95</td>
<td>3</td>
</tr>
<tr>
<td>2 N</td>
<td>4</td>
<td>220</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>% 2</td>
<td>98</td>
<td>1</td>
</tr>
<tr>
<td>3 N</td>
<td>5</td>
<td>197</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>% 2</td>
<td>97</td>
<td>2</td>
</tr>
<tr>
<td>1 N</td>
<td>2</td>
<td>236</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>% 1</td>
<td>99</td>
<td>0</td>
</tr>
<tr>
<td>2 N</td>
<td>0</td>
<td>224</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>% 0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>3 N</td>
<td>2</td>
<td>199</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>% 1</td>
<td>98</td>
<td>0</td>
</tr>
<tr>
<td>1 N</td>
<td>193</td>
<td>43</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>% 81</td>
<td>18</td>
<td>9</td>
</tr>
<tr>
<td>2 N</td>
<td>188</td>
<td>33</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>% 84</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>3 N</td>
<td>174</td>
<td>27</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>% 85</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>Grade cardiovascular</td>
<td>ARM A / R-ICE</td>
<td>Actual arm of induction</td>
<td>ARM B / R-DHAP</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------</td>
<td>-------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td></td>
<td>Grade</td>
<td>Total</td>
<td>Grade</td>
</tr>
<tr>
<td></td>
<td>All Tox.</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1 N</td>
<td>14</td>
<td>224</td>
<td>5</td>
</tr>
<tr>
<td>%</td>
<td>6</td>
<td>94</td>
<td>2</td>
</tr>
<tr>
<td>2 N</td>
<td>2</td>
<td>222</td>
<td>1</td>
</tr>
<tr>
<td>%</td>
<td>1</td>
<td>99</td>
<td>0</td>
</tr>
<tr>
<td>3 N</td>
<td>3</td>
<td>199</td>
<td>1</td>
</tr>
<tr>
<td>%</td>
<td>1</td>
<td>98</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade coagulation</th>
<th>ARM A / R-ICE</th>
<th>Actual arm of induction</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grade</td>
<td>Total</td>
<td>Grade</td>
</tr>
<tr>
<td></td>
<td>All Tox.</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1 N</td>
<td>5</td>
<td>230</td>
<td>1</td>
</tr>
<tr>
<td>%</td>
<td>2</td>
<td>96</td>
<td>0</td>
</tr>
<tr>
<td>2 N</td>
<td>3</td>
<td>218</td>
<td>2</td>
</tr>
<tr>
<td>%</td>
<td>1</td>
<td>97</td>
<td>1</td>
</tr>
<tr>
<td>3 N</td>
<td>6</td>
<td>193</td>
<td>4</td>
</tr>
<tr>
<td>%</td>
<td>3</td>
<td>95</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade skin</th>
<th>ARM A / R-ICE</th>
<th>Actual arm of induction</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grade</td>
<td>Total</td>
<td>Grade</td>
</tr>
<tr>
<td></td>
<td>All Tox.</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1 N</td>
<td>26</td>
<td>211</td>
<td>12</td>
</tr>
<tr>
<td>%</td>
<td>11</td>
<td>88</td>
<td>5</td>
</tr>
<tr>
<td>2 N</td>
<td>19</td>
<td>204</td>
<td>12</td>
</tr>
<tr>
<td>%</td>
<td>8</td>
<td>91</td>
<td>5</td>
</tr>
<tr>
<td>3 N</td>
<td>19</td>
<td>182</td>
<td>10</td>
</tr>
<tr>
<td>%</td>
<td>9</td>
<td>89</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade gastrointestinal</th>
<th>ARM A / R-ICE</th>
<th>Actual arm of induction</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grade</td>
<td>Total</td>
<td>Grade</td>
</tr>
<tr>
<td></td>
<td>All Tox.</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1 N</td>
<td>105</td>
<td>133</td>
<td>51</td>
</tr>
<tr>
<td>%</td>
<td>44</td>
<td>56</td>
<td>21</td>
</tr>
<tr>
<td>2 N</td>
<td>81</td>
<td>143</td>
<td>44</td>
</tr>
<tr>
<td>%</td>
<td>36</td>
<td>64</td>
<td>20</td>
</tr>
<tr>
<td>3 N</td>
<td>59</td>
<td>143</td>
<td>31</td>
</tr>
<tr>
<td>%</td>
<td>29</td>
<td>70</td>
<td>15</td>
</tr>
</tbody>
</table>
Grade hepatic

<table>
<thead>
<tr>
<th>Grade</th>
<th>ARM A / R-ICE</th>
<th>Actual arm of induction</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All Tox.</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>32</td>
<td>206</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>13</td>
<td>86</td>
</tr>
<tr>
<td>2</td>
<td>N</td>
<td>26</td>
<td>198</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>12</td>
<td>88</td>
</tr>
<tr>
<td>3</td>
<td>N</td>
<td>21</td>
<td>181</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>10</td>
<td>89</td>
</tr>
</tbody>
</table>

Grade infection with febrile neutropenia

<table>
<thead>
<tr>
<th>Grade</th>
<th>ARM A / R-ICE</th>
<th>Actual arm of induction</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All Tox.</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>30</td>
<td>208</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>13</td>
<td>87</td>
</tr>
<tr>
<td>2</td>
<td>N</td>
<td>20</td>
<td>204</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>10</td>
<td>91</td>
</tr>
<tr>
<td>3</td>
<td>N</td>
<td>8</td>
<td>194</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>4</td>
<td>95</td>
</tr>
</tbody>
</table>

Grade infection without febrile neutropenia

<table>
<thead>
<tr>
<th>Grade</th>
<th>ARM A / R-ICE</th>
<th>Actual arm of induction</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All Tox.</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>18</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>8</td>
<td>92</td>
</tr>
<tr>
<td>2</td>
<td>N</td>
<td>20</td>
<td>204</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>10</td>
<td>91</td>
</tr>
<tr>
<td>3</td>
<td>N</td>
<td>17</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>9</td>
<td>90</td>
</tr>
</tbody>
</table>

Grade metabolic

<table>
<thead>
<tr>
<th>Grade</th>
<th>ARM A / R-ICE</th>
<th>Actual arm of induction</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All Tox.</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>31</td>
<td>207</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>13</td>
<td>87</td>
</tr>
<tr>
<td>2</td>
<td>N</td>
<td>17</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>9</td>
<td>90</td>
</tr>
<tr>
<td>Grade</td>
<td>ARM A / R-ICE</td>
<td>Actual arm of induction</td>
<td>ARM B / R-DHAP</td>
</tr>
<tr>
<td>-------</td>
<td>---------------</td>
<td>-------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td>Grade</td>
<td>All Tox.</td>
<td>0</td>
</tr>
<tr>
<td>Neurology 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>9</td>
</tr>
<tr>
<td>Neurology 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>7</td>
</tr>
<tr>
<td>Neurology 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>6</td>
</tr>
<tr>
<td>Pulmonary 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>5</td>
</tr>
<tr>
<td>Pulmonary 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>4</td>
</tr>
<tr>
<td>Pulmonary 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>4</td>
</tr>
<tr>
<td>Renal 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>3</td>
</tr>
<tr>
<td>Renal 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>3</td>
</tr>
<tr>
<td>Renal 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>3</td>
</tr>
<tr>
<td>Other toxicity 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>25</td>
</tr>
<tr>
<td>Other toxicity 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>23</td>
</tr>
<tr>
<td>Other toxicity 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>19</td>
</tr>
</tbody>
</table>
Listing 6.7-2 Other toxicities during induction (induction safety population)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Actual arm of induction</th>
<th>Other</th>
<th>Toxicity</th>
<th>Cycle number</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003101051004</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>abdominal pain</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003101051056</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>EPISTAXIS</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5003101051068</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>HEADACHE POST G-CSF</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003101051068</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>BONE PAIN POST G-CSF</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003101071029</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>ANXIETY</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003101071029</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>ANXIETY</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003101071029</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>ANXIETY</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003101071059</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003101071059</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>SHOULDER PAIN</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>5003101091602</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>HEMORRHAGE</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>5003101091602</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>HEMORRHAGE</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5003101131030</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>5003101131030</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5003101131058</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003101131062</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003101131062</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>HEADACHE</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003101131062</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>FEVER</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003101131062</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>BONE PAIN</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5003101131072</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>SEQUELAE OF RIGHT INTERNAL JUGULAR VEIN THROMBOSIS</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>5003101131409</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003101141406</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>HEADACHE</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003101171637</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>MUCOSITIS</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003101171644</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003101171644</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003101171644</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003101211628</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>HEMORRHAGE / BLEEDING (HEMATOMA)</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003101251205</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003101251205</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>FEVER</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003101391039</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>FEVER</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003101391039</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>FEVER</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003101431046</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003101431046</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>PAIN DUE TO G-CSF</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003101431622</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003101431622</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>ALOPECIA</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003101431622</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003101431622</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>ALOPECIA</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003101431622</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>EPISTAXIS</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003101441036</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>HEADACHE</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003101441036</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>ZONA</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003101441036</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003101491042</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>FLUID RETENTION</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003101491042</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>FLUID RETENTION</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003101491042</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>FLUID RETENTION</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003101601404</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>GENERAL STATUS ALTERATION</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Actual arm of induction</td>
<td>Other</td>
<td>Toxicity</td>
<td>Cycle number</td>
<td>Grade</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------</td>
<td>-------</td>
<td>----------</td>
<td>--------------</td>
<td>-------</td>
</tr>
<tr>
<td>5003101601404</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>GENERAL STATUS ALTERATION</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5003101601404</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>DEPRESSION</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003101601404</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>ARTHRITIS (RIGHT KNEE)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003101621026</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>FEVER</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003101621055</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>PALPITATION</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003101621055</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>FEVER</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003101621055</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>FATIGUE</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003101621055</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>PALPITATION</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003101621055</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>FATIGUE</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5003101621055</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>CEPHALEA</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003101621615</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>ASYMPTOMATIC PULMONARY EMBOLISM</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003101641618</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003101641618</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003102321024</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>INFERIOR LIMBS EDEMA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003102341045</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>CHIRURGICAL CYST</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003102341049</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003102341202</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>VASO-VAGAL SYNCOPE</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003102341202</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>VASO-VAGAL SYNCOPE</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003102441011</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003102441011</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003102441011</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003102491616</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>WEIGHT LOSS</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003102491616</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>OEDEMA RIGHT LEG</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003102491616</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>FATIGUE</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003102491616</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>FATIGUE</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003102491616</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>FATIGUE</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003102491619</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>ABDOMINAL CRAMPS (PAIN)</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>5003102491619</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>FLUID RETENTION</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003102541052</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003102541052</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003102541052</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003601401605</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>HEMORRHAGE / BLEEDING WITHOUT SURGERY (GASTRIC ULCER)</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>5003601601002</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>FATIGUE</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5003601601003</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>MILD PAIN W/URINATION</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003601601003</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>MILD PAIN W/URINATION</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003601601003</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>MILD PAIN W/URINATION</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003601601005</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>PAIN</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003601601005</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>LOWER EXTREMITY EDEMA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003601601005</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>FATIGUE</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003601601005</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>LOWER EXTREMITY EDEMA</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003601601005</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>FATIGUE</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003601601005</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>PAIN</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003601601005</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>LOWER EXTREMITY EDEMA</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003601601005</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>FATIGUE</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003601601401</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>FATIGUE</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Actual arm of induction</td>
<td>Other</td>
<td>Toxicity</td>
<td>Cycle number</td>
<td>Grade</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------</td>
<td>-------</td>
<td>--------------------------</td>
<td>--------------</td>
<td>-------</td>
</tr>
<tr>
<td>5003601601401</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>FATIGUE</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003601601401</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>FATIGUE</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003603201038</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>FEVER</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003603201038</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>EDEMA</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003603201213</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>NAUSEA</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003603201213</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>VOMITING</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003603201409</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>EDEMA; HANDS, FACE, SHANKS</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003603801608</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>GIT-MUCOSITIS</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003604301013</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>NAUSEA</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003604301013</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>CONSTIPATION</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003604301013</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>FATIGUE</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003604301013</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>NAUSEA</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003604301013</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>FATIGUE</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003604901006</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>NOSE BLEEDING</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003604901006</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>RIGHT KNEE HEMATOMA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003604901006</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>NOSE BLEEDING</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003604901006</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>NOSE BLEEDING</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003605701401</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>CONSTITUTIONAL FATIGUE</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003605701401</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>CONSTITUTIONAL FATIGUE</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003605701401</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>CONSTITUTIONAL FATIGUE</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003606201617</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>VISUAL FUNCTION LEFT EYE</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003606201617</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>NUMBNESS IN THROAT</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003606301207</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>LYMPHATIC OEDEMA: LIMB (LEGS)</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003606501409</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>COUGH</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003606501409</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>FEVER</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003606501409</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>FATIGUE</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003606501409</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>VOMITING</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003606701003</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003606701003</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003606701003</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003607201016</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>MENTAL HEALTH PROBLEM (MOOD SWINGS)</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003607201032</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>FATIGUE</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003607201032</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>NIGHT SWEATS</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>5003607201045</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>HBV REACTIVATION</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003607201045</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>HBV REACTIVATION</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003607501403</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>VASOVAGAL ATTACK</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003607701405</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>5003607701405</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003607701405</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003610201611</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>SLIGHT HEADACHE (FRONTAL)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003610301211</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>DIZZINESS (POSTURAL)</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003610301211</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>DIZZINESS (POSTURAL)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003610301211</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>DIZZINESS (POSTURAL)</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003610301617</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>ABDOMINAL PAIN (COLIC)</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003610301617</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>LEFT LEG SWELLING</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Actual arm of induction</td>
<td>Other</td>
<td>Toxicity</td>
<td>Cycle number</td>
<td>Grade</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>-------</td>
<td>----------</td>
<td>--------------</td>
<td>-------</td>
</tr>
<tr>
<td>5003610501031</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>LETHARGY</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003610501031</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>ANOREXIA</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003610501031</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>PYREXIA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003610501031</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>LETHARGY</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003610501031</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>ANOREXIA</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003610501031</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>PYREXIA</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003610501031</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>LETHARGY</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003610501031</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>ANOREXIA</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003610501031</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>PYREXIA</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003612501011</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>ALP / ALT / CREATININE</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003612501011</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>PLATELETS</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>5003612501011</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>PLATELETS</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>5003612501011</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>ABDOMINAL PAIN (MILD)</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003612501011</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>PLATELETS</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5003612501015</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>CONSTITUTIONAL SYMPTOMS</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003612501015</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>CONSTITUTIONAL SYMPTOMS</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003612501021</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>FATIGUE</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003612501021</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>FATIGUE</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003612501021</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>FATIGUE</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003612501021</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>ETOPOSIDE REACTION</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003613301210</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>PAIN - FACE (DURING CHEMO. OF INDUCTION CYCLE ONE)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003613301210</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>PAIN - MUSCULOSKELETAL (BACK)</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003614501002</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>FEVER</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003614501002</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>ABDOMINAL PAIN</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003614501002</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>FATIGUE</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003614501002</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>FEVER</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003614501002</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>ABDOMINAL PAIN</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003614501002</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>FATIGUE</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003614501002</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>PLEURITIC CHEST PAIN</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003614501002</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>FEVER</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003615501028</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>PAIN (CHEST)</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003615501028</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>PAIN (BACK)</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003615501201</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>LETHARGY</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003615501201</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>LETHARGY</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003615501201</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>LETHARGY</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003615501404</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>PYREXIA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003615501404</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>FATIGUE</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003615501404</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>PAIN (GUM)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003615501404</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>EPISTAXIS</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003615501404</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>EPISTAXIS</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003615501404</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>FATIGUE</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003616501005</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>FATIGUE</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003616501005</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>FATIGUE</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003616501005</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>FATIGUE</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003617201010</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>EKZEMA HERPETICATUM SEE DERMATOLOGY / SKIN</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Actual arm of induction</th>
<th>Other</th>
<th>Toxicity</th>
<th>Cycle number</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003617501024</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>PROBABLE PULMONARY EMBOLISM</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5003617501606</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>BONE PAIN</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003617501606</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>FATIGUE</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003617501606</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>BONE PAIN</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003618301405</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>PAIN</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003618301405</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>FEBRILE NEUTROPENIA</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>5003618301405</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>PAIN</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003619301008</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>INSOMNIA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003619301008</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>VOMITING</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003620301011</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>MILD NAUSEA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003620301011</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>PAIN</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003620301011</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>CONSTITUTIONAL SYMPTOMS</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003620301011</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>PAIN</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003620301011</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>CONSTITUTIONAL SYMPTOMS</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003620301017</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>CONSTITUTIONAL SYMPTOMS</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003620301017</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>THROMBUS (VASCULAR ACCESS RELATED)</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5003620501406</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>PATIENT HAS HAD GOUT FOR LAST 10 YRS. FLARED UP AGAIN BEFORE CYCLE 2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003622201022</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>PAIN LEFT UPPER LEG</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003622201022</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>OEDEMA AND RED SWELLING OF BOTH FEET</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003622201022</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>TUMOR PAIN LEFT UPPER LEG</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003622201207</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>WEAK LEGS</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003622201207</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>FATIGUE</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003630201055</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>ACUTE CHOLECYSTITIS</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5003642501030</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>EDEMA HEAD + NECK</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003642501030</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>HEADACHE</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003642501030</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>SHOULDER PAIN</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003642501030</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>EDEMA HEAD + NECK</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003642501410</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>CONSTIPATION</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003642501410</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>DIARRHEA</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003642501410</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>FATIGUE</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003642501410</td>
<td>ARM A / R-ICE</td>
<td>YES</td>
<td>FATIGUE</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>500361021601</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>BACK PAIN</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>500361021601</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>FEVER</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>500361031019</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>URINARY RETENTION</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>500361031067</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>500361031067</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>THORACIC PAIN</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>500361031411</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>500361031411</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>500361031412</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>500361051050</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>GASTRIC PAIN</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>500361051050</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>HAEMATEMESIS</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>500361051063</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>NAUSEAS</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>500361051063</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>VOMITING</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>500361051063</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>NAUSEAS</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Actual arm of induction</td>
<td>Other</td>
<td>Toxicity</td>
<td>Cycle number</td>
<td>Grade</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------</td>
<td>-------</td>
<td>------------------</td>
<td>--------------</td>
<td>-------</td>
</tr>
<tr>
<td>5003101051063</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>FEVER</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003101071408</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>HEADACHE</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003101071408</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003101071414</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ARTICULAR PAIN</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003101071414</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003101071414</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ARTICULAR PAIN</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003101071414</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003101071414</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ARTICULAR PAIN</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003101071414</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003101071418</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003101071418</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003101071643</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003101071643</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003101071643</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>CREATINEMIA</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003101071643</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003101091022</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>EDEMA LIMB</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003101091022</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>EDEMA LIMB</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003101091022</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>EDEMA LIMB</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003101091025</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003101091025</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003101091025</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003101131060</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>HAEMOPTYSIS</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003101131209</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003101131209</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ALOPECIA</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003101131209</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ALOPECIA</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003101141645</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>HEADACHE</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003101141645</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>GASTRIC PAIN</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003101141645</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>OTOPOLYPUS</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003101141645</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>OTOPOLYPUS</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003101171633</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003101171633</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>HICCUP</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003101171633</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>HICCUP</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003101351012</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003101351012</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003101391646</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>METABOLIC HYPERURICEMIA ARTHRITIS</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003101431037</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>BONE PAIN DUE TO GCSF</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003101461629</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003101461629</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003101461629</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003101541611</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>HEADACHE</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003101541611</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>FATIGUE</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003101601066</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>BLEEDING</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003101601066</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>PAIN OF THE RIGHT ANKLE</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003101601066</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>BLEEDING</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003101601066</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>EPIGASTRIC PAIN</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Actual arm of induction</td>
<td>Other</td>
<td>Toxicity</td>
<td>Cycle number</td>
<td>Grade</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------</td>
<td>-------</td>
<td>----------</td>
<td>--------------</td>
<td>-------</td>
</tr>
<tr>
<td>5003101601076</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>FATIGUE</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>5003101601076</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>FATIGUE</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>5003101601076</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>FATIGUE</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>5003101601610</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>FEBRILE NEUTROPENIA WITHOUT INFECTION, NO IDENTIFIED GERM</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5003101641018</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ASTHENIA</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>5003101641018</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ASTHENIA</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>5003101641018</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ASTHENIA</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>5003101641047</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>FATIGUE</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>5003101641079</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ABDOMINAL PAIN</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5003101641079</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>FATIGUE</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>5003101641079</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>FATIGUE</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>5003101641623</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>WEIGHT LOSS</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5003101641623</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ANOREXIA</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>5003101641623</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ALTERATION OF GENERAL STATUS</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5003101641623</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>WEIGHT LOSS</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5003101641623</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ANOREXIA</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>5003101641623</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ALTERATION OF GENERAL STATUS</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5003101641623</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>WEIGHT LOSS</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5003101641623</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ANOREXIA</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>5003101641623</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ALTERATION OF GENERAL STATUS</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5003102161604</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>FLU-LIKE SYNDROME</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5003102161604</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ABDOMINAL PAIN</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5003102161604</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>DEGRADATION OF PERFORMANCE STATUS</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5003102341003</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>THORACIC PAINS</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5003102341064</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>OEDEMA</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>5003102411069</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>HICCOUGH</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>5003102411069</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>FLU-LIKE SYNDROM</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5003102411069</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>FLU-LIKE SYNDROM</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5003102541016</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>Fatigue</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>5003102541016</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>Weight loss</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5003102541016</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>Fatigue</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>5003102541034</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>PAIN LEFT LUMBAGOS</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5003102541034</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>SWEALING</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>5003102541034</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>PAIN LEFT LUMBAGOS</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5003102541034</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>SWEALING</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>5003102541034</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>PAIN LEFT LUMBAGOS</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5003102541034</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>SWEALING</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>5003102541636</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>FATIGUE</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>5003102541636</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>LOSS OF WEIGHT</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5003102541636</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>FATIGUE</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>5003102541636</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>LOSS OF WEIGHT</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5003102541636</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>FATIGUE</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>5003103161041</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>THROMBOSIS</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5003103161206</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>NAUSEA</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>5003103161206</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>NAUSEA</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Actual arm of induction</td>
<td>Other</td>
<td>Toxicity</td>
<td>Cycle number</td>
<td>Grade</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------</td>
<td>-------</td>
<td>----------</td>
<td>--------------</td>
<td>-------</td>
</tr>
<tr>
<td>5003103161206</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>NAUSEA</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003603101018</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>PULMONARY EMBOLISM</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003601301015</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>PAINFUL SWELLING LEFT ARM : THROMBOSIS (PICC)</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003601301015</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>FATIGUE</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003601301015</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>PAINFUL SWELLING LEFT ARM : THROMBOSIS (PICC)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003601301015</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>FATIGUE</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003601401001</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>PAIN</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>5003601601402</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>MUSCULOSKELETAL - OTHER (PATIENT FELL AND BRUISED HER EYE)</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003601801603</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>HEMORRHAGE, GASTRO-INTESTINAL - COLON</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>5003601801603</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>OCULAR - BLURRED VISION</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003601801603</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>HEMORRHAGE, GASTRO-INTESTINAL - COLON</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003601801603</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>OCULAR - BLURRED VISION</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003601801603</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>HEMORRHAGE, GASTRO-INTESTINAL - COLON</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5003601801601</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>HEADACHE</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003601801602</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>INSOMNIA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003601801602</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>PAIN</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003601801602</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>FEVER</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003601801602</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>INSOMNIA</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003601801602</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>PAIN</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003602301009</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>PERIPHERAL OEDEMA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003602301009</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>PERIPHERAL OEDEMA</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003602301009</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>TUMOR LYSIS SYNDROME</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5003602301009</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>BONE PAIN</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003602301009</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>PERIPHERAL OEDEMA</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003602801204</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>DEEP VENOUS THROMBOSIS OF SUBCANNED VEIN RIGHT SIDE</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003602801204</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>DEEP VENOUS THROMBOSIS OF SUBCANNED VEIN RIGHT SIDE</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003603201034</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>EDEMA RIGHT ARM WITHOUT THROMBOSIS</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003603201050</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>EXSICOSIS</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5003603701001</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>DISLOCATED HUMERUS FRACTURE, HOSPITALISATION 28/1 - 22/05</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>5003603701001</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>FATIGUE</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5003603801007</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>FATIGUE</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003603801007</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>FATIGUE</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003603801010</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>NAUSEA</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003603801010</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>DORSALGIA</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003603801010</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>DORSALGIA</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003604301202</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>SWOLLEN RIGHT ARM</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003604701002</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>BONE PAIN</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003604701012</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>THROMBOEMBOLIC CEREBRAL INFARCTION</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>5003604701012</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>* CARDIAC FAILURE</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>5003604701012</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>1 FEBRILE NEUTROPENIA</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>5003604901004</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ORAL THRUSH</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003604901007</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>LOW BACK PAIN</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003604901007</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>THROAT PAIN</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003604901007</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>NOSE BLEEDING</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003604901603</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>INSOMNIA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Actual arm of induction</td>
<td>Other</td>
<td>Toxicity</td>
<td>Cycle number</td>
<td>Grade</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------</td>
<td>-------</td>
<td>----------</td>
<td>--------------</td>
<td>-------</td>
</tr>
<tr>
<td>5003604901603</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>FATIGUE</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003604901603</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>HEADACHE</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003604901603</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>CENTRAL CATHETER EXIT SITE BLEEDING</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003604901603</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>FATIGUE</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003604901603</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>INSOMNIA</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003604901603</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>FATIGUE</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003605301203</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>DEPRESSION</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003605301203</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>MUSCULOSKELETAL</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003605301203</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>DEPRESSION</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003606201410</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>BADE PAIN</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003606501601</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>FATIGUE</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003606501601</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>WEAKNESS</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003606501601</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>DIFFICULTY SLEEPING</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003606501601</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>PAIN LOWER BACK</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003606501601</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>FATIGUE</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003606501601</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>DIFFICULTY SLEEPING</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5003606501601</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>PAIN LOWER BACK</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003606501601</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003606501601</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003606501601</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003606701005</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>WORSENING OF GENERAL STATUS</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003606701005</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>KERATITIS MARGINALIS BOTH SIDES</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003606701005</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>BACKACHE DUE TO APPLICATION OF NEUPOGEN</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003607301603</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>PAIN (HEADACHE)</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5003607501401</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>OCULAR - POSSIBLE CHOROIDAL INFECTION RT EYE / ENGORGEMENT LT. RETINAL VASCULATURE</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003609301609</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>PAIN: HEADACH</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003609301609</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>PAIN: HEADACH</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003610201212</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>NAUSEA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003610201212</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>VOMITING</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003610201212</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>NAUSEA</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003610201212</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>VOMITING</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003610301613</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>EPISTAXIS</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003610501402</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>TIRED EYES</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003610501402</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ELEVATED LDH</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003610501402</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>TIRED EYES</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003610501402</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>SENSATION OF CONSTRICTION AROUND NECK AND HOARSENESS</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003610501402</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ELEVATED LDH</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5003610501402</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>PAIN</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003610501402</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ELEVATED LDH</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003610701403</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>SWEATING HEAD + NECK</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003610701403</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>SLIGHT NAUSEA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003610701403</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>PAIN NIGHT</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003610701403</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>NIGHT SWEAT</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003611301002</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ALLERGY TO DRESSING USED ON HICKMONS CATHETER - SKIN RASH</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Actual arm of induction</td>
<td>Other</td>
<td>Toxicity</td>
<td>Cycle number</td>
<td>Grade</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------------</td>
<td>-------</td>
<td>----------</td>
<td>--------------</td>
<td>-------</td>
</tr>
<tr>
<td>5003611301002</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>HEADACHE</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003611301002</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ALLERGY TO DRESSING USED ON HICKMONS CATHETER - SKIN RASH</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003611301002</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>HEADACHE</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003611301003</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>COUGH</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003611301003</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>CORYZA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003611301003</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>COUGH</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003611301003</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>LETHARGY</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003611301003</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>COUGH</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003611301003</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>FEVER</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003612501016</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>FATIGUE</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003612501016</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>SWELLING : NECK</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003612501016</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>HICCOUGH</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003612501016</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>FATIGUE</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003612501016</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>FATIGUE</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003612501019</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>PAIN RIGHT GROIN</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003612501019</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ABDOMINAL PAIN</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>5003612501019</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>PAIN RIGHT GROIN</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>5003612501019</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>FATIGUE</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003612501019</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ABDOMINAL PAIN</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>5003612501019</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>PAIN RIGHT GROIN</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>5003612501019</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ABDOMINAL PAIN</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5003614301407</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>LETHARGY</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003614501022</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>BACK PAIN</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003614501022</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>SORE THROAT + EYES</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003614501022</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>SORE THROAT + EYES</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003614501022</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>INSOMNIA</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003615501007</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>DYSPNEA</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>5003615501029</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>PAIN (UPPER ABDOMEN)</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003615501029</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>PAIN (UPPER ABDOMEN)</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003615501029</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>EPISTAXIS</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003616301212</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>LYMPHATICS</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003616301212</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>LYMPHATICS</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003616501003</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>FATIGUE</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003616501003</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>FATIGUE</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003616501003</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>FATIGUE</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003617201021</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>DETECTION OF HCV-RNA WITHIN STEM CELL APHERESIS - IT IS ASSUMED THAT IT'S A FRESH INFECTION, BECAUSE PRE-FINDINGS FROM 08.12.05 N.A.D. LABORATORY CHEMICAL NO INDICATION OF HEPATOSIS</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5003617201629</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>HYPOKALAEMIA</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003617201629</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>HYPOMAGNESEMIA</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003617301616</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>BONE PAIN</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>5003617301616</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>BONE PAIN</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003617301616</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>BONE PAIN</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003617301619</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>BACK PAIN</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003617301619</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>BACK PAIN</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Actual arm of induction</td>
<td>Other</td>
<td>Toxicity</td>
<td>Cycle number</td>
<td>Grade</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------------</td>
<td>-------</td>
<td>----------</td>
<td>--------------</td>
<td>-------</td>
</tr>
<tr>
<td>5003617501006</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>HYPOCALCEMIA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003617501006</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>INFECTION BASED ON INCREASE CRP</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003617501006</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>BILATERAL PITTING OEDEMA</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003617501026</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>ABDOMINAL PAIN</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>5003618201030</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>PETECHIAE</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003618201030</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>F/UO</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>5003618201030</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>CONJUNCTIVITIS SICCA</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003618201030</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>PAIN BACK</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003618201030</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>PETECHIAE</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003619301006</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>RESPIRATORY (COUGH)</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003619301006</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>BONE PAIN</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003619301006</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>FATIGUE</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003619301006</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>CHEMO-REFRACTORY DISEASE</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003619301006</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>RESPIRATORY (COUGH)</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003619301016</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>FATIGUE</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003619301016</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>TOOTH EXTRACTION</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003619301016</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>FATIGUE</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003619301016</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>FATIGUE</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003622201014</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>FATIGUE</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003622201014</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>FATIGUE</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003622201607</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>BONE PAIN</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003623501408</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>BONE PAIN (CYCLE 1)</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>5003628201404</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>PAIN (POSSIBLY G-CSF RELATED)</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003628201404</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>PAIN (POSSIBLY G-CSF RELATED)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003628201404</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>PAIN (POSSIBLY G-CSF RELATED)</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003638501023</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>BONE PAIN WITH G-CSF</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003638501023</td>
<td>ARM B / R-DHAP</td>
<td>YES</td>
<td>BONE PAIN WITH G-CSF</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

N = 472
Listing 6.7-3 Other toxicities during consolidation (induction safety population)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Actual arm of induction</th>
<th>Grade Other toxicity 1</th>
<th>Specify other toxicity 1</th>
<th>Grade Other toxicity 2</th>
<th>Specify other toxicity 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003101021605</td>
<td>ARM A / R-ICE</td>
<td>FEVER</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003101021631</td>
<td>ARM A / R-ICE</td>
<td>DERMATOLOGY / SKIN</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003101031401</td>
<td>ARM B / R-DHAP</td>
<td>ASTHENIA</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003101031621</td>
<td>ARM A / R-ICE</td>
<td>ASTHENIA</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003101061617</td>
<td>ARM B / R-DHAP</td>
<td>HERPETIC MUCOSITIS</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003101071029</td>
<td>ARM A / R-ICE</td>
<td>ANXIETY</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003101071408</td>
<td>ARM B / R-DHAP</td>
<td>ALLERGY CUTANEOUS</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003101071418</td>
<td>ARM B / R-DHAP</td>
<td>CUTANEOUS ALLERGY (ANTIBIOTIC)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003101071643</td>
<td>ARM B / R-DHAP</td>
<td>HYPONATREMIA</td>
<td>4</td>
<td>PULMONARY EMBOLISM</td>
<td>4</td>
</tr>
<tr>
<td>5003101131072</td>
<td>ARM A / R-ICE</td>
<td>FEVER</td>
<td>2</td>
<td>HEMORRHoids</td>
<td>2</td>
</tr>
<tr>
<td>5003101131209</td>
<td>ARM B / R-DHAP</td>
<td>ASTHENIA</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003101131409</td>
<td>ARM A / R-ICE</td>
<td>ABDOMINAL PAIN</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003101171637</td>
<td>ARM A / R-ICE</td>
<td>FEVER</td>
<td>1</td>
<td>PULMONARY</td>
<td>1</td>
</tr>
<tr>
<td>5003101251021</td>
<td>ARM B / R-DHAP</td>
<td>CUTANEOUS ALLERGY DUE TO ARACYTINE</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003101281033</td>
<td>ARM A / R-ICE</td>
<td>ALLERGY</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003101351012</td>
<td>ARM B / R-DHAP</td>
<td>metabolic</td>
<td>4</td>
<td>GLUCOSE</td>
<td>2</td>
</tr>
<tr>
<td>5003101391207</td>
<td>ARM B / R-DHAP</td>
<td>FEVER WITH UNKNOWN ORIGIN</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003101491042</td>
<td>ARM A / R-ICE</td>
<td>PULMONARY</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003101541415</td>
<td>ARM B / R-DHAP</td>
<td>CREATININE</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003101541611</td>
<td>ARM B / R-DHAP</td>
<td>MACULAR HEMORRHAGE</td>
<td>2</td>
<td>ACUTE NOISE REDUCTION (EAR)</td>
<td>2</td>
</tr>
<tr>
<td>5003101621026</td>
<td>ARM A / R-ICE</td>
<td>FEBRILE NEUTROPENIA</td>
<td>3</td>
<td>RETRO-STERNAL PAIN</td>
<td>2</td>
</tr>
<tr>
<td>5003101641623</td>
<td>ARM B / R-DHAP</td>
<td>PULMONARY : DYSPNEA</td>
<td>1</td>
<td>BILATERAL PLEURAL EFFUSION</td>
<td>2</td>
</tr>
<tr>
<td>5003102161604</td>
<td>ARM B / R-DHAP</td>
<td>FEVER</td>
<td>2</td>
<td>RIGORS, CHILLS</td>
<td>1</td>
</tr>
<tr>
<td>5003102341061</td>
<td>ARM A / R-ICE</td>
<td>FEVER</td>
<td>2</td>
<td>CUTANEOUS ERUPTION</td>
<td>1</td>
</tr>
<tr>
<td>5003102411069</td>
<td>ARM B / R-DHAP</td>
<td>HALLUCINATION</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003102491619</td>
<td>ARM A / R-ICE</td>
<td>FATIGUE + FLUID RETENTION + PAIN (EYE-TOE) + DERMATOLOGY (CUTANEOUS RASH AFTER ARA-C AND PRURITIS)</td>
<td>2</td>
<td>METABOLIC (INCREASED AF + HYPOMAGNESEMA + HYPOUREMIA + HYPOALBUMINEMIA + HYPERBILIRUBINE + HYPONATREMIA + HYPOKALEMIA + INCREASED GAMMA GT) + PULMONARY (DYSPNEOE)</td>
<td>2</td>
</tr>
<tr>
<td>500310251034</td>
<td>ARM B / R-DHAP</td>
<td>ASTHENIA</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003102514636</td>
<td>ARM B / R-DHAP</td>
<td>ASTHENIA</td>
<td>2</td>
<td>PETECHIA</td>
<td>1</td>
</tr>
<tr>
<td>5003102541640</td>
<td>ARM B / R-DHAP</td>
<td>ALLERGIC REACTION TO DMSO</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003103161041</td>
<td>ARM B / R-DHAP</td>
<td>UNEXPLAINED FEVER</td>
<td>2</td>
<td>DIABETES</td>
<td>3</td>
</tr>
<tr>
<td>5003103161206</td>
<td>ARM B / R-DHAP</td>
<td>FEVER</td>
<td>1</td>
<td>HYPOTENSION</td>
<td>2</td>
</tr>
<tr>
<td>5003601201604</td>
<td>ARM B / R-DHAP</td>
<td>GVHD LIKE SKIN REACTION</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003601301015</td>
<td>ARM B / R-DHAP</td>
<td>ANXIETY</td>
<td>2</td>
<td>RASH</td>
<td>2</td>
</tr>
<tr>
<td>5003601601602</td>
<td>ARM B / R-DHAP</td>
<td>HYPERGLYCEMIA</td>
<td>3</td>
<td>FEVER W/ NEGATIVE CULTURES</td>
<td>1</td>
</tr>
<tr>
<td>5003601881401</td>
<td>ARM A / R-ICE</td>
<td>CUTANEOUS EROPTION</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003601881601</td>
<td>ARM B / R-DHAP</td>
<td>HEADACHE</td>
<td>2</td>
<td>ALLERGY</td>
<td>3</td>
</tr>
<tr>
<td>5003601881602</td>
<td>ARM B / R-DHAP</td>
<td>FEVER</td>
<td>1</td>
<td>DRUG EROPTION</td>
<td>1</td>
</tr>
<tr>
<td>5003602301009</td>
<td>ARM B / R-DHAP</td>
<td>RASH / DESQUAMATION</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003602801011</td>
<td>ARM A / R-ICE</td>
<td>TOXOALLERGY EXANTHEMA</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Actual arm of induction</td>
<td>Specify other toxicity 1</td>
<td>Grade Other toxicity 1</td>
<td>Specify other toxicity 2</td>
<td>Grade Other toxicity 2</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------</td>
<td>--------------------------</td>
<td>-----------------------</td>
<td>------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>5003602801012</td>
<td>ARM A / R-ICE</td>
<td>ABNORMAL COAGULATION WITH BLEEDING TO URINE BLADDER</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003603301401</td>
<td>ARM B / R-DHAP</td>
<td>abdominal pain</td>
<td>2</td>
<td>HAEMOPTYSIS (INTERMITTENT)</td>
<td>1</td>
</tr>
<tr>
<td>5003603801002</td>
<td>ARM A / R-ICE</td>
<td>COAGULATION</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003604201202</td>
<td>ARM B / R-DHAP</td>
<td>FEAR : PSYCHOTIC</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003604301013</td>
<td>ARM A / R-ICE</td>
<td>RASH DUE TO ENGRAFTMENT SYNDROME</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003604701002</td>
<td>ARM B / R-DHAP</td>
<td>MOOD DISORDER</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003604701602</td>
<td>ARM B / R-DHAP</td>
<td>FOLLICULITIS</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003604901004</td>
<td>ARM B / R-DHAP</td>
<td>METABOLIC</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003604901007</td>
<td>ARM B / R-DHAP</td>
<td>HYPERHYDROPSM</td>
<td>2</td>
<td>RASH DESQUAMATION</td>
<td>2</td>
</tr>
<tr>
<td>5003604901603</td>
<td>ARM B / R-DHAP</td>
<td>PRURITUS</td>
<td>2</td>
<td>RASH / DESQUAMATION</td>
<td>2</td>
</tr>
<tr>
<td>5003605701401</td>
<td>ARM A / R-ICE</td>
<td>CANDIDA-VAGINITIS</td>
<td>1</td>
<td>FEVER IN NEUTROPENIA</td>
<td>1</td>
</tr>
<tr>
<td>5003606201617</td>
<td>ARM A / R-ICE</td>
<td>09.12.2005 ZYLOTOXIN A-POS</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003606201620</td>
<td>ARM A / R-ICE</td>
<td>HEADACHES</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003606201626</td>
<td>ARM B / R-DHAP</td>
<td>AMPHOTERICIN-B ASSOCIATED DRY-FEVER</td>
<td>2</td>
<td>IMIPENEM ASSOCIATED RASH</td>
<td>2</td>
</tr>
<tr>
<td>5003606501601</td>
<td>ARM B / R-DHAP</td>
<td>NEUTROPENIA</td>
<td>4</td>
<td>ANOREXIA</td>
<td>2</td>
</tr>
<tr>
<td>5003607201408</td>
<td>ARM B / R-DHAP</td>
<td>ARA-C ASSOCIATED EXANTHEMA</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003607501403</td>
<td>ARM A / R-ICE</td>
<td>FAINT</td>
<td>1</td>
<td>HYPOTENSION</td>
<td>1</td>
</tr>
<tr>
<td>5003607701007</td>
<td>ARM A / R-ICE</td>
<td>ERYTHEMA</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003607701405</td>
<td>ARM A / R-ICE</td>
<td>FEVER</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003609301018</td>
<td>ARM B / R-DHAP</td>
<td>HYPOKALEMIA</td>
<td>1</td>
<td>HYPOMAGNESEMIA</td>
<td>1</td>
</tr>
<tr>
<td>5003609301206</td>
<td>ARM B / R-DHAP</td>
<td>FEBRILE NEUTROPENIA</td>
<td>3</td>
<td>HYPOKALIAEMIA</td>
<td>4</td>
</tr>
<tr>
<td>5003609301609</td>
<td>ARM B / R-DHAP</td>
<td>FEBRILE NEUTROPENIA</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003610301209</td>
<td>ARM B / R-DHAP</td>
<td>HEADACHES</td>
<td>2</td>
<td>HYPOKALEMIA</td>
<td>1</td>
</tr>
<tr>
<td>5003610301613</td>
<td>ARM B / R-DHAP</td>
<td>LOWER BACK PAIN</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003610501031</td>
<td>ARM A / R-ICE</td>
<td>PYREXIA</td>
<td>2</td>
<td>DIARRHOEA</td>
<td>1</td>
</tr>
<tr>
<td>5003610501402</td>
<td>ARM B / R-DHAP</td>
<td>PULMONARY (COUGH)</td>
<td>1</td>
<td>RASH</td>
<td>2</td>
</tr>
<tr>
<td>5003614501022</td>
<td>ARM B / R-DHAP</td>
<td>FEBRILE NEUTROPENIA</td>
<td>3</td>
<td>RASH (FACE, UPPER TRUNK)</td>
<td>2</td>
</tr>
<tr>
<td>5003614501032</td>
<td>ARM B / R-DHAP</td>
<td>NEUTROPENIC TYPHLITIS</td>
<td>3</td>
<td>RASH</td>
<td>2</td>
</tr>
<tr>
<td>5003616301403</td>
<td>ARM A / R-ICE</td>
<td>ALLERGIC REACTION</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003617201613</td>
<td>ARM B / R-DHAP</td>
<td>BURNING EYES</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003617301619</td>
<td>ARM B / R-DHAP</td>
<td>HYPOKALEMIA</td>
<td>3</td>
<td>RASH</td>
<td>1</td>
</tr>
<tr>
<td>5003618301405</td>
<td>ARM A / R-ICE</td>
<td>ALLERGIC REACTION</td>
<td>2</td>
<td>PETECHIAE</td>
<td>2</td>
</tr>
<tr>
<td>5003619301621</td>
<td>ARM A / R-ICE</td>
<td>HEADACHE</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003620501602</td>
<td>ARM B / R-DHAP</td>
<td>DYSPHAGIA</td>
<td>2</td>
<td>NAUSEA</td>
<td>2</td>
</tr>
<tr>
<td>5003621501412</td>
<td>ARM B / R-DHAP</td>
<td>FOLLICULITIS (FACE + AXILLA)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003622201207</td>
<td>ARM A / R-ICE</td>
<td>ZIK INFECTION</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003623501408</td>
<td>ARM B / R-DHAP</td>
<td>VOMITING X 4</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003632201606</td>
<td>ARM B / R-DHAP</td>
<td>THROMBOSIS VENA SUBCLAVIA, JUGULARIS EXTERNA, INTERNA RIGHT AS RESULT OF INFECTION</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N = 78
6.7.3. Adverse events

Listing 6.7-4 Adverse events of patients receiving no study treatment – Full analysis population

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>First Randomization Date</th>
<th>AE number</th>
<th>Adverse event description</th>
<th>Start date of adverse event</th>
<th>Non hematological toxicity grade</th>
<th>Hematological toxicity grade</th>
<th>Date of outcome</th>
<th>AE outcome</th>
<th>Seriousness criteria</th>
<th>Date of death</th>
<th>Response at death</th>
<th>Reason for death</th>
<th>Specify reason of death</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003603201027</td>
<td>26/03/2006</td>
<td>1</td>
<td>SEVERE PNEUMONIA AND DEATH FROM SEPTIC SHOCK PRIOR TO START WITH STUDY MEDICATION (DEATH 26/01/2006)</td>
<td>25/01/2006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>FATAL / DEATH</td>
<td>Yes</td>
<td>26/01/2006</td>
<td>NOT EVALUATED</td>
<td>OTHER REASON</td>
<td>SEPTIC SHOCK</td>
</tr>
<tr>
<td>5003603201627</td>
<td>28/03/2007</td>
<td>1</td>
<td>SEPSIS WITH REFRACTORY LACTIC ACIDOSIS AFTER GASTRIC PERFORATION</td>
<td>31/03/2007</td>
<td>LIFE THREATENING</td>
<td>SEVERE</td>
<td>-</td>
<td>FATAL / DEATH</td>
<td>Yes</td>
<td>03/04/2007</td>
<td>PROGRESSIVE DISEASE</td>
<td>OTHER REASON</td>
<td>SEE ATTACHED LETTER / PROGRESSION FORM WILL FOLLOW</td>
</tr>
</tbody>
</table>

N = 2

Listing 6.7-5 Adverse events occurring before 1st induction cycle (induction safety population)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Actual arm of induction</th>
<th>AE number</th>
<th>Adverse event description</th>
<th>Start date of adverse event</th>
<th>Date of 1st cycle</th>
<th>Time from starting date to date of cycle 1 (days)</th>
<th>Seriousness criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003101141406</td>
<td>ARM A / R-ICE</td>
<td>1</td>
<td>EDEMA RELATED TO ALLERGIC REACTION</td>
<td>15/09/2005</td>
<td>17/09/2005</td>
<td>-2</td>
<td>No</td>
</tr>
<tr>
<td>5003618501008</td>
<td>ARM A / R-ICE</td>
<td>1</td>
<td>INFECTION WITHOUT FEBRILE NEUTROPENIA</td>
<td>21/01/2007</td>
<td>22/01/2007</td>
<td>-1</td>
<td>No</td>
</tr>
<tr>
<td>5003101391207</td>
<td>ARM B / R-DHAP</td>
<td>1</td>
<td>RESPIRATORY INFECTION (E. COLEI STREPTOCOCCUS PNEUMONIAE)</td>
<td>01/02/2006</td>
<td>11/02/2006</td>
<td>-10</td>
<td>No</td>
</tr>
<tr>
<td>5003604201028</td>
<td>ARM B / R-DHAP</td>
<td>1</td>
<td>ALLERGIC ANAPHYLACTIC REACTION DUE TO RITUXIMAB</td>
<td>02/02/2006</td>
<td>03/02/2006</td>
<td>-1</td>
<td>Yes</td>
</tr>
<tr>
<td>5003604201056</td>
<td>ARM B / R-DHAP</td>
<td>1</td>
<td>RENAL FUNCTION : CLEARANCE DECREASE</td>
<td>29/04/2008</td>
<td>15/05/2008</td>
<td>-16</td>
<td>No</td>
</tr>
<tr>
<td>5003609301018</td>
<td>ARM B / R-DHAP</td>
<td>1</td>
<td>CHEST INFECTION</td>
<td>07/06/2008</td>
<td>15/06/2008</td>
<td>-8</td>
<td>Yes</td>
</tr>
<tr>
<td>5003612501019</td>
<td>ARM B / R-DHAP</td>
<td>1</td>
<td>HIGH CREATININE LEVEL (GRADE 3)</td>
<td>03/09/2007</td>
<td>06/09/2007</td>
<td>-3</td>
<td>Yes</td>
</tr>
</tbody>
</table>

N = 8
6.7.4. **Serious adverse events**

Listing 6.7-6 Serious adverse events of patients receiving no study treatment – Full analysis population

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>First Randomization Date</th>
<th>AE number</th>
<th>Adverse event description</th>
<th>Start date of adverse event</th>
<th>Non hematological toxicity grade</th>
<th>Hematological toxicity grade</th>
<th>Date of outcome</th>
<th>AE outcome</th>
<th>Seriousness criteria</th>
<th>Date of death</th>
<th>Response at death</th>
<th>Reason for death</th>
<th>Specify reason of death</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003603201027</td>
<td>26/01/2006</td>
<td>1</td>
<td>SEVERE PNEUMONIA AND DEATH FROM SEPTIC SHOCK PRIOR TO START WITH STUDY MEDICATION (DEATH 26/01/2006)</td>
<td>25/01/2006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>FATAL</td>
<td>Yes</td>
<td>26/01/2006</td>
<td>NOT EVALUATED</td>
<td>OTHER REASON</td>
<td>SEPTIC SHOCK</td>
</tr>
<tr>
<td>5003603201627</td>
<td>28/03/2007</td>
<td>1</td>
<td>SEPSIS WITH REFRACTORY LACTIC ACIDOSIS AFTER GASTRIC PERFORATION</td>
<td>31/03/2007</td>
<td>LIFE THREATENING</td>
<td>SEVERE</td>
<td>03/04/2007</td>
<td>FATAL</td>
<td>Yes</td>
<td>03/04/2007</td>
<td>PROGRESSIVE DISEASE</td>
<td>OTHER REASON</td>
<td>SEE ATTACHED LETTER / PROGRESSION FORM WILL FOLLOW</td>
</tr>
</tbody>
</table>

N = 2

Listing 6.7-7 Serious adverse events declared to Pharmacovigilance department but not present in clinical database

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>First Randomization Date</th>
<th>Arm of treatment</th>
<th>Date of 2nd randomization</th>
<th>Arm of 2nd randomization</th>
<th>SAE diagnosis</th>
<th>SAE: date of start</th>
<th>AE/SAE: date of end</th>
<th>Outcome</th>
<th>Sponsor Causality</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003613301007</td>
<td>14/11/2006</td>
<td>ARM A / R-ICE</td>
<td>31/01/2007</td>
<td>RITUXIMAB</td>
<td>ACUTE RENAL IMPAIEMENT</td>
<td>03/01/2007</td>
<td>08/01/2007</td>
<td>Recovered without sequelae</td>
<td>Related</td>
</tr>
<tr>
<td>5003613301404</td>
<td>14/11/2006</td>
<td>ARM B / R-DHAP</td>
<td>08/02/2007</td>
<td>OBSERVATION</td>
<td>FEVER, NAUSEA AND VOMITING</td>
<td>13/05/2007</td>
<td>-</td>
<td>Not yet recovered</td>
<td>Unrelated</td>
</tr>
</tbody>
</table>

N = 5
Listing 6.7-8 Serious adverse events (induction safety population)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Actual arm of induction</th>
<th>Actual arm of maintenance</th>
<th>Sex</th>
<th>Age (years)</th>
<th>Adverse event description</th>
<th>Date of AE become serious</th>
<th>Non hematological toxicity grade</th>
<th>Hematological toxicity grade</th>
<th>Relation with study drugs</th>
<th>Action taken with study drug</th>
<th>AE outcome</th>
<th>Duration of AE serious (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003101031621</td>
<td>ARM A / R-ICE RITUXIMAB</td>
<td>FEMALE 55</td>
<td>SEPTIC SHOCK WITH PNEUMONIA 06/07/2006 LIFE THREATENING LIFE THREATENING Yes Yes RECOVERED 33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003101031621</td>
<td>ARM A / R-ICE RITUXIMAB</td>
<td>FEMALE 55</td>
<td>PULMONARY ASPERGILLOSIS 06/07/2006 LIFE THREATENING LIFE THREATENING Yes Yes RECOVERED 50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003101031621</td>
<td>ARM A / R-ICE RITUXIMAB</td>
<td>FEMALE 55</td>
<td>BRONCHITIS TO PNEUMOCOCCUS 18/01/2007 SEVERE MILD Yes No RECOVERED 64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003101031621</td>
<td>ARM A / R-ICE RITUXIMAB</td>
<td>FEMALE 55</td>
<td>PULMONARY INFECTION TO PSEUDOMONAS AERUGINOSA WITH HEMOPTYSIS 02/06/2007 SEVERE MILD Yes No RECOVERED 72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003101051056</td>
<td>ARM A / R-ICE OBSERVATION</td>
<td>MALE 64</td>
<td>HEARING LOSS 03/04/2007 SEVERE - Yes No ONGOING -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003101051068</td>
<td>ARM A / R-ICE NOT APPLICABLE</td>
<td>MALE 63</td>
<td>SEPTIC SHOCK 05/09/2007 LIFE THREATENING LIFE THREATENING No No RECOVERED -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003101051068</td>
<td>ARM A / R-ICE NOT APPLICABLE</td>
<td>MALE 63</td>
<td>ESCHERICHIA COLI INFECTION 15/08/2007 SEVERE NORMAL No No RECOVERED 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003101051603</td>
<td>ARM A / R-ICE NOT APPLICABLE</td>
<td>FEMALE 56</td>
<td>OESOPHAGUS CARCINOMA 09/02/2005 LIFE THREATENING - No No FATAL 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003101051612</td>
<td>ARM A / R-ICE OBSERVATION</td>
<td>MALE 36</td>
<td>Cardiac infarction 28/06/2004 SEVERE MILD No No RECOVERED 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003101131030</td>
<td>ARM A / R-ICE NOT APPLICABLE</td>
<td>FEMALE 48</td>
<td>SEPTIC SHOCK DUE TO PROBABLE APLASIA NO DOCUMENTED AT THE ENTRY TO HOSPITAL, PATIENT WITH IRREGULAR TACHYCARDIA AND CARDIAC RESPIRATORY STANDSTILL 16/08/2005 DEATH UNKNOWN Yes Yes FATAL 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003101251205</td>
<td>ARM A / R-ICE OBSERVATION</td>
<td>MALE 54</td>
<td>HYPERTHERMIA 15/07/2004 MODERATE LIFE THREATENING No No RECOVERED 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003101251205</td>
<td>ARM A / R-ICE OBSERVATION</td>
<td>MALE 54</td>
<td>FEBRILE NEUTROPENIA 20/08/2004 SEVERE LIFE THREATENING Yes No RECOVERED 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003101281017</td>
<td>ARM A / R-ICE NOT APPLICABLE</td>
<td>MALE 60</td>
<td>ATRIAL Fibrillation HYPOTENSION 25/11/2004 LIFE THREATENING MODERATE Yes Yes RECOVERED 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003101281017</td>
<td>ARM A / R-ICE NOT APPLICABLE</td>
<td>MALE 60</td>
<td>ASPERGILLOSIS 03/12/2004 SEVERE LIFE THREATENING No Yes RECOVERED 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003101281017</td>
<td>ARM A / R-ICE NOT APPLICABLE</td>
<td>MALE 60</td>
<td>SEVERE GASTRIC INTESTINAL BLEEDING 29/11/2004 LIFE THREATENING LIFE THREATENING No Yes RECOVERED 12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003101281017</td>
<td>ARM A / R-ICE NOT APPLICABLE</td>
<td>MALE 60</td>
<td>SYCONE 25/11/2004 SEVERE SEVERE No Yes RECOVERED 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003101431622</td>
<td>ARM A / R-ICE RITUXIMAB</td>
<td>MALE 49</td>
<td>INTERSTITIAL PNEUMOPATHY 19/09/2005 SEVERE MILD No No RECOVERED -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003101431622</td>
<td>ARM A / R-ICE RITUXIMAB</td>
<td>MALE 49</td>
<td>BRUTAL NEUTROPENIA APPEARANCE 10/10/2005 UNKNOWN SEVERE Yes Yes RECOVERED 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Actual arm of induction</td>
<td>Actual arm of maintenance</td>
<td>Sex</td>
<td>Age (years)</td>
<td>Adverse event description</td>
<td>Date of AE</td>
<td>Non hematological toxicity grade</td>
<td>Hematological toxicity grade</td>
<td>Relation with study drugs</td>
<td>Action taken with study drug</td>
<td>AE outcome</td>
<td>Duration of AE serious (days)</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>---------------------------</td>
<td>-----</td>
<td>-------------</td>
<td>---------------------------</td>
<td>-----------</td>
<td>--------------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>-----------------------------</td>
<td>-------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>5003101491042</td>
<td>ARM A / R-ICE RITUXIMAB</td>
<td>MALE</td>
<td>46</td>
<td>RESPIRATORY DISTRESS WITH SEPTICEMIA</td>
<td>26/05/2006</td>
<td>LIFE THREATENING</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED WITH SEQUELAE</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>5003101601404</td>
<td>ARM A / R-ICE RITUXIMAB</td>
<td>MALE</td>
<td>65</td>
<td>PULMONARY EFFUSION AND OEDEMA - DYSPNEA GRADE 3-4 , DETERIORATED CARDIAC FUNCTION: RENAL INSUFFICIENCY</td>
<td>30/07/2005</td>
<td>SEVERE</td>
<td>MILD</td>
<td>Yes</td>
<td>Yes</td>
<td>RECOVERED</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>5003101621026</td>
<td>ARM A / R-ICE OBSERVATION</td>
<td>MALE</td>
<td>64</td>
<td>PNEUMOPATHY INTERSTITIAL</td>
<td>15/11/2005</td>
<td>MODERATE</td>
<td>MODERATE</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>5003101621055</td>
<td>ARM A / R-ICE RITUXIMAB</td>
<td>FEMALE</td>
<td>64</td>
<td>FEBRILE NEUTROPENIA GR 3</td>
<td>26/10/2006</td>
<td>-</td>
<td>SEVERE</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>5003101621615</td>
<td>ARM A / R-ICE RITUXIMAB</td>
<td>MALE</td>
<td>64</td>
<td>HEPATITIS</td>
<td>14/10/2004</td>
<td>SEVERE</td>
<td>NORMAL</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td></td>
<td>33</td>
</tr>
<tr>
<td>5003102161413</td>
<td>ARM A / R-ICE RITUXIMAB</td>
<td>MALE</td>
<td>48</td>
<td>SEPTIC SHOCK RESULTING IN DEATH</td>
<td>03/11/2006</td>
<td>LETHAL</td>
<td>SEVERE</td>
<td>Yes</td>
<td>Yes</td>
<td>FATAL</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>5003102341202</td>
<td>ARM A / R-ICE RITUXIMAB</td>
<td>MALE</td>
<td>56</td>
<td>SEPTICAEMIA (STREPTOCOCCUS PNEUMONIAE)</td>
<td>28/10/2004</td>
<td>SEVERE</td>
<td>LIFE THREATENING</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>5003102491616</td>
<td>ARM A / R-ICE RITUXIMAB</td>
<td>MALE</td>
<td>46</td>
<td>HYPOVOLEMIC SHOCK AND ARTERIAL BLEEDING OF OESOPHAGUS</td>
<td>02/07/2004</td>
<td>LIFE THREATENING</td>
<td>LIFE THREATENING</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>5003102491616</td>
<td>ARM A / R-ICE RITUXIMAB</td>
<td>MALE</td>
<td>46</td>
<td>SEPTIC SHOCK DUE TO GRAM NEGATIVE INFECTION AND NEUTROPENIC SEPSIS</td>
<td>17/07/2004</td>
<td>LIFE THREATENING</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>Yes</td>
<td>RECOVERED</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>5003102541625</td>
<td>ARM A / R-ICE RITUXIMAB</td>
<td>MALE</td>
<td>25</td>
<td>ACUTE HEPATITIS</td>
<td>31/07/2005</td>
<td>LIFE THREATENING</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
<td>RECOVERED WITH SEQUELAE</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>5003601401000</td>
<td>ARM A / R-ICE RITUXIMAB</td>
<td>MALE</td>
<td>56</td>
<td>INFECTION</td>
<td>09/07/2004</td>
<td>SEVERE</td>
<td>LIFE THREATENING</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>5003601401002</td>
<td>ARM A / R-ICE RITUXIMAB</td>
<td>MALE</td>
<td>56</td>
<td>ACUTE NON-LYMPHOCYTIC LEUKEMIA = AML</td>
<td>15/06/2006</td>
<td>UNKNOWN</td>
<td>UNKNOWN</td>
<td>Yes</td>
<td>-</td>
<td>FATAL</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>5003601401006</td>
<td>ARM A / R-ICE OBSERVATION</td>
<td>FEMALE</td>
<td>62</td>
<td>KLEBSIELLA PNEUMONIAE</td>
<td>08/07/2007</td>
<td>SEVERE</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>5003601401600</td>
<td>ARM A / R-ICE RITUXIMAB</td>
<td>MALE</td>
<td>41</td>
<td>SEPTICAEMIA</td>
<td>04/11/2004</td>
<td>LIFE THREATENING</td>
<td>LIFE THREATENING</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>5003601401602</td>
<td>ARM A / R-ICE RITUXIMAB</td>
<td>MALE</td>
<td>41</td>
<td>MYOCARDITIS</td>
<td>06/09/2006</td>
<td>LIFE THREATENING</td>
<td>UNKNOWN</td>
<td>Yes</td>
<td>No</td>
<td>FATAL</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>5003601401602</td>
<td>ARM A / R-ICE RITUXIMAB</td>
<td>MALE</td>
<td>41</td>
<td>HYPOTENSION</td>
<td>04/11/2004</td>
<td>LIFE THREATENING</td>
<td>-</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>5003601401602</td>
<td>ARM A / R-ICE RITUXIMAB</td>
<td>MALE</td>
<td>41</td>
<td>GASTRO INTESTINAL SYMPTOMS (DIARRHEA)</td>
<td>04/11/2004</td>
<td>SEVERE</td>
<td>-</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>5003601401605</td>
<td>ARM A / R-ICE RITUXIMAB</td>
<td>FEMALE</td>
<td>57</td>
<td>CONFUSION POSITIVE BABINSKI SIGN RIGHT SIDE</td>
<td>25/09/2006</td>
<td>SEVERE</td>
<td>NORMAL</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>5003601401605</td>
<td>ARM A / R-ICE RITUXIMAB</td>
<td>FEMALE</td>
<td>57</td>
<td>GASTRIC BLEEDING / ULCER</td>
<td>10/10/2006</td>
<td>SEVERE</td>
<td>SEVERE</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Actual arm of induction</td>
<td>Actual arm of maintenance</td>
<td>Sex</td>
<td>Age (years)</td>
<td>Adverse event description</td>
<td>Date of AE became serious</td>
<td>Non hematological toxicity grade</td>
<td>Hematological toxicity grade</td>
<td>Relation with study drugs</td>
<td>Action taken with study drug</td>
<td>AE outcome</td>
<td>Duration of AE serious (days)</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------</td>
<td>---------------------------</td>
<td>-----</td>
<td>-------------</td>
<td>---------------------------</td>
<td>--------------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>---------------------------</td>
<td>-----------------------------</td>
<td>------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>50036016010005</td>
<td>ARM A / R-ICE</td>
<td>OBSERVATION</td>
<td>FEMALE</td>
<td>53</td>
<td>GRADE 3 CELLULITIS + GRADE 3 NEUTROPENIC FEVER RESULTING IN HOSPITALIZATION FROM 15/02/2008-19/02/2008; ANEMIA DURING HOSPITALIZATION GRADE 4.</td>
<td>15/02/2008</td>
<td>SEVERE</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>39</td>
</tr>
<tr>
<td>500360160101401</td>
<td>ARM A / R-ICE</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>59</td>
<td>ADMISSION FOR FEBRILE NEUTROPENIA WITH POSITIVE BLOOD CULTURE. ISCHEMIC / INFECTIONS COLITIS</td>
<td>03/05/2004</td>
<td>LIFE THREATENING</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>Yes</td>
<td>RECOVERED</td>
<td>7</td>
</tr>
<tr>
<td>5003602201601</td>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>55</td>
<td>HERPES ZOSTER INFECTION WITH INVOLVEMENT OF FACE, LEFT TRIGEMINUS</td>
<td>09/05/2005</td>
<td>MODERATE</td>
<td>NORMAL</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>122</td>
</tr>
<tr>
<td>50036029010002</td>
<td>ARM A / R-ICE</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>64</td>
<td>CAVITATING PNEUMONIA</td>
<td>24/02/2005</td>
<td>SEVERE</td>
<td>MILD</td>
<td>Yes</td>
<td>Yes</td>
<td>RECOVERED</td>
<td>10</td>
</tr>
<tr>
<td>500360290101002</td>
<td>ARM A / R-ICE</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>64</td>
<td>FEBRILE NEUTROPENIA, PULMONARY INFECTION</td>
<td>05/02/2005</td>
<td>SEVERE</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>Yes</td>
<td>RECOVERED</td>
<td>8</td>
</tr>
<tr>
<td>5003602901201</td>
<td>ARM A / R-ICE</td>
<td>NOT APPLICABLE</td>
<td>FEMALE</td>
<td>31</td>
<td>PULMONARY EMBOLISM</td>
<td>07/03/2004</td>
<td>SEVERE</td>
<td>NORMAL</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>3</td>
</tr>
<tr>
<td>5003602901201</td>
<td>ARM A / R-ICE</td>
<td>NOT APPLICABLE</td>
<td>FEMALE</td>
<td>31</td>
<td>PNEUMONIA</td>
<td>07/04/2004</td>
<td>SEVERE</td>
<td>SEVERE</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>10</td>
</tr>
<tr>
<td>5003602901401</td>
<td>ARM A / R-ICE</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>60</td>
<td>CV A (CEREBRAL VASCULAR ACCIDENT). AFTER THE SECOND COURSE THE PATIENT WAS DIAGNOSED WITH TIA (DURING THE SEPSIS PERIOD). LATER WE FOUND RESIDUAL NEUROLOGIC SIGNS THUS WE CAN SAY IT WAS CVA</td>
<td>20/12/2004</td>
<td>LIFE THREATENING</td>
<td>UNKNOWN</td>
<td>No</td>
<td>No</td>
<td>RECOVERED WITH SEQUELAE</td>
<td>65</td>
</tr>
<tr>
<td>5003602901401</td>
<td>ARM A / R-ICE</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>60</td>
<td>E COLI BACTEREMIA, NEUTROPENIC FEVER</td>
<td>20/12/2004</td>
<td>LIFE THREATENING</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>6</td>
</tr>
<tr>
<td>5003602901601</td>
<td>ARM A / R-ICE</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>63</td>
<td>SUBDURAL HEMATOMA, ON 12/01/05 THE PATIENT WAS ADMITTED FOR FURTHER THERAPY. ON THE 17/01/05 HE COMPLAINED ABOUT HEADACHES AND THUS UNDERWENT HEAD CT SCAN.</td>
<td>17/01/2005</td>
<td>SEVERE</td>
<td>NORMAL</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>34</td>
</tr>
<tr>
<td>5003603301201</td>
<td>ARM A / R-ICE</td>
<td>NOT APPLICABLE</td>
<td>FEMALE</td>
<td>49</td>
<td>DEHYDRATION</td>
<td>17/04/2004</td>
<td>SEVERE</td>
<td>MILD</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>3</td>
</tr>
<tr>
<td>5003603301201</td>
<td>ARM A / R-ICE</td>
<td>NOT APPLICABLE</td>
<td>FEMALE</td>
<td>49</td>
<td>GRAM NEGATIVE SEPSIS</td>
<td>12/07/2004</td>
<td>LIFE THREATENING</td>
<td>MODERATE</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>2</td>
</tr>
<tr>
<td>50036037010004</td>
<td>ARM A / R-ICE</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>64</td>
<td>PULMONARY INFECTION / SEPTIC SHOCK</td>
<td>21/08/2005</td>
<td>DEATH</td>
<td>DEATH</td>
<td>Yes</td>
<td>No</td>
<td>FATAL</td>
<td>11</td>
</tr>
<tr>
<td>5003603801203</td>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>53</td>
<td>DEHYDRATATION</td>
<td>09/12/2004</td>
<td>SEVERE</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>11</td>
</tr>
<tr>
<td>5003603801203</td>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>53</td>
<td>FEBRILE NEUTROPENIA</td>
<td>09/12/2004</td>
<td>SEVERE</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>11</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Actual arm of induction</td>
<td>Actual arm of maintenance</td>
<td>Sex</td>
<td>Age (years)</td>
<td>Adverse event description</td>
<td>Date of AE become serious</td>
<td>Non hematological toxicity grade</td>
<td>Hematological toxicity grade</td>
<td>Relation with study drugs</td>
<td>Action taken with study drug</td>
<td>AE outcome</td>
<td>Duration of AE serious (days)</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------</td>
<td>---------------------------</td>
<td>-----</td>
<td>-------------</td>
<td>----------------------------</td>
<td>---------------------------</td>
<td>------------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>5003604301013</td>
<td>ARM A / R-ICE</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>41</td>
<td>HEADACHE DUE TO LUMBAR PUNCTURE</td>
<td>11/01/2008</td>
<td>SEVERE</td>
<td></td>
<td>No</td>
<td>No</td>
<td>RECOVERED 11</td>
<td></td>
</tr>
<tr>
<td>5003604301618</td>
<td>ARM A / R-ICE</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>55</td>
<td>PATIENT CAUGHT COLD DURING NADIR LEAD TO NEUTROPENIC SEPSIS REQUIRING HOSPITALISATION</td>
<td>07/03/2006</td>
<td>SEVERE</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED 5</td>
<td></td>
</tr>
<tr>
<td>5003604801014</td>
<td>ARM A / R-ICE</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>62</td>
<td>LEUCOENCEPHALOPATHY, CARDIAC ARRHYTHMIA</td>
<td>21/02/2007</td>
<td>LIFE THREATENING</td>
<td>MODERATE</td>
<td>Yes</td>
<td>Yes</td>
<td>RECOVERED 50</td>
<td></td>
</tr>
<tr>
<td>5003605301010</td>
<td>ARM A / R-ICE</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>55</td>
<td>ADMITTED TO HOSPITAL WITH RIGHT-SIDED CHEST WALL PAIN, SUBSEQUENTLY DEVELOPED A TYPICAL ZOSTER RASH IN TA DISTRIBUTION</td>
<td>02/09/2007</td>
<td>MODERATE</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED 5</td>
<td></td>
</tr>
<tr>
<td>5003605301010</td>
<td>ARM A / R-ICE</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>55</td>
<td>BOWEL OBSTRUCTION</td>
<td>24/09/2007</td>
<td>SEVERE</td>
<td>LIFE THREATENING</td>
<td>No</td>
<td>Yes</td>
<td>RECOVERED 5</td>
<td></td>
</tr>
<tr>
<td>5003605301601</td>
<td>ARM A / R-ICE</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>61</td>
<td>PRESUMED MYOCARDIAL EVENT</td>
<td>20/06/2004</td>
<td>LIFE THREATENING</td>
<td>MODERATE</td>
<td>No</td>
<td>Yes</td>
<td>FATAL 0</td>
<td></td>
</tr>
<tr>
<td>5003605701401</td>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>30</td>
<td>BACTERIAL PNEUMONIA</td>
<td>18/09/2007</td>
<td>MODERATE</td>
<td>NORMAL</td>
<td>Yes</td>
<td>Yes</td>
<td>RECOVERED 3</td>
<td></td>
</tr>
<tr>
<td>5003605701401</td>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>30</td>
<td>PERONAEUS PARESIS LEFT AND CRUSH KIDNEY (GRADE 3) DUE TO RHABDOMYOLYSIS AFTER HEROIN INJECTION AND UNRESPONSIVE SYNDROME (TRAUMA)</td>
<td>17/10/2007</td>
<td>SEVERE</td>
<td>NORMAL</td>
<td>No</td>
<td>Yes</td>
<td>RECOVERED WITH SEQUELAE 9</td>
<td></td>
</tr>
<tr>
<td>5003605701601</td>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>30</td>
<td>HOSPITALIZATION DUE TO PNEUMONIA</td>
<td>14/02/2007</td>
<td>SEVERE</td>
<td>MILD</td>
<td>No</td>
<td>No</td>
<td>RECOVERED 9</td>
<td></td>
</tr>
<tr>
<td>5003605901003</td>
<td>ARM A / R-ICE</td>
<td>NOT APPLICABLE</td>
<td>FEMALE</td>
<td>48</td>
<td>INFECTION WITH NORMAL ANC</td>
<td>17/06/2005</td>
<td>SEVERE</td>
<td>NORMAL</td>
<td>No</td>
<td>No</td>
<td>RECOVERED 150</td>
<td></td>
</tr>
<tr>
<td>5003605901003</td>
<td>ARM A / R-ICE</td>
<td>NOT APPLICABLE</td>
<td>FEMALE</td>
<td>48</td>
<td>SECOND CANCER HODGKIN LYMPHOMA, MIXED CELLULARITY</td>
<td>03/10/2007</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td>No</td>
<td>RECOVERED 70</td>
<td></td>
</tr>
<tr>
<td>5003606201605</td>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>42</td>
<td>MECHANICAL ILEUS, SIGMAPERFORATION WITH RETROPERITONEAL ABDOMS</td>
<td>16/06/2004</td>
<td>LIFE THREATENING</td>
<td>NORMAL</td>
<td>No</td>
<td>Yes</td>
<td>RECOVERED 27</td>
<td></td>
</tr>
<tr>
<td>5003606201617</td>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>54</td>
<td>INFECTION, FEVER</td>
<td>12/01/2006</td>
<td>SEVERE</td>
<td>-</td>
<td>No</td>
<td>Yes</td>
<td>RECOVERED 13</td>
<td></td>
</tr>
<tr>
<td>5003606301207</td>
<td>ARM A / R-ICE</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>37</td>
<td>RIGHT UPPER MOLAR DENTAL ABSCES</td>
<td>01/12/2004</td>
<td>SEVERE</td>
<td>LIFE THREATENING</td>
<td>No</td>
<td>No</td>
<td>RECOVERED 2</td>
<td></td>
</tr>
<tr>
<td>5003606301207</td>
<td>ARM A / R-ICE</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>37</td>
<td>DENTAL CARIES, REQUIRING FULL UPPER DENTAL CLEARANCE, AND PARTIAL LOWER DENTAL CLEARANCE / DENTAL PREVIOUSLY REPORTED HISTORY OF DENTAL DECAY OVER MANY YEARS</td>
<td>20/02/2005</td>
<td>MODERATE</td>
<td>NORMAL</td>
<td>No</td>
<td>No</td>
<td>RECOVERED 68</td>
<td></td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Actual arm of induction</td>
<td>Actual arm of maintenance</td>
<td>Sex</td>
<td>Age (years)</td>
<td>Adverse event description</td>
<td>Date of AE become serious</td>
<td>Non hematological toxicity grade</td>
<td>Hematological toxicity grade</td>
<td>Relation with study drugs</td>
<td>Action taken with study drug</td>
<td>AE outcome</td>
<td>Duration of AE serious (days)</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>---------------------------</td>
<td>-----</td>
<td>-------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>--------------------------------</td>
<td>----------------------------</td>
<td>---------------------------</td>
<td>-----------------------------</td>
<td>------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>5003606301207</td>
<td>ARM A / R-ICE</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>37</td>
<td>HIGH GRADE UROTHELIAL CARCINOMA</td>
<td>20/03/2008</td>
<td>LIFE THREATENING</td>
<td></td>
<td>Yes</td>
<td>No</td>
<td>FATAL</td>
<td>568</td>
</tr>
<tr>
<td>5003606301612</td>
<td>ARM A / R-ICE</td>
<td>NOT APPLICABLE</td>
<td>FEMALE</td>
<td>58</td>
<td>FEBRILE NEUTROPENIA</td>
<td>18/04/2005</td>
<td>MILD</td>
<td>LIFE THREATENING</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>2</td>
</tr>
<tr>
<td>5003607201045</td>
<td>ARM A / R-ICE</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>48</td>
<td>SEPTIC MULTIPLE ORGAN FAILURE IN A CONTEXT OF PANCYTOPENIA</td>
<td>12/08/2007</td>
<td>DEATH</td>
<td>DEATH</td>
<td>Yes</td>
<td>No</td>
<td>FATAL</td>
<td>6</td>
</tr>
<tr>
<td>5003607701405</td>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>49</td>
<td>FATIGUE, ASTHENIA</td>
<td>06/05/2008</td>
<td>SEVERE</td>
<td>MODERATE</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>3</td>
</tr>
<tr>
<td>5003608701013</td>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>54</td>
<td>GASTROINTESTINAL BLEEDING (NEUTROPENIC COLITIS)</td>
<td>03/09/2007</td>
<td>SEVERE</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>4</td>
</tr>
<tr>
<td>5003609301608</td>
<td>ARM A / R-ICE</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>43</td>
<td>CELLULITIS - LEFT LEG</td>
<td>19/11/2004</td>
<td>SEVERE</td>
<td>MILD</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>4</td>
</tr>
<tr>
<td>5003609301608</td>
<td>ARM A / R-ICE</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>43</td>
<td>FEVER OF UNKNOWN ORIGIN, NOT NEUTROPENIC</td>
<td>26/12/2004</td>
<td>SEVERE</td>
<td>MILD</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>24</td>
</tr>
<tr>
<td>5003610201612</td>
<td>ARM A / R-ICE</td>
<td>NOT APPLICABLE</td>
<td>FEMALE</td>
<td>56</td>
<td>IMPLANTATION OF TRACHEOBRONCHIAL STENT BECAUSE OF DYSPEA, CANCER RELATED BECAUSE OF MEDIASTINAL INVOLVEMENT</td>
<td>12/05/2005</td>
<td>SEVERE</td>
<td>MODERATE</td>
<td>No</td>
<td>No</td>
<td>ONGOING</td>
<td>-</td>
</tr>
<tr>
<td>5003610201612</td>
<td>ARM A / R-ICE</td>
<td>NOT APPLICABLE</td>
<td>FEMALE</td>
<td>56</td>
<td>FEVER WITH PULMONARY INFLTRATION, BRONCHOSCOPY PERFORMED: ASPERGILLOSIS</td>
<td>13/07/2005</td>
<td>LIFE THREATENING</td>
<td>LIFE THREATENING</td>
<td>No</td>
<td>No</td>
<td>FATAL</td>
<td>10</td>
</tr>
<tr>
<td>5003610501031</td>
<td>ARM A / R-ICE</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>54</td>
<td>IFOSFAMIDE ENCEPHALOPATHY</td>
<td>04/05/2008</td>
<td>SEVERE</td>
<td></td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>2</td>
</tr>
<tr>
<td>5003610501031</td>
<td>ARM A / R-ICE</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>54</td>
<td>LINE INFECTION</td>
<td>02/05/2008</td>
<td>LIFE THREATENING</td>
<td>SEVERE</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>79</td>
</tr>
<tr>
<td>5003610501031</td>
<td>ARM A / R-ICE</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>54</td>
<td>VENO OCCLUSIVE DISEASE</td>
<td>27/06/2008</td>
<td>MODERATE</td>
<td></td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED WITH SEQUELAE</td>
<td>23</td>
</tr>
<tr>
<td>5003612501011</td>
<td>ARM A / R-ICE</td>
<td>OBSERVATION</td>
<td>FEMALE</td>
<td>41</td>
<td>PANCYTOPENIA</td>
<td>03/04/2007</td>
<td>-</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>2</td>
</tr>
<tr>
<td>5003612501011</td>
<td>ARM A / R-ICE</td>
<td>OBSERVATION</td>
<td>FEMALE</td>
<td>41</td>
<td>PANCYTOPENIA - NEUTROPENIC SEPSIS (GRADE 4)</td>
<td>20/04/2007</td>
<td>-</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>7</td>
</tr>
<tr>
<td>5003612501012</td>
<td>ARM A / R-ICE</td>
<td>NOT APPLICABLE</td>
<td>FEMALE</td>
<td>55</td>
<td>PULMONARY EMBOLISM</td>
<td>24/04/2007</td>
<td>SEVERE</td>
<td>MILD</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>13</td>
</tr>
<tr>
<td>5003612501012</td>
<td>ARM A / R-ICE</td>
<td>NOT APPLICABLE</td>
<td>FEMALE</td>
<td>55</td>
<td>DIARRHOEA AND DEHYDRATION</td>
<td>30/04/2007</td>
<td>MODERATE</td>
<td></td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>11</td>
</tr>
<tr>
<td>5003612501012</td>
<td>ARM A / R-ICE</td>
<td>NOT APPLICABLE</td>
<td>FEMALE</td>
<td>55</td>
<td>FEBRILE NEUTROPENIA / DIARRHEA GRADE 2 / NAUSEA AND VOMITING GRADE 2</td>
<td>17/05/2007</td>
<td>MODERATE</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>Yes</td>
<td>RECOVERED</td>
<td>18</td>
</tr>
<tr>
<td>5003614501002</td>
<td>ARM A / R-ICE</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>27</td>
<td>NEUTROPENIC SEPSIS</td>
<td>25/09/2006</td>
<td>MILD</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>5</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Actual arm of induction</td>
<td>Actual arm of maintenance</td>
<td>Sex</td>
<td>Age (years)</td>
<td>Adverse event description</td>
<td>Date of AE become serious</td>
<td>Non hematological toxicity grade</td>
<td>Hematological toxicity grade</td>
<td>Relation with study drugs</td>
<td>Action taken with study drug</td>
<td>AE outcome</td>
<td>Duration of AE serious (days)</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>--------------------------</td>
<td>-----</td>
<td>-------------</td>
<td>---------------------------</td>
<td>--------------------------</td>
<td>-----------------------------</td>
<td>---------------------------</td>
<td>--------------------------</td>
<td>-----------------------------</td>
<td>------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>5003615501018</td>
<td>ARM A / R-ICE</td>
<td>NOT APPLICABLE</td>
<td>FEMALE</td>
<td>49</td>
<td>HIGH TEMPERATURE, AND DROP IN BLOOD PRESSURE</td>
<td>10/09/2007</td>
<td>SEVERE</td>
<td>-</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>22</td>
</tr>
<tr>
<td>5003615501201</td>
<td>ARM A / R-ICE</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>56</td>
<td>RENAL LITHIASIS</td>
<td>17/11/2006</td>
<td>SEVERE</td>
<td>MILD</td>
<td>No</td>
<td>No</td>
<td>RECOVERED WITH SEQUELAE</td>
<td>1</td>
</tr>
<tr>
<td>5003616301403</td>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>36</td>
<td>PULMONARY EMBOLISM</td>
<td>07/04/2006</td>
<td>LIFE THREATENING</td>
<td>UNKNOWN</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>0</td>
</tr>
<tr>
<td>5003616301615</td>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>63</td>
<td>CHRONIC COUGH, DRY NON PRODUCTIVE ASSOCIATED WITH FEBRILE ILLNESS FOR 2 WEEKS DIAGNOSED WITH PNEUMONIA 14/8/2006</td>
<td>15/08/2006</td>
<td>DEATH</td>
<td>MILD</td>
<td>Yes</td>
<td>No</td>
<td>FATAL</td>
<td>17</td>
</tr>
<tr>
<td>5003616501005</td>
<td>ARM A / R-ICE</td>
<td>NOT APPLICABLE</td>
<td>FEMALE</td>
<td>59</td>
<td>SEPSIS</td>
<td>16/02/2007</td>
<td>DEATH</td>
<td>DEATH</td>
<td>No</td>
<td>No</td>
<td>FATAL</td>
<td>5</td>
</tr>
<tr>
<td>5003620301011</td>
<td>ARM A / R-ICE</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>41</td>
<td>FEVER</td>
<td>15/10/2007</td>
<td>MILD</td>
<td>MILD</td>
<td>No</td>
<td>Yes</td>
<td>RECOVERED</td>
<td>3</td>
</tr>
<tr>
<td>5003620301017</td>
<td>ARM A / R-ICE</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>59</td>
<td>INFECTED PICC LINE</td>
<td>24/03/2008</td>
<td>SEVERE</td>
<td>-</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>5</td>
</tr>
<tr>
<td>5003620501406</td>
<td>ARM A / R-ICE</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>44</td>
<td>GRADE 4 NEUTROPENIA, PROBABLY RITUXIMAB INDUCED, NO SEQUELAE, MORE INFORMATION TO FOLLOW, NEUT 0.13</td>
<td>13/03/2008</td>
<td>-</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>13</td>
</tr>
<tr>
<td>5003620501406</td>
<td>ARM A / R-ICE</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>44</td>
<td>DIARRHOEA AND VOMITING</td>
<td>12/12/2007</td>
<td>SEVERE</td>
<td>MILD</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>5</td>
</tr>
<tr>
<td>5003621301014</td>
<td>ARM A / R-ICE</td>
<td>NOT APPLICABLE</td>
<td>FEMALE</td>
<td>58</td>
<td>RENAL FAILURE ACUTE</td>
<td>01/11/2007</td>
<td>SEVERE</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
<td>RECOVERED</td>
<td>5</td>
</tr>
<tr>
<td>5003621301014</td>
<td>ARM A / R-ICE</td>
<td>NOT APPLICABLE</td>
<td>FEMALE</td>
<td>58</td>
<td>THROMBOCYTOPENIA</td>
<td>01/11/2007</td>
<td>-</td>
<td>SEVERE</td>
<td>Yes</td>
<td>Yes</td>
<td>RECOVERED</td>
<td>-</td>
</tr>
<tr>
<td>500362201210</td>
<td>ARM A / R-ICE</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>54</td>
<td>RETROSTERNAL PRESSURE CONTINUING RIGHT ARM</td>
<td>08/03/2006</td>
<td>SEVERE</td>
<td>NORMAL</td>
<td>Yes</td>
<td>Yes</td>
<td>RECOVERED</td>
<td>6</td>
</tr>
<tr>
<td>5003622501604</td>
<td>ARM A / R-ICE</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>47</td>
<td>CHEST INFECTION</td>
<td>10/01/2008</td>
<td>SEVERE</td>
<td>LIFE THREATENING</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>4</td>
</tr>
<tr>
<td>5003624501017</td>
<td>ARM A / R-ICE</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>52</td>
<td>ABDOMINAL PAIN, HICKMAN LINE INFECTION, NEUTROPENIC</td>
<td>19/08/2007</td>
<td>SEVERE</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>Yes</td>
<td>RECOVERED</td>
<td>5</td>
</tr>
<tr>
<td>5003630201055</td>
<td>ARM A / R-ICE</td>
<td>NOT APPLICABLE</td>
<td>FEMALE</td>
<td>62</td>
<td>ANEMIA + THROMBOPIENIA</td>
<td>17/04/2008</td>
<td>-</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>26</td>
</tr>
<tr>
<td>5003630201055</td>
<td>ARM A / R-ICE</td>
<td>NOT APPLICABLE</td>
<td>FEMALE</td>
<td>62</td>
<td>GASTROINTESTINAL TOXICITY WITH VOMITING MUCOSITIS / (CANDIDA) PARENTERAL NUTITION</td>
<td>27/04/2008</td>
<td>LIFE THREATENING</td>
<td>-</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>13</td>
</tr>
<tr>
<td>5003630201055</td>
<td>ARM A / R-ICE</td>
<td>NOT APPLICABLE</td>
<td>FEMALE</td>
<td>62</td>
<td>INFECTION WITH FEBRIL NEUTROPENIA BECAUSE OF RECURRENT CYSTITIES + PNEUMONIA</td>
<td>27/04/2008</td>
<td>SEVERE</td>
<td>-</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>13</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Actual arm of induction</td>
<td>Actual arm of maintenance</td>
<td>Sex</td>
<td>Age (years)</td>
<td>Adverse event description</td>
<td>Date of AE become serious</td>
<td>Non hematological toxicity grade</td>
<td>Hematological toxicity grade</td>
<td>Relation with study drugs</td>
<td>Action taken with study drug</td>
<td>AE outcome</td>
<td>Duration of AE serious (days)</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------</td>
<td>---------------------------</td>
<td>------</td>
<td>-------------</td>
<td>---</td>
<td>--------------------------</td>
<td>--------------------------------</td>
<td>----------------------------</td>
<td>--------------------------</td>
<td>-------------------------------</td>
<td>-----------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>5003630201055</td>
<td>ARM A / R-ICE NOT APPLICABLE</td>
<td>FEMALE</td>
<td>62</td>
<td>ANEMIA + THROMBOPENIA</td>
<td>12/06/2008</td>
<td>-</td>
<td>SEVERE</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>5003630201055</td>
<td>ARM A / R-ICE NOT APPLICABLE</td>
<td>FEMALE</td>
<td>62</td>
<td>(HEPATIC TOXICITY) WITH ACUTE CHOLECYSTITIS</td>
<td>16/06/2008</td>
<td>SEVERE</td>
<td>-</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>5003630201055</td>
<td>ARM A / R-ICE NOT APPLICABLE</td>
<td>FEMALE</td>
<td>62</td>
<td>INFECTION WITH FEBRILE NEUTROPIA + URO SEPSIS</td>
<td>08/06/2008</td>
<td>LIFE THREATENING</td>
<td>-</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>5003101021601</td>
<td>ARM B / R-DHAP RITUXIMAB</td>
<td>FEMALE</td>
<td>48</td>
<td>HOSPITALISATION FOR BACK PAIN PROBABLY DUE TO G-CSF</td>
<td>10/01/2003</td>
<td>SEVERE</td>
<td>SEVERE</td>
<td>Yes</td>
<td>Yes</td>
<td>RECOVERED</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>5003101021601</td>
<td>ARM B / R-DHAP RITUXIMAB</td>
<td>FEMALE</td>
<td>48</td>
<td>BRONCHI SUPER INFECTION DOCUMENTED : PYOCYANIC</td>
<td>06/10/2003</td>
<td>SEVERE</td>
<td>LIFE THREATENING</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5003101031019</td>
<td>ARM B / R-DHAP NOT APPLICABLE</td>
<td>FEMALE</td>
<td>58</td>
<td>RENAL FAILURE WITH URINARY RETENTION</td>
<td>01/01/2005</td>
<td>LIFE THREATENING</td>
<td>MODERATE</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5003101031067</td>
<td>ARM B / R-DHAP NOT APPLICABLE</td>
<td>FEMALE</td>
<td>21</td>
<td>HYPOTENSION (VAGAL SYNCOPE) DURING NEUTROPIA GR 4</td>
<td>29/05/2007</td>
<td>SEVERE</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5003101071002</td>
<td>ARM B / R-DHAP NOT APPLICABLE</td>
<td>MALE</td>
<td>64</td>
<td>PANCYTOPENIA (SEPTIC SHOCK WITHOUT ORIGIN) SEPTICAEMIA AT PYOCYTANIC BACILLUS</td>
<td>31/10/2003</td>
<td>DEATH</td>
<td>DEATH</td>
<td>Yes</td>
<td>No</td>
<td>FATAL</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>5003101071417</td>
<td>ARM B / R-DHAP RITUXIMAB</td>
<td>FEMALE</td>
<td>56</td>
<td>GASTRO INTESTINAL BLEEDING WITH HEMATOLOGIC COLLAPSSUS</td>
<td>30/03/2007</td>
<td>SEVERE</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>5003101071607</td>
<td>ARM B / R-DHAP NOT APPLICABLE</td>
<td>MALE</td>
<td>59</td>
<td>ACUTE RENAL FAILURE</td>
<td>16/01/2004</td>
<td>LIFE THREATENING</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>Yes</td>
<td>RECOVERED WITH SEQUELAE</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>5003101071643</td>
<td>ARM B / R-DHAP OBSERVATION</td>
<td>FEMALE</td>
<td>58</td>
<td>CUTANEOUS REACTION : SUSCLAVICULAR LEFT</td>
<td>06/12/2007</td>
<td>MODERATE</td>
<td>MILD</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5003101071643</td>
<td>ARM B / R-DHAP OBSERVATION</td>
<td>FEMALE</td>
<td>58</td>
<td>RENAL FAILURE</td>
<td>02/03/2008</td>
<td>SEVERE</td>
<td>LIFE THREATENING</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>5003101071643</td>
<td>ARM B / R-DHAP OBSERVATION</td>
<td>FEMALE</td>
<td>58</td>
<td>HYPONATREMIA</td>
<td>22/02/2008</td>
<td>LIFE THREATENING</td>
<td>-</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5003101071643</td>
<td>ARM B / R-DHAP OBSERVATION</td>
<td>FEMALE</td>
<td>58</td>
<td>PULMONARY EMBOLISM</td>
<td>08/03/2008</td>
<td>SEVERE</td>
<td>LIFE THREATENING</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>5003101071643</td>
<td>ARM B / R-DHAP OBSERVATION</td>
<td>FEMALE</td>
<td>58</td>
<td>MUCOSITIS</td>
<td>29/02/2008</td>
<td>SEVERE</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>5003101071643</td>
<td>ARM B / R-DHAP OBSERVATION</td>
<td>FEMALE</td>
<td>58</td>
<td>SEPTICEMIA STAPHYLOCOCCUS EPIDERMIDIS PNEUMOPATHY</td>
<td>07/05/2008</td>
<td>LIFE THREATENING</td>
<td>SEVERE</td>
<td>Yes</td>
<td>No</td>
<td>FATAL</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>5003101091025</td>
<td>ARM B / R-DHAP NOT APPLICABLE</td>
<td>FEMALE</td>
<td>61</td>
<td>SEMR SEPTICEMIA (ENTEROBACTER CLOACEAE)</td>
<td>04/07/2005</td>
<td>SEVERE</td>
<td>MILD</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Actual arm of induction</td>
<td>Actual arm of maintenance</td>
<td>Sex</td>
<td>Age (years)</td>
<td>Adverse event description</td>
<td>Date of AE become serious</td>
<td>Date of AE</td>
<td>Non hematological toxicity grade</td>
<td>Hematological toxicity grade</td>
<td>Relation with study drugs</td>
<td>Action taken with study drug</td>
<td>AE outcome</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------</td>
<td>---------------------------</td>
<td>-----</td>
<td>-------------</td>
<td>---------------------------</td>
<td>--------------------------</td>
<td>------------</td>
<td>---------------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>----------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>5003101141402</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>63</td>
<td>PULMONARY HYPERTENSION, NON OBSTRUCTIVE CARDIOMYOPATHY WITH GLOBAL HEART FAILURE, LIGHT PERICARDIC EFFUSION ↔ CARDIAC INSUFFICIENCY WITH ARRHYTHMIA</td>
<td>21/06/2005</td>
<td>21/06/2005</td>
<td>SEVERE</td>
<td>UNKNOWN</td>
<td>Yes</td>
<td>Yes</td>
<td>RECOVERED</td>
</tr>
<tr>
<td>5003101141624</td>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>FEMALE</td>
<td>64</td>
<td>CLOSTRIDIUM DIFFICILE INFECTION WITH THROMBOPENIA</td>
<td>13/12/2005</td>
<td>13/12/2005</td>
<td>SEVERE</td>
<td>LIFE THREATENING</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
</tr>
<tr>
<td>5003101141624</td>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>FEMALE</td>
<td>64</td>
<td>DISCONFORT WITH TREMOR THAN FAINTING AND FINALLY REGAIN CONSCIOUSNESS WITHOUT DEFICIENCY. REACTION TO METRONIDAZOL (CONFUSION) ↔ CLOSTRIDIUM DIFFICILE INFECTION</td>
<td>29/01/2006</td>
<td>29/01/2006</td>
<td>SEVERE</td>
<td>SEVERE</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
</tr>
<tr>
<td>5003101161028</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>59</td>
<td>CARDIAC FAILURE</td>
<td>22/08/2005</td>
<td>22/08/2005</td>
<td>LIFE THREATENING</td>
<td>MODERATE</td>
<td>Yes</td>
<td>Yes</td>
<td>RECOVERED WITH SEQUELAE</td>
</tr>
<tr>
<td>5003101391048</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>61</td>
<td>PULMONARY EMBOLISM</td>
<td>08/07/2006</td>
<td>08/07/2006</td>
<td>MODERATE</td>
<td>SEVERE</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
</tr>
<tr>
<td>5003101391048</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>61</td>
<td>STROKE CEREBRAL VASCULAR ISCHEMIA</td>
<td>12/08/2006</td>
<td>12/08/2006</td>
<td>SEVERE</td>
<td>SEVERE</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
</tr>
<tr>
<td>5003101431204</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>56</td>
<td>SUDDEN APPEARANCE OF APHASIA WITH LIGHT RIGHT FACIAL PARESIS AND LIGHT MOTOR DEFICIENCY OF THE RIGHT UPPER LIMB SUSPICION OF STROKE</td>
<td>29/12/2003</td>
<td>29/12/2003</td>
<td>LIFE THREATENING</td>
<td>MILD</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED WITH SEQUELAE</td>
</tr>
<tr>
<td>5003101431204</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>56</td>
<td>RE-APPEARANCE OF APHASIA</td>
<td>13/02/2004</td>
<td>13/02/2004</td>
<td>SEVERE</td>
<td>MODERATE</td>
<td>Yes</td>
<td>Yes</td>
<td>RECOVERED WITH SEQUELAE</td>
</tr>
<tr>
<td>5003101431608</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>64</td>
<td>PULMONARY INFECTION WITH HAEMOPHILUS INFLUENZAE</td>
<td>16/03/2005</td>
<td>16/03/2005</td>
<td>SEVERE</td>
<td>UNKNOWN</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
</tr>
<tr>
<td>5003101431608</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>64</td>
<td>SECONDARY MALIGNANCY : HEPATIC ADENOCARCINOMA</td>
<td>24/04/2007</td>
<td>24/04/2007</td>
<td>LIFE THREATENING</td>
<td>NORMAL</td>
<td>No</td>
<td>No</td>
<td>FATAL</td>
</tr>
<tr>
<td>5003101431627</td>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>65</td>
<td>ACUTE RENAL INSUFFICIENCY GRADE 1 AND GENERAL STATUS DECREASED GRADE 2</td>
<td>10/10/2005</td>
<td>10/10/2005</td>
<td>MODERATE</td>
<td>SEVERE</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
</tr>
<tr>
<td>5003101541415</td>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>53</td>
<td>STREPTOCOCCUS PNEUMONIAE</td>
<td>14/07/2007</td>
<td>14/07/2007</td>
<td>SEVERE</td>
<td>-</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
</tr>
<tr>
<td>5003101601610</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>49</td>
<td>SEVERE SEIZURE EPILEPTIC CRISIS AFTER 1ST PBSCT UNIT AND BEFORE THE SECOND PROGRAMMED ONE - REACTION DMSO +</td>
<td>24/05/2004</td>
<td>24/05/2004</td>
<td>LIFE THREATENING</td>
<td>LIFE THREATENING</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
</tr>
<tr>
<td>5003101641047</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>45</td>
<td>TINNITUS</td>
<td>04/05/2006</td>
<td>04/05/2006</td>
<td>SEVERE</td>
<td>SEVERE</td>
<td>Yes</td>
<td>Yes</td>
<td>RECOVERED</td>
</tr>
<tr>
<td>5003101641623</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>62</td>
<td>PERSISTANT COUGH ↔ PULMONARY INFILTRATE ON CT SCAN</td>
<td>28/02/2006</td>
<td>28/02/2006</td>
<td>MODERATE</td>
<td>NORMAL</td>
<td>No</td>
<td>Yes</td>
<td>ONGOING</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Actual arm of induction</td>
<td>Actual arm of maintenance</td>
<td>Sex</td>
<td>Age (years)</td>
<td>Adverse event description</td>
<td>Date of AE become serious</td>
<td>Non hematological toxicity grade</td>
<td>Hematological toxicity grade</td>
<td>Relation with study drugs</td>
<td>Action taken with study drug</td>
<td>AE outcome</td>
<td>Duration of AE serious (days)</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------</td>
<td>---------------------------</td>
<td>-----------</td>
<td>-------------</td>
<td>--</td>
<td>---------------------------</td>
<td>---------------------------------</td>
<td>-------------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>5003101641623</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>62</td>
<td>VOMITING</td>
<td>24/05/2005</td>
<td>SEVERE</td>
<td>MODERATE</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>21</td>
</tr>
<tr>
<td>5003102161604</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>55</td>
<td>NOSE MELANOMA</td>
<td>15/03/2009</td>
<td>SEVERE</td>
<td>-</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>184</td>
</tr>
<tr>
<td>5003102181031</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPlicable</td>
<td>MALE</td>
<td>63</td>
<td>VOMITING</td>
<td>27/06/2005</td>
<td>LIFE THREATENING</td>
<td>NORMAL</td>
<td>Yes</td>
<td>Yes</td>
<td>RECOVERED</td>
<td>30</td>
</tr>
<tr>
<td>5003102181031</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>63</td>
<td>INFECTION WITHOUT NEUTROPENIA (POSITIVE HEMOCULTURE)TO PYOCIANIC BACILLUS)</td>
<td>04/08/2005</td>
<td>SEVERE</td>
<td>MODERATE</td>
<td>Yes</td>
<td>Yes</td>
<td>RECOVERED</td>
<td>9</td>
</tr>
<tr>
<td>5003102411054</td>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>64</td>
<td>ATRIAL FIBRILLATION</td>
<td>26/10/2006</td>
<td>SEVERE</td>
<td>LIFE THREATENING</td>
<td>No</td>
<td>Yes</td>
<td>RECOVERED</td>
<td>0</td>
</tr>
<tr>
<td>5003102411054</td>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>64</td>
<td>HYPERGLYCEMIA DUE TO DEXAMETHASONE</td>
<td>06/11/2006</td>
<td>SEVERE</td>
<td>NORMAL</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>4</td>
</tr>
<tr>
<td>5003102411054</td>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>64</td>
<td>SEPSIS - VAC INFECTION : STAPHYLOCOCCUS</td>
<td>14/01/2007</td>
<td>LIFE THREATENING</td>
<td>LIFE THREATENING</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>19</td>
</tr>
<tr>
<td>500310241069</td>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>63</td>
<td>MALIGNANT CHICKEN POX INFECTION</td>
<td>23/11/2007</td>
<td>SEVERE</td>
<td>SEVERE</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>14</td>
</tr>
<tr>
<td>5003102541034</td>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>26</td>
<td>LEFT PNEUMONIA</td>
<td>04/10/2005</td>
<td>MODERATE</td>
<td>UNKNOWN</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>10</td>
</tr>
<tr>
<td>5003103161041</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>49</td>
<td>TROMBOSIS WITH INFERIOR EDEMA</td>
<td>27/03/2006</td>
<td>SEVERE</td>
<td>LIFE THREATENING</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>3</td>
</tr>
<tr>
<td>5003103161206</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>34</td>
<td>COLLAPSE WITH POSSIBLE SEPTIC ORIGIN</td>
<td>06/03/2006</td>
<td>LIFE THREATENING</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>1</td>
</tr>
<tr>
<td>5003601201201</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>FEMALE</td>
<td>32</td>
<td>REDUCED CONDITION, INFECTION WITH FOCUS, REQUIRING IV ANTIBIOTICS, PNEUMONIA</td>
<td>01/05/2004</td>
<td>SEVERE</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>3</td>
</tr>
<tr>
<td>5003601201201</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>FEMALE</td>
<td>32</td>
<td>REDUCED CONDITION, INFECTION WITH FOCUS, URINARY TRACT INFECTION, REQUIRING IV ANTIBIOTICS</td>
<td>17/05/2004</td>
<td>SEVERE</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>5</td>
</tr>
<tr>
<td>5003601301015</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>FEMALE</td>
<td>57</td>
<td>ADMISSION FOR FEBRILE NEUTROPENIA AND MUCOSITIS</td>
<td>18/02/2008</td>
<td>SEVERE</td>
<td>SEVERE</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>11</td>
</tr>
<tr>
<td>5003601301015</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>FEMALE</td>
<td>57</td>
<td>SEVERE ONGOING NAUSEA, HYPOKALEMIA AND HYPOMAGNESAEAMIA, ANXIETY, DEPRESSION</td>
<td>12/03/2008</td>
<td>SEVERE</td>
<td>SEVERE</td>
<td>No</td>
<td>No</td>
<td>RECOVERED WITH SEQUELAE</td>
<td>1</td>
</tr>
<tr>
<td>5003601401001</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>FEMALE</td>
<td>48</td>
<td>ABDOMINAL PAIN AT TUMOUR SITE</td>
<td>19/11/2003</td>
<td>SEVERE</td>
<td>SEVERE</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>11</td>
</tr>
<tr>
<td>5003601401004</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>62</td>
<td>FEVER AND MENTAL DISTURBANCES, VARICELLA LESIONS IN THE SKIN, VARICELLA ZOSTER VIRUS SEA IN BLISTERS</td>
<td>26/06/2007</td>
<td>DEATH</td>
<td>NORMAL</td>
<td>Yes</td>
<td>Yes</td>
<td>FATAL</td>
<td>61</td>
</tr>
<tr>
<td>5003601401601</td>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>58</td>
<td>FEVER</td>
<td>13/01/2004</td>
<td>MILD</td>
<td>MODERATE</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>2</td>
</tr>
<tr>
<td>5003601401604</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>62</td>
<td>PNEUMOCYSTIS IROVECII</td>
<td>17/07/2006</td>
<td>SEVERE</td>
<td>SEVERE</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>19</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Actual arm of induction</td>
<td>Actual arm of maintenance</td>
<td>Sex</td>
<td>Age (years)</td>
<td>Adverse event description</td>
<td>Date of AE become serious</td>
<td>Non hematological toxicity grade</td>
<td>Hematological toxicity grade</td>
<td>Relation with study drugs</td>
<td>Action taken with study drug</td>
<td>AE outcome</td>
<td>Duration of AE serious (days)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------------</td>
<td>---------------------------</td>
<td>-------</td>
<td>-------------</td>
<td>--</td>
<td>---------------------------</td>
<td>---------------------------------</td>
<td>-----------------------------</td>
<td>---------------------------</td>
<td>-----------------------------</td>
<td>------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>5003601601402</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>FEMALE</td>
<td>65</td>
<td>DEHYDRATION AND ELECTROLYTE IMBALANCE</td>
<td>08/11/2004</td>
<td>SEVERE</td>
<td>NORMAL</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>8</td>
</tr>
<tr>
<td>5003601601402</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>FEMALE</td>
<td>65</td>
<td>NAUSEA AND DIARRHEA DURING CHEMOTHERAPY TREATMENT</td>
<td>26/11/2004</td>
<td>SEVERE</td>
<td>SEVERE</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>4</td>
</tr>
<tr>
<td>5003601601402</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>FEMALE</td>
<td>65</td>
<td>RESPIRATORY FAILURE AND DEATH</td>
<td>04/01/2005</td>
<td>DEATH</td>
<td>DEATH</td>
<td>No</td>
<td>No</td>
<td>FATAL</td>
<td>9</td>
</tr>
<tr>
<td>5003601601601</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>53</td>
<td>CATHETER RELATED INFECTION</td>
<td>02/11/2004</td>
<td>SEVERE</td>
<td>MODERATE</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>4</td>
</tr>
<tr>
<td>5003601601602</td>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>45</td>
<td>ACUTE PERFORATED BOWEL</td>
<td>11/12/2007</td>
<td>LIFE THREATENING</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
<td>RECOVERED</td>
<td>7</td>
</tr>
<tr>
<td>5003601601602</td>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>45</td>
<td>HYPERGLYCEMIA</td>
<td>20/01/2008</td>
<td>LIFE THREATENING</td>
<td>-</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED WITH SEQUELAE</td>
<td>2</td>
</tr>
<tr>
<td>5003601801603</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>41</td>
<td>GASTROINTESTINAL BLEEDING</td>
<td>26/12/2004</td>
<td>SEVERE</td>
<td>SEVERE</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>3</td>
</tr>
<tr>
<td>5003601801603</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>41</td>
<td>HEMORRHAGE - GASTRO-INTESTINAL, COLON</td>
<td>15/02/2005</td>
<td>SEVERE</td>
<td>SEVERE</td>
<td>Yes</td>
<td>Yes</td>
<td>RECOVERED</td>
<td>2</td>
</tr>
<tr>
<td>5003601801607</td>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>FEMALE</td>
<td>40</td>
<td>HEMORRHAGIC COLITIS AND ILEUS PARALYTICUS</td>
<td>14/03/2008</td>
<td>LIFE THREATENING</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>45</td>
</tr>
<tr>
<td>5003601801607</td>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>FEMALE</td>
<td>40</td>
<td>PERIPHERAL PARESIS OF NERVUS VII LEFT (PROBABLE ASSOCIATED WITH PREVIOUS HERPES ZOSTER)</td>
<td>14/05/2008</td>
<td>SEVERE</td>
<td>MILD</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>30</td>
</tr>
<tr>
<td>5003602801204</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>61</td>
<td>HOSPITALIZATION DUE TO SEVERE HEMATOLOGIC TOXICITY</td>
<td>12/01/2005</td>
<td>UNKNOWN</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>5</td>
</tr>
<tr>
<td>5003602801204</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>61</td>
<td>HOSPITALIZATION DUE TO SEVERE DEHYDRATION, COLLAPSE AND HYPOPOTASEMIA</td>
<td>03/02/2005</td>
<td>LIFE THREATENING</td>
<td>SEVERE</td>
<td>No</td>
<td>Yes</td>
<td>RECOVERED</td>
<td>5</td>
</tr>
<tr>
<td>5003603201001</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>50</td>
<td>NEUTROPENIA AFTER CHEMOTHERAPY, DIARRHEA, PNEUMONIA, INTENSIVE CARE</td>
<td>19/04/2004</td>
<td>LIFE THREATENING</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED WITH SEQUELAE</td>
<td>8</td>
</tr>
<tr>
<td>5003603201001</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>50</td>
<td>NEUTROPENIA AFTER CHEMOTHERAPY, COLITIS, PERITONITIS, SEPSIS</td>
<td>11/05/2004</td>
<td>DEATH</td>
<td>DEATH</td>
<td>Yes</td>
<td>No</td>
<td>FATAL</td>
<td>2</td>
</tr>
<tr>
<td>5003603201034</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>33</td>
<td>DIARRHEA (CLOSTRIDIUM DIFFICILE ANTIGEN)</td>
<td>01/09/2006</td>
<td>MODERATE</td>
<td>-</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>14</td>
</tr>
<tr>
<td>5003603201034</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>33</td>
<td>INFECTIOUS DIARRHEA (CLOSTRIDIUM DIFFICILE)</td>
<td>-</td>
<td>SEVERE</td>
<td>-</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>-</td>
</tr>
<tr>
<td>5003603201034</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>33</td>
<td>INFECTIOUS DIARRHEA WITH FEVER</td>
<td>-</td>
<td>SEVERE</td>
<td>MILD</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>-</td>
</tr>
<tr>
<td>5003603201050</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>61</td>
<td>ACUTE RENAL FAILURE</td>
<td>26/10/2007</td>
<td>LIFE THREATENING</td>
<td>-</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED WITH SEQUELAE</td>
<td>31</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Actual arm of induction</td>
<td>Actual arm of maintenance</td>
<td>Sex</td>
<td>Age (years)</td>
<td>Adverse event description</td>
<td>Date of AE become serious</td>
<td>Non hematological toxicity grade</td>
<td>Hematological toxicity grade</td>
<td>Relation with study drugs</td>
<td>Action taken with study drug</td>
<td>AE outcome</td>
<td>Duration of AE serious (days)</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------</td>
<td>---------------------------</td>
<td>-----</td>
<td>-------------</td>
<td>----------------------------</td>
<td>---------------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>---------------------------</td>
<td>----------------------------</td>
<td>------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>5003603201050</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>61</td>
<td>EXSICCOSIS</td>
<td>03/09/2007</td>
<td>SEVERE</td>
<td>NORMAL</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>11</td>
</tr>
<tr>
<td>5003603201050</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>61</td>
<td>NAUSEA AND VOMITING</td>
<td>24/09/2007</td>
<td>SEVERE</td>
<td>MILD</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED WITH SEQUELAE</td>
<td>17</td>
</tr>
<tr>
<td>5003603201053</td>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>52</td>
<td>DIARRHEA</td>
<td>24/03/2008</td>
<td>MODERATE</td>
<td>-</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>5</td>
</tr>
<tr>
<td>5003603201205</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>59</td>
<td>SEPSIS (PSEUDOMONAS AERUGINOSA) WITH FEVER AND CHILLS</td>
<td>14/01/2005</td>
<td>SEVERE</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>32</td>
</tr>
<tr>
<td>5003603301401</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>61</td>
<td>SEPTICAEMIA - GRAM POSITIVE COCCUS (2 STRAINS OF STAPHYLOCOCCUS EPIDERMITIS AND STRAIN OF ACINOBACTER)</td>
<td>04/10/2004</td>
<td>SEVERE</td>
<td>MODERATE</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>8</td>
</tr>
<tr>
<td>5003603301401</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>61</td>
<td>SEPTICAEMIA</td>
<td>13/12/2004</td>
<td>SEVERE</td>
<td>LIFE THREATENING</td>
<td>No</td>
<td>No</td>
<td>RECOVERED WITH SEQUELAE</td>
<td>46</td>
</tr>
<tr>
<td>5003603301401</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>61</td>
<td>MUCOSITIS</td>
<td>11/12/2004</td>
<td>LIFE THREATENING</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>9</td>
</tr>
<tr>
<td>5003603301401</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>61</td>
<td>FEBRILE NEUTROPEenia</td>
<td>14/12/2004</td>
<td>LIFE THREATENING</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>8</td>
</tr>
<tr>
<td>5003603301401</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>61</td>
<td>SUBACUTE SMALL BOWEL OBSTRUCTION</td>
<td>21/12/2004</td>
<td>SEVERE</td>
<td>LIFE THREATENING</td>
<td>No</td>
<td>Yes</td>
<td>RECOVERED WITH SEQUELAE</td>
<td>3</td>
</tr>
<tr>
<td>5003603301401</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>61</td>
<td>2ND SUBACUTE SMALL BOWEL OBSTRUCTION*</td>
<td>-</td>
<td>SEVERE</td>
<td>MODERATE</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>-</td>
</tr>
<tr>
<td>5003603701001</td>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>64</td>
<td>FEBRILE NEUTROPEnia GRADE 3 (28.1.05) NEUTROPEnia GRADE 4 THROMBOPENIA GRADE 4</td>
<td>28/01/2005</td>
<td>SEVERE</td>
<td>LIFE THREATENING</td>
<td>No</td>
<td>Yes</td>
<td>RECOVERED</td>
<td>25</td>
</tr>
<tr>
<td>5003603701001</td>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>64</td>
<td>NAUSEA AND VOMITING, LOSS OF APPETIT AND WEAKNESS</td>
<td>08/03/2005</td>
<td>SEVERE</td>
<td>MODERATE</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>24</td>
</tr>
<tr>
<td>5003603701001</td>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>64</td>
<td>FEBRILE NEUTROPEnia GRADE 3</td>
<td>22/03/2005</td>
<td>SEVERE</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>23</td>
</tr>
<tr>
<td>5003603701001</td>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>64</td>
<td>ANEMIA CAUSED BY INSUFFICIENT ERYTHROPOIESIS AFTER STEM CELL TRANSPLANTATION</td>
<td>13/06/2005</td>
<td>UNKNOWN</td>
<td>SEVERE</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>3</td>
</tr>
<tr>
<td>5003603701001</td>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>64</td>
<td>INFECTION (BACTEREMIA WITH PSEUDOMONAS AERUGINOSA, ENTEROCOCCUS GALLINARUM AND STAPH. EPIDERMIDIS)</td>
<td>20/04/2005</td>
<td>SEVERE</td>
<td>-</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>5</td>
</tr>
<tr>
<td>5003603801013</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>FEMALE</td>
<td>60</td>
<td>NEUROTOXICITY</td>
<td>23/01/2007</td>
<td>SEVERE</td>
<td>MODERATE</td>
<td>Yes</td>
<td>Yes</td>
<td>RECOVERED WITH SEQUELAE</td>
<td>17</td>
</tr>
<tr>
<td>5003603901001</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>54</td>
<td>PROLONGED HOSPITALIZATION (9 DAYS AFTER END TREATMENT, CYCLE 1 DUE TO SUPPORTIVE CARE NEED)</td>
<td>03/11/2004</td>
<td>SEVERE</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>No</td>
<td>FATAL</td>
<td>16</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Actual arm of induction</td>
<td>Actual arm of maintenance</td>
<td>Sex</td>
<td>Age (years)</td>
<td>Adverse event description</td>
<td>Date of AE</td>
<td>Non hematological toxicity grade</td>
<td>Hematological toxicity grade</td>
<td>Relation with study drugs</td>
<td>Action taken with study drug</td>
<td>AE outcome</td>
<td>Duration of AE serious (days)</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------</td>
<td>---------------------------</td>
<td>-----</td>
<td>-------------</td>
<td>---------------------------</td>
<td>------------</td>
<td>-------------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
<td>------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>5003604201028</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>65</td>
<td>ALLERGIC ANAPHYLACTIC REACTION DUE TO RITUXIMAB</td>
<td>02/02/2006</td>
<td>SEVERE</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
<td>RECOVERED</td>
<td>0</td>
</tr>
<tr>
<td>5003604301607</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>61</td>
<td>LOWER RESPIRATORY TRACT INFECTION</td>
<td>14/09/2004</td>
<td>SEVERE</td>
<td>NORMAL</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>3</td>
</tr>
<tr>
<td>5003604701012</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>62</td>
<td>FEBRILE NEUTROPENIA</td>
<td>30/04/2007</td>
<td>DEATH</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>Yes</td>
<td>FATAL</td>
<td>4</td>
</tr>
<tr>
<td>5003604701012</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>62</td>
<td>RESPIRATORY INSUFFICIENCY</td>
<td>30/04/2007</td>
<td>LIFE THREATENING</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>Yes</td>
<td>FATAL</td>
<td>4</td>
</tr>
<tr>
<td>5003604701012</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>62</td>
<td>THROMBOEMBOLIC CEREBRAL INFARCTION</td>
<td>03/05/2007</td>
<td>LIFE THREATENING</td>
<td>LIFE THREATENING</td>
<td>No</td>
<td>Yes</td>
<td>FATAL</td>
<td>1</td>
</tr>
<tr>
<td>5003604701012</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>62</td>
<td>CARDIAC INSUFFICIENCY</td>
<td>30/04/2007</td>
<td>DEATH</td>
<td>DEATH</td>
<td>No</td>
<td>Yes</td>
<td>FATAL</td>
<td>4</td>
</tr>
<tr>
<td>5003604701015</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>56</td>
<td>MENTAL - HEALTH - DISORDER : DEPRESSION</td>
<td>15/10/2007</td>
<td>SEVERE</td>
<td>-</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>7</td>
</tr>
<tr>
<td>5003604701015</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>56</td>
<td>PANCYTOPENIA, COPROSTASIS</td>
<td>23/03/2008</td>
<td>MILD</td>
<td>MILD</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>3</td>
</tr>
<tr>
<td>5003604801006</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>53</td>
<td>FEBRILE NEUTROPENIA</td>
<td>16/02/2006</td>
<td>SEVERE</td>
<td>LIFE THREATENING</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>7</td>
</tr>
<tr>
<td>5003604901004</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>52</td>
<td>LINE SEPSIS - PSEUDOMONAS AERUGINOSA</td>
<td>21/06/2006</td>
<td>SEVERE</td>
<td>SEVERE</td>
<td>No</td>
<td>Yes</td>
<td>RECOVERED</td>
<td>13</td>
</tr>
<tr>
<td>5003604901004</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>52</td>
<td>PROLONG FEVER, SUSP. LUL PNEUMONIA</td>
<td>08/01/2006</td>
<td>MODERATE</td>
<td>MODERATE</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>2</td>
</tr>
<tr>
<td>5003604901004</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>52</td>
<td>FEVER, SUSP. PNEUMONIA</td>
<td>04/02/2007</td>
<td>MODERATE</td>
<td>SEVERE</td>
<td>No</td>
<td>Yes</td>
<td>RECOVERED</td>
<td>7</td>
</tr>
<tr>
<td>5003604901603</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>62</td>
<td>ACUTE RENAL FAILURE</td>
<td>27/04/2008</td>
<td>SEVERE</td>
<td>MODERATE</td>
<td>Yes</td>
<td>No</td>
<td>FATAL</td>
<td>139</td>
</tr>
<tr>
<td>5003604901603</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>62</td>
<td>CMV INFECTION</td>
<td>19/07/2008</td>
<td>SEVERE</td>
<td>MODERATE</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>5</td>
</tr>
<tr>
<td>5003604901603</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>62</td>
<td>SUPERFICIAL BLEEDING AFTER REMOVAL OF PORTACATH</td>
<td>12/08/2008</td>
<td>MILD</td>
<td>MODERATE</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>1</td>
</tr>
<tr>
<td>5003604901603</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>62</td>
<td>THROMBOCYTOPENIA</td>
<td>17/08/2008</td>
<td>-</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>3</td>
</tr>
<tr>
<td>5003604901603</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>62</td>
<td>BRONCHOPNEUMONIA, EXTENSIVE DIFFUSE ALVEOLAR DAMAGE</td>
<td>04/09/2008</td>
<td>DEATH</td>
<td>-</td>
<td>Yes</td>
<td>No</td>
<td>FATAL</td>
<td>9</td>
</tr>
<tr>
<td>5003605301610</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>60</td>
<td>CULTURE NEGATIVE NEUTROPENIC FEVER</td>
<td>28/02/2005</td>
<td>SEVERE</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>11</td>
</tr>
<tr>
<td>5003605301610</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>60</td>
<td>CULTURE NEGATIVE NEUTROPENIC FEVER / ABSOLUTE NEUTROPHIL COUNT < 0.95 x 10^9/L</td>
<td>14/03/2005</td>
<td>SEVERE</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>8</td>
</tr>
<tr>
<td>5003606301012</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>FEMALE</td>
<td>63</td>
<td>HYPOXIC CARDIAC ARREST FOLLOWING VOMITING ASPIRATION</td>
<td>21/01/2008</td>
<td>LIFE THREATENING</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>No</td>
<td>FATAL</td>
<td>22</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Actual arm of induction</td>
<td>Actual arm of maintenance</td>
<td>Sex</td>
<td>Age (years)</td>
<td>Adverse event description</td>
<td>Date of AE become serious</td>
<td>Non hematological toxicity grade</td>
<td>Hematological toxicity grade</td>
<td>Relation with study drugs</td>
<td>Action taken with study drug</td>
<td>AE outcome</td>
<td>Duration of AE serious (days)</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------</td>
<td>---------------------------</td>
<td>-------------</td>
<td>-------------</td>
<td>--</td>
<td>--------------------------</td>
<td>--------------------------------</td>
<td>------------------------------</td>
<td>----------------------------</td>
<td>-------------------------------</td>
<td>------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>5003606301012</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>FEMALE</td>
<td>63</td>
<td>CANDIDA GUILLERMOND SEPTICAEMIA</td>
<td>21/01/2008</td>
<td>DEATH</td>
<td>-</td>
<td>Yes</td>
<td>No</td>
<td>FATAL</td>
<td>22</td>
</tr>
<tr>
<td>5003606301012</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>FEMALE</td>
<td>63</td>
<td>CMV ENTEROCOLITIS AND CMV ADRENALITIS</td>
<td>21/01/2008</td>
<td>LIFE THREATENING</td>
<td>-</td>
<td>Yes</td>
<td>-</td>
<td>FATAL</td>
<td>22</td>
</tr>
<tr>
<td>5003606301012</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>FEMALE</td>
<td>63</td>
<td>FEBRILE NEUTROPENIA</td>
<td>16/01/2008</td>
<td>-</td>
<td>SEVERE</td>
<td>Yes</td>
<td>-</td>
<td>RECOVERED</td>
<td>12</td>
</tr>
<tr>
<td>50036063010164</td>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>61</td>
<td>UPPER RESPIRATORY TRACT INFECTION</td>
<td>26/07/2004</td>
<td>SEVERE</td>
<td>MODERATE</td>
<td>No</td>
<td>Yes</td>
<td>RECOVERED</td>
<td>3</td>
</tr>
<tr>
<td>50036063010164</td>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>61</td>
<td>NEPHROTOXICITY (ASSOCIATED WITH CYTARABINE)</td>
<td>11/10/2004</td>
<td>MILD</td>
<td>NORMAL</td>
<td>Yes</td>
<td>Yes</td>
<td>RECOVERED WITH SEQUELAE</td>
<td>206</td>
</tr>
<tr>
<td>50036063010164</td>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>61</td>
<td>SOCIAL HOSPITAL ADMISSION</td>
<td>24/09/2004</td>
<td>MODERATE</td>
<td>LIFE THREATENING</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>10</td>
</tr>
<tr>
<td>50036063010164</td>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>61</td>
<td>ACUTE RENAL FAILURE SECONDARY TO PRE RENAL DEHYDRATION WITH DIARRHOEA</td>
<td>11/10/2004</td>
<td>MODERATE</td>
<td>LIFE THREATENING</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>3</td>
</tr>
<tr>
<td>50036063010164</td>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>61</td>
<td>MYELODYSPLASTIC SYNDROME</td>
<td>05/02/2008</td>
<td>-</td>
<td>MODERATE</td>
<td>Yes</td>
<td>-</td>
<td>FATAL</td>
<td>503</td>
</tr>
<tr>
<td>50036063010166</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>FEMALE</td>
<td>40</td>
<td>STAPHYLOCOCCAL SEPSIS WITH BACTEREAEMIA AND CENTRAL VENOUS CATHETER TUNNEL INFECTION</td>
<td>04/09/2004</td>
<td>SEVERE</td>
<td>LIFE THREATENING</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>8</td>
</tr>
<tr>
<td>50036073010163</td>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>64</td>
<td>GASTRO-INAL BLEED</td>
<td>12/09/2004</td>
<td>LIFE THREATENING</td>
<td>SEVERE</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>10</td>
</tr>
<tr>
<td>500360730101622</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>FEMALE</td>
<td>65</td>
<td>GRAM NEGATIVE SEPTICAEMIA</td>
<td>25/01/2007</td>
<td>DEATH</td>
<td>DEATH</td>
<td>Yes</td>
<td>Yes</td>
<td>FATAL</td>
<td>1</td>
</tr>
<tr>
<td>50036075010101</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>54</td>
<td>FOLLOWING FIRST RITUXIMAB MAINTENANCE NEUTROPHILS 0.21 ABSOLUTE VALUE</td>
<td>03/01/2007</td>
<td>-</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>9</td>
</tr>
<tr>
<td>500360930101018</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>38</td>
<td>CHEST INFECTION</td>
<td>08/06/2008</td>
<td>SEVERE</td>
<td>-</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>37</td>
</tr>
<tr>
<td>50036105010102</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>58</td>
<td>ACQUIRED TYPE 4 RENAL TUBULAR ACIDOSIS CAUSING REFRACTORY HYPERKALEMIA GRADE 2 FROM 05/01/2007-06/01/2007 GRADE 3 FROM 06/01/2007-09/01/2007, DECREASE GRADE 2 FROM 09/01/2007-11/01/2007 THEN FULLY RESOLVED</td>
<td>05/01/2007</td>
<td>SEVERE</td>
<td>-</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED WITH SEQUELAE</td>
<td>6</td>
</tr>
<tr>
<td>50036105010102</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>58</td>
<td>NEUTROPENIC SEPSIS</td>
<td>21/06/2007</td>
<td>SEVERE</td>
<td>SEVERE</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>6</td>
</tr>
<tr>
<td>50036105010102</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>58</td>
<td>CHEST INFECTION</td>
<td>21/08/2007</td>
<td>MODERATE</td>
<td>-</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>11</td>
</tr>
<tr>
<td>50036105010102</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>58</td>
<td>LOWER RESPIRATORY TRACT INFECTION</td>
<td>01/02/2008</td>
<td>SEVERE</td>
<td>-</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED WITH SEQUELAE</td>
<td>7</td>
</tr>
<tr>
<td>50036105010102</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>58</td>
<td>RESPIRATORY TRACT INFECTION WITH NEUTROPIA</td>
<td>14/04/2008</td>
<td>LIFE THREATENING</td>
<td>SEVERE</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>14</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Actual arm of induction</td>
<td>Actual arm of maintenance</td>
<td>Sex</td>
<td>Age (years)</td>
<td>Adverse event description</td>
<td>Date of AE</td>
<td>Non hematological toxicity grade</td>
<td>Hematological toxicity grade</td>
<td>Relation with study drugs</td>
<td>Action taken with study drug</td>
<td>AE outcome</td>
<td>Duration of AE serious (days)</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------</td>
<td>---------------------------</td>
<td>-----</td>
<td>-------------</td>
<td>---------------------------</td>
<td>------------</td>
<td>-------------------------------</td>
<td>-----------------------------</td>
<td>---------------------------</td>
<td>-----------------------------</td>
<td>------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>5003612501019</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>FEMALE</td>
<td>51</td>
<td>HIGH CREATININE LEVEL (GRADE 3)</td>
<td>06/09/2007</td>
<td>SEVERE</td>
<td>-</td>
<td>No</td>
<td>Yes</td>
<td>RECOVERED</td>
<td>18</td>
</tr>
<tr>
<td>5003612501019</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>FEMALE</td>
<td>51</td>
<td>ADMITTED WITH HYPOKALEMIA (GRADE 3) WITH POTASSIUM = 2.5 MMOL/L SECONDARY TO DIARRHEA (GRADE 2)</td>
<td>10/10/2007</td>
<td>SEVERE</td>
<td>-</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>4</td>
</tr>
<tr>
<td>5003614501022</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>37</td>
<td>FEBRILE NEUTROPENIA</td>
<td>17/12/2007</td>
<td>LIFE THREATENING</td>
<td>LIFE THREATENING</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>6</td>
</tr>
<tr>
<td>5003614501032</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>53</td>
<td>NEUTROPENIC SEPSIS + RENAL IMPAIRMENT</td>
<td>16/04/2008</td>
<td>MILD</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>8</td>
</tr>
<tr>
<td>5003615501004</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>FEMALE</td>
<td>64</td>
<td>THROMBOCYTOPENIA</td>
<td>23/10/2006</td>
<td>-</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>56</td>
</tr>
<tr>
<td>5003615501004</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>FEMALE</td>
<td>64</td>
<td>NEUTROPENIA</td>
<td>20/11/2006</td>
<td>-</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>7</td>
</tr>
<tr>
<td>5003615501007</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>FEMALE</td>
<td>52</td>
<td>STROKE (ISCHAEMIC)</td>
<td>19/01/2007</td>
<td>LIFE THREATENING</td>
<td>-</td>
<td>No</td>
<td>Yes</td>
<td>RECOVERED WITH SEQUELAE</td>
<td>34</td>
</tr>
<tr>
<td>5003616501411</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>63</td>
<td>VASOVAGAL EVENT - PATIENT COMPLAINED OF FEELING FAINT, THEN FELL TO THE FLOOR, VOMITTED THREE TIMES</td>
<td>07/07/2008</td>
<td>MODERATE</td>
<td>-</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>1</td>
</tr>
<tr>
<td>5003617201021</td>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>FEMALE</td>
<td>50</td>
<td>ACTIVE INFECTION WITH HEPATITIS C (GENOME 1B) AFTER STEM CELL APERESIS</td>
<td>23/12/2005</td>
<td>MILD</td>
<td>SEVERE</td>
<td>No</td>
<td>No</td>
<td>ONGOING</td>
<td>-</td>
</tr>
<tr>
<td>5003617301616</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>44</td>
<td>NAUSEA; VOMITTING; DEHYDRATION</td>
<td>06/03/2006</td>
<td>MODERATE</td>
<td>MILD</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>2</td>
</tr>
<tr>
<td>5003617301619</td>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>FEMALE</td>
<td>19</td>
<td>LOWER RESPIRATORY TRACT INFECTION</td>
<td>16/02/2006</td>
<td>SEVERE</td>
<td>NORMAL</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>5</td>
</tr>
<tr>
<td>5003617501026</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>FEMALE</td>
<td>59</td>
<td>NEUTROPENIC SEPSIS</td>
<td>19/12/2007</td>
<td>SEVERE</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>8</td>
</tr>
<tr>
<td>5003618201030</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>45</td>
<td>HERPES ZOSTER (OPHTALMIC NERVE RIGHT)</td>
<td>19/05/2007</td>
<td>SEVERE</td>
<td>MILD</td>
<td>No</td>
<td>Yes</td>
<td>RECOVERED</td>
<td>60</td>
</tr>
<tr>
<td>5003618201030</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>45</td>
<td>INTERMITTEND HYESTHESIA OF LEFT LEG, HAND AND LIPS, TONGUE. ON 02/09/2007 REDUCTION OF VISUAL FIELD LEFT WITH SPONTANEOUS REMISSION</td>
<td>03/09/2007</td>
<td>MILD</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td>RECOVERED</td>
<td>3</td>
</tr>
<tr>
<td>5003618501025</td>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>59</td>
<td>INFECTION WITH FEBRILE NEUTROPENIA</td>
<td>-</td>
<td>SEVERE</td>
<td>SEVERE</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>-</td>
</tr>
<tr>
<td>5003619301006</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>53</td>
<td>WOKE AT 4AM; 5AM ON 12/06/2006 WITH DEEP ACHIE IN THIGHS + PELVIS ADMITTED ON 12/06/2006 WITH GCSF INDUCED BONE PAIN. NEUTROPENIC INITIALLY, BUT COUNT RECOVERED QUICKLY.</td>
<td>12/06/2006</td>
<td>SEVERE</td>
<td>SEVERE</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>1</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Actual arm of induction</td>
<td>Actual arm of maintenance</td>
<td>Sex</td>
<td>Age (years)</td>
<td>Adverse event description</td>
<td>Date of AE become serious</td>
<td>Non hematological toxicity grade</td>
<td>Hematological toxicity grade</td>
<td>Relation with study drugs</td>
<td>Action taken with study drug</td>
<td>AE outcome</td>
<td>Duration of AE serious (days)</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------</td>
<td>---------------------------</td>
<td>-----</td>
<td>-------------</td>
<td>--</td>
<td>---------------------------</td>
<td>---------------------------------</td>
<td>-----------------------------</td>
<td>--------------------------</td>
<td>-----------------------------</td>
<td>------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>5003619301006</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>53</td>
<td>RESECTION OF SEGMENT 4B/5 LIVER, AND OPEN CHOLECYSTECTOMY AND OPERATIVE CHOLANGIOGRAM</td>
<td>05/09/2006</td>
<td>MODERATE</td>
<td>MODERATE</td>
<td>No</td>
<td>Yes</td>
<td>RECOVERED</td>
<td>6</td>
</tr>
<tr>
<td>5003619501010</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>FEMALE</td>
<td>45</td>
<td>CHEST INFECTION (RESPIRATORY RATE : 26, APYREXIAL, CRP 320, HYPOXIC, CHEST X-RAY - NEW CONSOLIDATION COLAPSE LEFT LOWER LOBE)</td>
<td>22/02/2007</td>
<td>SEVERE</td>
<td>MODERATE</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>5</td>
</tr>
<tr>
<td>5003619501010</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>FEMALE</td>
<td>45</td>
<td>SEPSIS</td>
<td>04/04/2007</td>
<td>-</td>
<td>DEATH</td>
<td>No</td>
<td>No</td>
<td>FATAL</td>
<td>2</td>
</tr>
<tr>
<td>5003620501602</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>60</td>
<td>NEUTROPENIA</td>
<td>22/03/2007</td>
<td>-</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>11</td>
</tr>
<tr>
<td>5003620501602</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>60</td>
<td>PATIENT FELL AT HOME, FRACTURED FACE & RIGHT KNEE, 3 DAYS LATER BECAME INFECTED : ADMITTED TO HOSP. NEUTS 0.25</td>
<td>28/05/2007</td>
<td>MILDE</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED</td>
<td>2</td>
</tr>
<tr>
<td>500362201607</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>55</td>
<td>ACUTE RENAL FAILURE WITH EXSICCOSIS AFTER DIARRHEA AND VOMITING</td>
<td>29/12/2004</td>
<td>SEVERE</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
<td>RECOVERED</td>
<td>1475</td>
</tr>
<tr>
<td>500362201625</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>59</td>
<td>ACUTE RENAL FAILURE</td>
<td>02/01/2007</td>
<td>MODERATE</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
<td>RECOVERED</td>
<td>7</td>
</tr>
<tr>
<td>5003623501405</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>MALE</td>
<td>58</td>
<td>PATIENT DIED OF PNEUMONIA RELATED TO THE LYMPHOMA WHICH HAS BEEN CONFIRMED IN THE CORONER'S AUTOPIFY REPORT</td>
<td>26/07/2007</td>
<td>UNKNOWN</td>
<td>LIFE THREATENING</td>
<td>No</td>
<td>Yes</td>
<td>FATAL</td>
<td>0</td>
</tr>
<tr>
<td>5003623501408</td>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>53</td>
<td>NEUTROPENIC SEPSIS</td>
<td>29/11/2007</td>
<td>SEVERE</td>
<td>-</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>4</td>
</tr>
<tr>
<td>5003623501408</td>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>53</td>
<td>KLEBSIELLA SEPSIS</td>
<td>25/01/2008</td>
<td>SEVERE</td>
<td>SEVERE</td>
<td>No</td>
<td>No</td>
<td>RECOVERED</td>
<td>11</td>
</tr>
<tr>
<td>5003631201011</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>FEMALE</td>
<td>61</td>
<td>SEPSIS (GRAM POS) IN NEUTROPENIA</td>
<td>23/12/2004</td>
<td>LIFE THREATENING</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>Yes</td>
<td>FATAL</td>
<td>6</td>
</tr>
<tr>
<td>5003631201012</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>FEMALE</td>
<td>58</td>
<td>ACUTE RENAL FAILURE</td>
<td>26/12/2004</td>
<td>MODERATE</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
<td>RECOVERED WITH SEQUELAE</td>
<td>11</td>
</tr>
<tr>
<td>5003631201012</td>
<td>ARM B / R-DHAP</td>
<td>NOT APPLICABLE</td>
<td>FEMALE</td>
<td>58</td>
<td>FEVER BEFORE NEUTROPENIA, SUSPECTED SINUSITIS MAXILLARY, LATE PROVEN ASPERGILLOMA OF SINUS MAXILLARY</td>
<td>24/05/2005</td>
<td>SEVERE</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
<td>RECOVERED</td>
<td>31</td>
</tr>
</tbody>
</table>

N = 257
6.7.5. Deaths

Listing 6.7-9 Deaths of patients receiving no study treatment – Full analysis population

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>First Randomization Date</th>
<th>Sex</th>
<th>Age (years)</th>
<th>Date of death</th>
<th>Reason for death</th>
<th>Specify reason of death</th>
<th>Response at death</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003603201627</td>
<td>28/03/2007</td>
<td>MALE</td>
<td>49</td>
<td>03/04/2007</td>
<td>OTHER REASON</td>
<td>SEE ATTACHED LETTER / PROGRESSION FORM WILL FOLLOW</td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003609201013</td>
<td>14/03/2005</td>
<td>MALE</td>
<td>44</td>
<td>20/09/2005</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003614301614</td>
<td>16/06/2005</td>
<td>MALE</td>
<td>59</td>
<td>25/03/2007</td>
<td>OTHER CANCER</td>
<td></td>
<td>NOT EVALUATED</td>
</tr>
<tr>
<td>5003603201027</td>
<td>26/01/2006</td>
<td>MALE</td>
<td>54</td>
<td>26/01/2006</td>
<td>OTHER REASON</td>
<td>SEPTIC SHOCK</td>
<td>NOT EVALUATED</td>
</tr>
</tbody>
</table>

N = 4
6.7.6. Laboratory tests

Table 6.7-9 Hemoglobin (induction safety population)

<table>
<thead>
<tr>
<th>R-ICE arm</th>
<th>Actual values</th>
<th>Hemoglobin (g/dl)</th>
<th>Change from baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean</td>
<td>Std</td>
</tr>
<tr>
<td>Baseline</td>
<td>238</td>
<td>12.95</td>
<td>1.796</td>
</tr>
<tr>
<td>C1 between D7 and D10</td>
<td>212</td>
<td>11.75</td>
<td>1.746</td>
</tr>
<tr>
<td>C1 around D14</td>
<td>210</td>
<td>11.08</td>
<td>1.611</td>
</tr>
<tr>
<td>C2 pre-cycle</td>
<td>224</td>
<td>11.05</td>
<td>1.461</td>
</tr>
<tr>
<td>C2 between D7 and D10</td>
<td>191</td>
<td>10.50</td>
<td>1.425</td>
</tr>
<tr>
<td>C2 around D14</td>
<td>190</td>
<td>10.10</td>
<td>1.550</td>
</tr>
<tr>
<td>C3 pre-cycle</td>
<td>202</td>
<td>10.29</td>
<td>1.393</td>
</tr>
<tr>
<td>C3 between D7 and D10</td>
<td>173</td>
<td>9.84</td>
<td>1.413</td>
</tr>
<tr>
<td>C3 around D14</td>
<td>187</td>
<td>9.56</td>
<td>1.532</td>
</tr>
<tr>
<td>FU n°1</td>
<td>165</td>
<td>11.12</td>
<td>1.512</td>
</tr>
<tr>
<td>FU n°2</td>
<td>155</td>
<td>12.32</td>
<td>1.554</td>
</tr>
<tr>
<td>FU n°3</td>
<td>127</td>
<td>12.75</td>
<td>1.667</td>
</tr>
<tr>
<td>FU n°4</td>
<td>114</td>
<td>12.81</td>
<td>1.639</td>
</tr>
<tr>
<td>FU n°5</td>
<td>102</td>
<td>12.87</td>
<td>1.708</td>
</tr>
<tr>
<td>FU n°6</td>
<td>86</td>
<td>13.15</td>
<td>1.660</td>
</tr>
<tr>
<td>FU n°7</td>
<td>94</td>
<td>13.00</td>
<td>1.932</td>
</tr>
<tr>
<td>FU n°8</td>
<td>108</td>
<td>13.28</td>
<td>1.579</td>
</tr>
<tr>
<td>FU n°9</td>
<td>88</td>
<td>13.33</td>
<td>1.613</td>
</tr>
<tr>
<td>FU n°10</td>
<td>73</td>
<td>13.52</td>
<td>1.599</td>
</tr>
<tr>
<td>FU n°11</td>
<td>62</td>
<td>13.36</td>
<td>1.570</td>
</tr>
<tr>
<td>FU n°12</td>
<td>43</td>
<td>13.75</td>
<td>1.549</td>
</tr>
<tr>
<td>FU n°13</td>
<td>23</td>
<td>14.02</td>
<td>1.261</td>
</tr>
<tr>
<td>FU n°14</td>
<td>18</td>
<td>13.54</td>
<td>1.549</td>
</tr>
<tr>
<td>FU n°15</td>
<td>6</td>
<td>12.78</td>
<td>2.349</td>
</tr>
<tr>
<td>R-DHAP arm</td>
<td>Actual values</td>
<td>Hemoglobin (g/dl)</td>
<td>Change from baseline</td>
</tr>
<tr>
<td>---</td>
<td>------------------------------------</td>
<td>-------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>Mean</td>
<td>Std</td>
</tr>
<tr>
<td>Baseline</td>
<td>230</td>
<td>12.76</td>
<td>1.890</td>
</tr>
<tr>
<td>C1 between D7 and D10</td>
<td>211</td>
<td>12.43</td>
<td>1.893</td>
</tr>
<tr>
<td>C1 around D14</td>
<td>201</td>
<td>11.10</td>
<td>1.785</td>
</tr>
<tr>
<td>C2 pre-cycle</td>
<td>204</td>
<td>10.80</td>
<td>1.539</td>
</tr>
<tr>
<td>C2 between D7 and D10</td>
<td>193</td>
<td>11.10</td>
<td>1.586</td>
</tr>
<tr>
<td>C2 around D14</td>
<td>187</td>
<td>9.96</td>
<td>1.443</td>
</tr>
<tr>
<td>C3 pre-cycle</td>
<td>192</td>
<td>10.09</td>
<td>1.439</td>
</tr>
<tr>
<td>C3 between D7 and D10</td>
<td>174</td>
<td>10.13</td>
<td>1.441</td>
</tr>
<tr>
<td>C3 around D14</td>
<td>173</td>
<td>9.56</td>
<td>1.256</td>
</tr>
<tr>
<td>FU n° 1</td>
<td>148</td>
<td>10.61</td>
<td>1.352</td>
</tr>
<tr>
<td>FU n° 2</td>
<td>151</td>
<td>11.14</td>
<td>1.742</td>
</tr>
<tr>
<td>FU n° 3</td>
<td>116</td>
<td>11.53</td>
<td>1.806</td>
</tr>
<tr>
<td>FU n° 4</td>
<td>108</td>
<td>11.96</td>
<td>1.843</td>
</tr>
<tr>
<td>FU n° 5</td>
<td>92</td>
<td>12.17</td>
<td>1.862</td>
</tr>
<tr>
<td>FU n° 6</td>
<td>76</td>
<td>12.56</td>
<td>1.783</td>
</tr>
<tr>
<td>FU n° 7</td>
<td>93</td>
<td>12.52</td>
<td>1.675</td>
</tr>
<tr>
<td>FU n° 8</td>
<td>98</td>
<td>12.79</td>
<td>1.626</td>
</tr>
<tr>
<td>FU n° 9</td>
<td>94</td>
<td>13.02</td>
<td>1.662</td>
</tr>
<tr>
<td>FU n° 10</td>
<td>76</td>
<td>13.28</td>
<td>1.359</td>
</tr>
<tr>
<td>FU n° 11</td>
<td>65</td>
<td>13.39</td>
<td>1.518</td>
</tr>
<tr>
<td>FU n° 12</td>
<td>54</td>
<td>13.34</td>
<td>2.024</td>
</tr>
<tr>
<td>FU n° 13</td>
<td>33</td>
<td>13.19</td>
<td>1.900</td>
</tr>
<tr>
<td>FU n° 14</td>
<td>24</td>
<td>13.23</td>
<td>1.775</td>
</tr>
<tr>
<td>FU n° 15</td>
<td>13</td>
<td>13.52</td>
<td>1.531</td>
</tr>
</tbody>
</table>
Table 6.7-10 Leukocytes (induction safety population)

R-ICE arm

<table>
<thead>
<tr>
<th></th>
<th>Actual values</th>
<th>Leukocytes (G/L)</th>
<th>Change from baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean</td>
<td>Std</td>
</tr>
<tr>
<td>Baseline</td>
<td>238</td>
<td>7.218</td>
<td>3.5755</td>
</tr>
<tr>
<td>C1 between D7 and D10</td>
<td>211</td>
<td>5.937</td>
<td>7.4357</td>
</tr>
<tr>
<td>C1 around D14</td>
<td>210</td>
<td>6.114</td>
<td>7.4096</td>
</tr>
<tr>
<td>C2 pre-cycle</td>
<td>223</td>
<td>6.152</td>
<td>4.5052</td>
</tr>
<tr>
<td>C2 between D7 and D10</td>
<td>190</td>
<td>5.177</td>
<td>5.6565</td>
</tr>
<tr>
<td>C2 around D14</td>
<td>191</td>
<td>11.284</td>
<td>13.5026</td>
</tr>
<tr>
<td>C3 pre-cycle</td>
<td>201</td>
<td>6.528</td>
<td>4.8019</td>
</tr>
<tr>
<td>C3 between D7 and D10</td>
<td>172</td>
<td>5.905</td>
<td>6.2766</td>
</tr>
<tr>
<td>C3 around D14</td>
<td>186</td>
<td>14.398</td>
<td>14.0356</td>
</tr>
<tr>
<td>FU n° 1</td>
<td>163</td>
<td>5.337</td>
<td>3.0629</td>
</tr>
<tr>
<td>FU n° 2</td>
<td>154</td>
<td>4.919</td>
<td>2.4989</td>
</tr>
<tr>
<td>FU n° 3</td>
<td>126</td>
<td>4.856</td>
<td>2.5853</td>
</tr>
<tr>
<td>FU n° 4</td>
<td>112</td>
<td>5.251</td>
<td>2.5716</td>
</tr>
<tr>
<td>FU n° 5</td>
<td>101</td>
<td>5.827</td>
<td>6.2241</td>
</tr>
<tr>
<td>FU n° 6</td>
<td>85</td>
<td>5.453</td>
<td>2.3229</td>
</tr>
<tr>
<td>FU n° 7</td>
<td>93</td>
<td>5.941</td>
<td>2.4975</td>
</tr>
<tr>
<td>FU n° 8</td>
<td>107</td>
<td>5.871</td>
<td>2.5841</td>
</tr>
<tr>
<td>FU n° 9</td>
<td>87</td>
<td>5.915</td>
<td>2.3556</td>
</tr>
<tr>
<td>FU n° 10</td>
<td>73</td>
<td>6.058</td>
<td>2.3434</td>
</tr>
<tr>
<td>FU n° 11</td>
<td>62</td>
<td>6.638</td>
<td>2.5162</td>
</tr>
<tr>
<td>FU n° 12</td>
<td>44</td>
<td>6.055</td>
<td>2.1689</td>
</tr>
<tr>
<td>FU n° 13</td>
<td>23</td>
<td>6.203</td>
<td>2.0399</td>
</tr>
<tr>
<td>FU n° 14</td>
<td>18</td>
<td>6.753</td>
<td>2.6445</td>
</tr>
<tr>
<td>FU n° 15</td>
<td>6</td>
<td>6.553</td>
<td>2.9367</td>
</tr>
</tbody>
</table>
R-DHAP arm

<table>
<thead>
<tr>
<th></th>
<th>Leukocytes (G/L)</th>
<th>Change from baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Actual values</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>Mean</td>
</tr>
<tr>
<td>Baseline</td>
<td>230</td>
<td>7.057</td>
</tr>
<tr>
<td>C1 between D7 and D10</td>
<td>211</td>
<td>8.807</td>
</tr>
<tr>
<td>C1 around D14</td>
<td>202</td>
<td>6.933</td>
</tr>
<tr>
<td>C2 pre-cycle</td>
<td>204</td>
<td>9.040</td>
</tr>
<tr>
<td>C2 between D7 and D10</td>
<td>194</td>
<td>14.724</td>
</tr>
<tr>
<td>C2 around D14</td>
<td>186</td>
<td>14.639</td>
</tr>
<tr>
<td>C3 pre-cycle</td>
<td>192</td>
<td>7.875</td>
</tr>
<tr>
<td>C3 between D7 and D10</td>
<td>174</td>
<td>10.227</td>
</tr>
<tr>
<td>C3 around D14</td>
<td>173</td>
<td>11.025</td>
</tr>
<tr>
<td>FU n°1</td>
<td>147</td>
<td>5.550</td>
</tr>
<tr>
<td>FU n°2</td>
<td>150</td>
<td>4.840</td>
</tr>
<tr>
<td>FU n°3</td>
<td>115</td>
<td>4.908</td>
</tr>
<tr>
<td>FU n°4</td>
<td>106</td>
<td>5.101</td>
</tr>
<tr>
<td>FU n°5</td>
<td>91</td>
<td>5.538</td>
</tr>
<tr>
<td>FU n°6</td>
<td>74</td>
<td>5.226</td>
</tr>
<tr>
<td>FU n°7</td>
<td>91</td>
<td>5.613</td>
</tr>
<tr>
<td>FU n°8</td>
<td>97</td>
<td>6.035</td>
</tr>
<tr>
<td>FU n°9</td>
<td>93</td>
<td>6.220</td>
</tr>
<tr>
<td>FU n°10</td>
<td>76</td>
<td>6.266</td>
</tr>
<tr>
<td>FU n°11</td>
<td>65</td>
<td>6.298</td>
</tr>
<tr>
<td>FU n°12</td>
<td>54</td>
<td>6.274</td>
</tr>
<tr>
<td>FU n°13</td>
<td>33</td>
<td>6.681</td>
</tr>
<tr>
<td>FU n°14</td>
<td>24</td>
<td>6.052</td>
</tr>
<tr>
<td>FU n°15</td>
<td>14</td>
<td>5.470</td>
</tr>
</tbody>
</table>
Table 6.7-11 Neutrophils (induction safety population)

<table>
<thead>
<tr>
<th></th>
<th>Neutrophils (G/L)</th>
<th>Change from baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Actual values</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>Mean</td>
</tr>
<tr>
<td>Baseline</td>
<td>229</td>
<td>5.234</td>
</tr>
<tr>
<td>C1 between D7 and D10</td>
<td>165</td>
<td>5.074</td>
</tr>
<tr>
<td>C1 around D14</td>
<td>169</td>
<td>4.180</td>
</tr>
<tr>
<td>C2 pre-cycle</td>
<td>194</td>
<td>4.146</td>
</tr>
<tr>
<td>C2 between D7 and D10</td>
<td>151</td>
<td>4.262</td>
</tr>
<tr>
<td>C2 around D14</td>
<td>160</td>
<td>8.254</td>
</tr>
<tr>
<td>C3 pre-cycle</td>
<td>179</td>
<td>4.311</td>
</tr>
<tr>
<td>C3 between D7 and D10</td>
<td>149</td>
<td>5.292</td>
</tr>
<tr>
<td>C3 around D14</td>
<td>150</td>
<td>10.562</td>
</tr>
<tr>
<td>FU n°1</td>
<td>147</td>
<td>3.071</td>
</tr>
<tr>
<td>FU n°2</td>
<td>140</td>
<td>2.841</td>
</tr>
<tr>
<td>FU n°3</td>
<td>118</td>
<td>3.028</td>
</tr>
<tr>
<td>FU n°4</td>
<td>107</td>
<td>3.185</td>
</tr>
<tr>
<td>FU n°5</td>
<td>92</td>
<td>3.090</td>
</tr>
<tr>
<td>FU n°6</td>
<td>78</td>
<td>3.422</td>
</tr>
<tr>
<td>FU n°7</td>
<td>86</td>
<td>3.618</td>
</tr>
<tr>
<td>FU n°8</td>
<td>102</td>
<td>3.515</td>
</tr>
<tr>
<td>FU n°9</td>
<td>79</td>
<td>3.514</td>
</tr>
<tr>
<td>FU n°10</td>
<td>66</td>
<td>3.445</td>
</tr>
<tr>
<td>FU n°11</td>
<td>57</td>
<td>3.883</td>
</tr>
<tr>
<td>FU n°12</td>
<td>42</td>
<td>3.456</td>
</tr>
<tr>
<td>FU n°13</td>
<td>22</td>
<td>3.223</td>
</tr>
<tr>
<td>FU n°14</td>
<td>16</td>
<td>3.733</td>
</tr>
<tr>
<td>FU n°15</td>
<td>6</td>
<td>3.509</td>
</tr>
</tbody>
</table>
R-DHAP arm

Neutrophils (G/L)

<table>
<thead>
<tr>
<th></th>
<th>Actual values</th>
<th>Change from baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean</td>
</tr>
<tr>
<td>Baseline</td>
<td>224</td>
<td>5.012</td>
</tr>
<tr>
<td>C1 between D7 and D10</td>
<td>177</td>
<td>8.440</td>
</tr>
<tr>
<td>C1 around D14</td>
<td>171</td>
<td>4.800</td>
</tr>
<tr>
<td>C2 pre-cycle</td>
<td>173</td>
<td>6.079</td>
</tr>
<tr>
<td>C2 between D7 and D10</td>
<td>152</td>
<td>13.922</td>
</tr>
<tr>
<td>C2 around D14</td>
<td>150</td>
<td>9.452</td>
</tr>
<tr>
<td>C3 pre-cycle</td>
<td>165</td>
<td>5.139</td>
</tr>
<tr>
<td>C3 between D7 and D10</td>
<td>143</td>
<td>9.581</td>
</tr>
<tr>
<td>C3 around D14</td>
<td>147</td>
<td>8.103</td>
</tr>
<tr>
<td>FU n°1</td>
<td>134</td>
<td>3.003</td>
</tr>
<tr>
<td>FU n°2</td>
<td>138</td>
<td>2.863</td>
</tr>
<tr>
<td>FU n°3</td>
<td>104</td>
<td>2.914</td>
</tr>
<tr>
<td>FU n°4</td>
<td>99</td>
<td>3.040</td>
</tr>
<tr>
<td>FU n°5</td>
<td>80</td>
<td>3.472</td>
</tr>
<tr>
<td>FU n°6</td>
<td>70</td>
<td>3.066</td>
</tr>
<tr>
<td>FU n°7</td>
<td>88</td>
<td>3.293</td>
</tr>
<tr>
<td>FU n°8</td>
<td>92</td>
<td>3.603</td>
</tr>
<tr>
<td>FU n°9</td>
<td>83</td>
<td>3.829</td>
</tr>
<tr>
<td>FU n°10</td>
<td>69</td>
<td>3.857</td>
</tr>
<tr>
<td>FU n°11</td>
<td>59</td>
<td>3.678</td>
</tr>
<tr>
<td>FU n°12</td>
<td>50</td>
<td>3.503</td>
</tr>
<tr>
<td>FU n°14</td>
<td>23</td>
<td>3.653</td>
</tr>
<tr>
<td>FU n°15</td>
<td>10</td>
<td>3.325</td>
</tr>
</tbody>
</table>
Table 6.7-12 Platelets (induction safety population)

<table>
<thead>
<tr>
<th>R-ICE arm</th>
<th>N</th>
<th>Mean</th>
<th>Std</th>
<th>Median</th>
<th>Min</th>
<th>Max</th>
<th>N</th>
<th>Mean</th>
<th>Std</th>
<th>Median</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>238</td>
<td>269.3</td>
<td>111.58</td>
<td>252.0</td>
<td>23</td>
<td>677</td>
<td>238</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C1 between D7 and D10</td>
<td>212</td>
<td>173.1</td>
<td>102.02</td>
<td>166.0</td>
<td>7</td>
<td>600</td>
<td>211</td>
<td>-96.6</td>
<td>96.65</td>
<td>-88.0</td>
<td>-485</td>
<td>144</td>
</tr>
<tr>
<td>C1 around D14</td>
<td>209</td>
<td>81.1</td>
<td>71.04</td>
<td>63.0</td>
<td>2</td>
<td>401</td>
<td>209</td>
<td>-184.6</td>
<td>112.72</td>
<td>-172.0</td>
<td>-540</td>
<td>102</td>
</tr>
<tr>
<td>C2 pre-cycle</td>
<td>224</td>
<td>292.7</td>
<td>162.01</td>
<td>265.5</td>
<td>19</td>
<td>926</td>
<td>223</td>
<td>23.2</td>
<td>150.87</td>
<td>14.0</td>
<td>-456</td>
<td>533</td>
</tr>
<tr>
<td>C2 between D7 and D10</td>
<td>191</td>
<td>264.6</td>
<td>164.35</td>
<td>234.0</td>
<td>8</td>
<td>1038</td>
<td>190</td>
<td>-3.0</td>
<td>154.84</td>
<td>-11.5</td>
<td>-466</td>
<td>658</td>
</tr>
<tr>
<td>C2 around D14</td>
<td>190</td>
<td>71.2</td>
<td>60.37</td>
<td>54.0</td>
<td>3</td>
<td>373</td>
<td>189</td>
<td>-196.7</td>
<td>106.01</td>
<td>-182.0</td>
<td>-605</td>
<td>11</td>
</tr>
<tr>
<td>C3 pre-cycle</td>
<td>202</td>
<td>256.7</td>
<td>141.22</td>
<td>227.5</td>
<td>28</td>
<td>740</td>
<td>201</td>
<td>-15.9</td>
<td>152.94</td>
<td>-13.0</td>
<td>-473</td>
<td>717</td>
</tr>
<tr>
<td>C3 between D7 and D10</td>
<td>172</td>
<td>211.1</td>
<td>156.73</td>
<td>186.0</td>
<td>9</td>
<td>1088</td>
<td>172</td>
<td>-67.1</td>
<td>164.02</td>
<td>-73.0</td>
<td>-635</td>
<td>725</td>
</tr>
<tr>
<td>C3 around D14</td>
<td>187</td>
<td>61.9</td>
<td>59.25</td>
<td>43.0</td>
<td>5</td>
<td>455</td>
<td>186</td>
<td>-212.8</td>
<td>123.27</td>
<td>-201.5</td>
<td>-647</td>
<td>193</td>
</tr>
<tr>
<td>FU n° 1</td>
<td>165</td>
<td>152.6</td>
<td>87.51</td>
<td>147.0</td>
<td>11</td>
<td>577</td>
<td>164</td>
<td>-114.4</td>
<td>111.64</td>
<td>-108.0</td>
<td>-457</td>
<td>214</td>
</tr>
<tr>
<td>FU n° 2</td>
<td>155</td>
<td>175.2</td>
<td>95.36</td>
<td>161.0</td>
<td>22</td>
<td>747</td>
<td>155</td>
<td>-90.5</td>
<td>111.16</td>
<td>-86.0</td>
<td>-367</td>
<td>429</td>
</tr>
<tr>
<td>FU n° 3</td>
<td>127</td>
<td>169.4</td>
<td>75.16</td>
<td>170.0</td>
<td>15</td>
<td>449</td>
<td>127</td>
<td>-87.2</td>
<td>105.63</td>
<td>-74.0</td>
<td>-457</td>
<td>181</td>
</tr>
<tr>
<td>FU n° 4</td>
<td>113</td>
<td>175.1</td>
<td>80.56</td>
<td>175.0</td>
<td>7</td>
<td>387</td>
<td>113</td>
<td>-83.6</td>
<td>102.78</td>
<td>-62.0</td>
<td>-665</td>
<td>185</td>
</tr>
<tr>
<td>FU n° 5</td>
<td>101</td>
<td>175.3</td>
<td>77.57</td>
<td>175.0</td>
<td>15</td>
<td>484</td>
<td>101</td>
<td>-84.4</td>
<td>103.83</td>
<td>-58.0</td>
<td>-572</td>
<td>106</td>
</tr>
<tr>
<td>FU n° 6</td>
<td>86</td>
<td>183.8</td>
<td>72.09</td>
<td>183.0</td>
<td>34</td>
<td>358</td>
<td>86</td>
<td>-78.8</td>
<td>98.09</td>
<td>-56.0</td>
<td>-643</td>
<td>117</td>
</tr>
<tr>
<td>FU n° 7</td>
<td>93</td>
<td>191.5</td>
<td>77.40</td>
<td>192.0</td>
<td>9</td>
<td>427</td>
<td>93</td>
<td>-67.3</td>
<td>86.41</td>
<td>-65.0</td>
<td>-332</td>
<td>126</td>
</tr>
<tr>
<td>FU n° 8</td>
<td>108</td>
<td>195.8</td>
<td>80.25</td>
<td>191.0</td>
<td>2</td>
<td>433</td>
<td>108</td>
<td>-60.4</td>
<td>101.85</td>
<td>-43.5</td>
<td>-440</td>
<td>171</td>
</tr>
<tr>
<td>FU n° 9</td>
<td>87</td>
<td>189.9</td>
<td>79.40</td>
<td>185.0</td>
<td>9</td>
<td>398</td>
<td>87</td>
<td>-76.0</td>
<td>87.68</td>
<td>-62.0</td>
<td>-399</td>
<td>100</td>
</tr>
<tr>
<td>FU n° 10</td>
<td>74</td>
<td>200.8</td>
<td>82.71</td>
<td>191.0</td>
<td>43</td>
<td>564</td>
<td>74</td>
<td>-61.7</td>
<td>90.20</td>
<td>-39.5</td>
<td>-324</td>
<td>155</td>
</tr>
<tr>
<td>FU n° 11</td>
<td>61</td>
<td>193.6</td>
<td>73.18</td>
<td>183.0</td>
<td>45</td>
<td>422</td>
<td>61</td>
<td>-82.5</td>
<td>97.27</td>
<td>-61.0</td>
<td>-385</td>
<td>72</td>
</tr>
<tr>
<td>FU n° 12</td>
<td>43</td>
<td>206.0</td>
<td>79.23</td>
<td>198.0</td>
<td>5</td>
<td>418</td>
<td>43</td>
<td>-57.1</td>
<td>93.71</td>
<td>-34.0</td>
<td>-308</td>
<td>116</td>
</tr>
<tr>
<td>FU n° 13</td>
<td>23</td>
<td>203.8</td>
<td>105.09</td>
<td>193.0</td>
<td>89</td>
<td>557</td>
<td>23</td>
<td>-55.0</td>
<td>77.86</td>
<td>-57.0</td>
<td>-187</td>
<td>97</td>
</tr>
<tr>
<td>FU n° 14</td>
<td>18</td>
<td>236.3</td>
<td>120.97</td>
<td>207.0</td>
<td>56</td>
<td>476</td>
<td>18</td>
<td>-72.3</td>
<td>98.13</td>
<td>-45.0</td>
<td>-277</td>
<td>139</td>
</tr>
<tr>
<td>FU n° 15</td>
<td>6</td>
<td>179.5</td>
<td>77.19</td>
<td>171.0</td>
<td>106</td>
<td>314</td>
<td>6</td>
<td>-103.7</td>
<td>59.49</td>
<td>-93.0</td>
<td>-197</td>
<td>-45</td>
</tr>
</tbody>
</table>
R-DHAP arm

<table>
<thead>
<tr>
<th></th>
<th>Actual values</th>
<th>Platelets (G/L)</th>
<th>Change from baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean</td>
<td>Std</td>
</tr>
<tr>
<td>Baseline</td>
<td>230</td>
<td>275.8</td>
<td>156.50</td>
</tr>
<tr>
<td>C1 between D7 and D10</td>
<td>210</td>
<td>127.0</td>
<td>99.61</td>
</tr>
<tr>
<td>C1 around D14</td>
<td>202</td>
<td>92.2</td>
<td>93.73</td>
</tr>
<tr>
<td>C2 pre-cycle</td>
<td>204</td>
<td>351.3</td>
<td>184.66</td>
</tr>
<tr>
<td>C2 between D7 and D10</td>
<td>193</td>
<td>169.7</td>
<td>134.52</td>
</tr>
<tr>
<td>C2 around D14</td>
<td>187</td>
<td>68.0</td>
<td>59.65</td>
</tr>
<tr>
<td>C3 pre-cycle</td>
<td>192</td>
<td>271.2</td>
<td>137.60</td>
</tr>
<tr>
<td>C3 between D7 and D10</td>
<td>174</td>
<td>118.9</td>
<td>108.58</td>
</tr>
<tr>
<td>C3 around D14</td>
<td>172</td>
<td>53.7</td>
<td>63.04</td>
</tr>
<tr>
<td>FU n1</td>
<td>147</td>
<td>127.5</td>
<td>87.19</td>
</tr>
<tr>
<td>FU n2</td>
<td>151</td>
<td>149.1</td>
<td>87.56</td>
</tr>
<tr>
<td>FU n3</td>
<td>116</td>
<td>145.4</td>
<td>76.04</td>
</tr>
<tr>
<td>FU n4</td>
<td>107</td>
<td>155.3</td>
<td>85.26</td>
</tr>
<tr>
<td>FU n5</td>
<td>92</td>
<td>166.9</td>
<td>100.83</td>
</tr>
<tr>
<td>FU n6</td>
<td>76</td>
<td>180.5</td>
<td>83.15</td>
</tr>
<tr>
<td>FU n7</td>
<td>92</td>
<td>174.3</td>
<td>87.48</td>
</tr>
<tr>
<td>FU n8</td>
<td>98</td>
<td>176.4</td>
<td>82.17</td>
</tr>
<tr>
<td>FU n9</td>
<td>94</td>
<td>180.8</td>
<td>74.21</td>
</tr>
<tr>
<td>FU n10</td>
<td>76</td>
<td>189.1</td>
<td>63.85</td>
</tr>
<tr>
<td>FU n11</td>
<td>65</td>
<td>188.3</td>
<td>68.48</td>
</tr>
<tr>
<td>FU n12</td>
<td>54</td>
<td>185.2</td>
<td>70.61</td>
</tr>
<tr>
<td>FU n13</td>
<td>33</td>
<td>183.6</td>
<td>61.34</td>
</tr>
<tr>
<td>FU n14</td>
<td>24</td>
<td>182.4</td>
<td>67.37</td>
</tr>
<tr>
<td>FU n15</td>
<td>14</td>
<td>177.0</td>
<td>48.10</td>
</tr>
</tbody>
</table>
Table 6.7-13 LDH (induction safety population)

<table>
<thead>
<tr>
<th></th>
<th>Actual values</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>LDH (UI/l)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean</td>
<td>Std</td>
<td>Median</td>
<td>Min</td>
<td>Max</td>
<td>N</td>
<td>Mean</td>
<td>Std</td>
<td>Median</td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>Baseline</td>
<td>234</td>
<td>509.3</td>
<td>392.73</td>
<td>399.0</td>
<td>103</td>
<td>2467</td>
<td>234</td>
<td>0.0</td>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>FU n° 1</td>
<td>162</td>
<td>3.0</td>
<td>3.12</td>
<td>2.0</td>
<td>1</td>
<td>9</td>
<td>160</td>
<td>-470.3</td>
<td>344.25</td>
<td>-392.5</td>
<td>-2369</td>
<td>-115</td>
</tr>
<tr>
<td>FU n° 2</td>
<td>151</td>
<td>2.3</td>
<td>2.52</td>
<td>1.0</td>
<td>1</td>
<td>9</td>
<td>150</td>
<td>-458.2</td>
<td>346.64</td>
<td>-360.5</td>
<td>-2368</td>
<td>-107</td>
</tr>
<tr>
<td>FU n° 3</td>
<td>125</td>
<td>2.6</td>
<td>2.84</td>
<td>1.0</td>
<td>1</td>
<td>9</td>
<td>124</td>
<td>-449.4</td>
<td>349.81</td>
<td>-351.0</td>
<td>-2368</td>
<td>-101</td>
</tr>
<tr>
<td>FU n° 4</td>
<td>115</td>
<td>2.7</td>
<td>2.87</td>
<td>2.0</td>
<td>1</td>
<td>9</td>
<td>114</td>
<td>-425.7</td>
<td>303.90</td>
<td>-332.3</td>
<td>-1866</td>
<td>-108</td>
</tr>
<tr>
<td>FU n° 5</td>
<td>98</td>
<td>2.4</td>
<td>2.73</td>
<td>1.0</td>
<td>1</td>
<td>9</td>
<td>97</td>
<td>-411.7</td>
<td>289.00</td>
<td>-332.0</td>
<td>-1866</td>
<td>-115</td>
</tr>
<tr>
<td>FU n° 6</td>
<td>81</td>
<td>2.4</td>
<td>2.78</td>
<td>1.0</td>
<td>1</td>
<td>9</td>
<td>80</td>
<td>-418.2</td>
<td>333.03</td>
<td>-321.0</td>
<td>-1866</td>
<td>-116</td>
</tr>
<tr>
<td>FU n° 7</td>
<td>91</td>
<td>2.1</td>
<td>2.47</td>
<td>1.0</td>
<td>1</td>
<td>9</td>
<td>89</td>
<td>-408.2</td>
<td>304.02</td>
<td>-326.2</td>
<td>-1866</td>
<td>-101</td>
</tr>
<tr>
<td>FU n° 8</td>
<td>109</td>
<td>2.0</td>
<td>2.29</td>
<td>1.0</td>
<td>1</td>
<td>9</td>
<td>107</td>
<td>-427.9</td>
<td>304.59</td>
<td>-335.0</td>
<td>-1866</td>
<td>-115</td>
</tr>
<tr>
<td>FU n° 9</td>
<td>85</td>
<td>2.3</td>
<td>2.64</td>
<td>1.0</td>
<td>1</td>
<td>9</td>
<td>84</td>
<td>-405.8</td>
<td>318.94</td>
<td>-313.5</td>
<td>-1866</td>
<td>-115</td>
</tr>
<tr>
<td>FU n° 10</td>
<td>73</td>
<td>1.9</td>
<td>2.35</td>
<td>1.0</td>
<td>1</td>
<td>9</td>
<td>73</td>
<td>-414.9</td>
<td>320.46</td>
<td>-332.0</td>
<td>-1866</td>
<td>-115</td>
</tr>
<tr>
<td>FU n° 11</td>
<td>63</td>
<td>1.9</td>
<td>2.15</td>
<td>1.0</td>
<td>1</td>
<td>9</td>
<td>63</td>
<td>-438.2</td>
<td>340.46</td>
<td>-335.0</td>
<td>-1866</td>
<td>-115</td>
</tr>
<tr>
<td>FU n° 12</td>
<td>47</td>
<td>2.1</td>
<td>2.68</td>
<td>1.0</td>
<td>1</td>
<td>9</td>
<td>47</td>
<td>-410.4</td>
<td>320.92</td>
<td>-332.0</td>
<td>-1672</td>
<td>-115</td>
</tr>
<tr>
<td>FU n° 13</td>
<td>22</td>
<td>1.9</td>
<td>2.33</td>
<td>1.0</td>
<td>1</td>
<td>9</td>
<td>22</td>
<td>-351.0</td>
<td>285.91</td>
<td>-298.0</td>
<td>-1497</td>
<td>-115</td>
</tr>
<tr>
<td>FU n° 14</td>
<td>17</td>
<td>1.6</td>
<td>1.93</td>
<td>1.0</td>
<td>1</td>
<td>9</td>
<td>17</td>
<td>-406.9</td>
<td>312.96</td>
<td>-398.0</td>
<td>-1497</td>
<td>-115</td>
</tr>
<tr>
<td>FU n° 15</td>
<td>4</td>
<td>3.0</td>
<td>4.00</td>
<td>1.0</td>
<td>1</td>
<td>9</td>
<td>4</td>
<td>-432.5</td>
<td>81.55</td>
<td>-431.5</td>
<td>-532</td>
<td>-335</td>
</tr>
</tbody>
</table>
R-DHAP arm

<table>
<thead>
<tr>
<th></th>
<th>Actual values</th>
<th></th>
<th>Change from baseline</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean</td>
<td>Std</td>
<td>Median</td>
</tr>
<tr>
<td>Baseline</td>
<td>228</td>
<td>455.4</td>
<td>346.59</td>
<td>354.0</td>
</tr>
<tr>
<td>FU n°1</td>
<td>144</td>
<td>3.2</td>
<td>3.19</td>
<td>2.0</td>
</tr>
<tr>
<td>FU n°2</td>
<td>147</td>
<td>2.6</td>
<td>2.73</td>
<td>2.0</td>
</tr>
<tr>
<td>FU n°3</td>
<td>114</td>
<td>2.9</td>
<td>3.04</td>
<td>2.0</td>
</tr>
<tr>
<td>FU n°4</td>
<td>104</td>
<td>2.6</td>
<td>2.89</td>
<td>1.0</td>
</tr>
<tr>
<td>FU n°5</td>
<td>90</td>
<td>2.4</td>
<td>2.65</td>
<td>1.0</td>
</tr>
<tr>
<td>FU n°6</td>
<td>71</td>
<td>2.8</td>
<td>3.13</td>
<td>1.0</td>
</tr>
<tr>
<td>FU n°7</td>
<td>84</td>
<td>2.1</td>
<td>2.30</td>
<td>1.0</td>
</tr>
<tr>
<td>FU n°8</td>
<td>96</td>
<td>2.2</td>
<td>2.61</td>
<td>1.0</td>
</tr>
<tr>
<td>FU n°9</td>
<td>93</td>
<td>1.9</td>
<td>2.23</td>
<td>1.0</td>
</tr>
<tr>
<td>FU n°10</td>
<td>75</td>
<td>1.6</td>
<td>1.81</td>
<td>1.0</td>
</tr>
<tr>
<td>FU n°11</td>
<td>63</td>
<td>1.5</td>
<td>1.72</td>
<td>1.0</td>
</tr>
<tr>
<td>FU n°12</td>
<td>52</td>
<td>1.9</td>
<td>2.37</td>
<td>1.0</td>
</tr>
<tr>
<td>FU n°13</td>
<td>34</td>
<td>2.8</td>
<td>3.21</td>
<td>1.0</td>
</tr>
<tr>
<td>FU n°14</td>
<td>25</td>
<td>1.9</td>
<td>2.19</td>
<td>1.0</td>
</tr>
<tr>
<td>FU n°15</td>
<td>14</td>
<td>2.4</td>
<td>2.84</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Table 6.7-14 Monoclonal component at relapse diagnosis (induction safety population)

<table>
<thead>
<tr>
<th>Monoclonal component</th>
<th>Actual arm of induction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARM A / R-ICE</td>
</tr>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Yes</td>
<td>4</td>
</tr>
<tr>
<td>No</td>
<td>186</td>
</tr>
<tr>
<td>Total</td>
<td>190</td>
</tr>
</tbody>
</table>

Table 6.7-15 Serologies at relapse diagnosis (induction safety population)

<table>
<thead>
<tr>
<th>Actual arm of induction</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM A / R-ICE</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>HIV Serology</td>
</tr>
<tr>
<td>NEGATIVE</td>
</tr>
<tr>
<td>NOT DONE</td>
</tr>
<tr>
<td>HCV Serology</td>
</tr>
<tr>
<td>NEGATIVE</td>
</tr>
<tr>
<td>POSITIVE</td>
</tr>
<tr>
<td>NOT DONE</td>
</tr>
<tr>
<td>HBs Ag Serology</td>
</tr>
<tr>
<td>NEGATIVE</td>
</tr>
<tr>
<td>POSITIVE</td>
</tr>
<tr>
<td>NOT DONE</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>HBs vaccination</td>
</tr>
<tr>
<td>No</td>
</tr>
<tr>
<td>Yes</td>
</tr>
<tr>
<td>Not Done</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>
6.7.7. Vital signs

Table 6.7-16 LVEF value at relapse diagnosis (induction safety population)

<table>
<thead>
<tr>
<th>LVEF value (%)</th>
<th>Actual arm of induction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARM A / R-ICE</td>
</tr>
<tr>
<td>N</td>
<td>164</td>
</tr>
<tr>
<td>Mean</td>
<td>62.0</td>
</tr>
<tr>
<td>Std</td>
<td>8.23</td>
</tr>
<tr>
<td>Median</td>
<td>62.0</td>
</tr>
<tr>
<td>Min</td>
<td>32</td>
</tr>
<tr>
<td>Max</td>
<td>89</td>
</tr>
</tbody>
</table>

Table 6.7-17 Cardiac exams at relapse diagnosis (induction safety population)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>ECG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>154</td>
<td>157</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>69</td>
</tr>
<tr>
<td>Abnormal</td>
<td>17</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>Not done</td>
<td>65</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>21</td>
</tr>
<tr>
<td>Total</td>
<td>236</td>
<td>226</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Echocardiography/isotopic method</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>167</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>71</td>
<td>68</td>
</tr>
<tr>
<td>Abnormal</td>
<td>27</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>Not done</td>
<td>41</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>19</td>
</tr>
<tr>
<td>Total</td>
<td>235</td>
<td>227</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 6.7-18 Other exams at relapse diagnosis (induction safety population)

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>ARM A / R-ICE</th>
<th>ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Other exams baseline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>204</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>88</td>
<td>85</td>
</tr>
<tr>
<td>Yes</td>
<td>29</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>233</td>
<td>223</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
PROTOCOL CORAL: 50-03B / STATISTICAL REPORT: ANALYSIS OF MAINTENANCE PART

RANDOMIZED STUDY OF ICE PLUS RITUXIMAB (R-ICE) versus DHAP PLUS RITUXIMAB (R-DHAP) IN PREVIOUSLY TREATED PATIENTS WITH CD 20 POSITIVE DIFFUSE LARGE B-CELL LYMPHOMA, ELIGIBLE FOR TRANSPLANTATION FOLLOWED BY RANDOMIZED MAINTENANCE TREATMENT WITH RITUXIMAB

Phase III clinical trial

SPONSOR:

GELARC: Groupe d’Etude des Lymphomes de l’Adulte – Recherche Clinique

- CHU Saint Louis – Centre Hayem – 75475 Paris cedex 10 - France
- ☏: +33(0)1 42 49 98 11 Fax: +33(0)1 42 49 99 72

INTERGROUP PROTOCOL COORDINATOR/CHAIRMAN:

Pr Christian Gisselbrecht

Hôpital Saint Louis – Centre Hayem
1, avenue Claude Vellefaux 75010 Paris - France

- ☏: +33 (0)1 42 49 98 11
- Fax: +33 (0)1 42 49 99 72
- christian.gisselbrecht@sls.ap-hop-paris.fr

BIOSTATISTICS:

Marion FOURNIER

GELARC

CH Lyon Sud Bât. 6D
69310 Pierre-Bénite - France

- ☏: +33 (0)4 72 66 93 33
- Fax: +33 (0)4 72 66 93 71
- marion.fournier@gelarc.org
Table of contents

1. INVESTIGATIONAL PLAN ... 11
 1.1. Overall study design ... 11
 1.2. Study objectives .. 11
 1.2.1. Primary objective ... 11
 1.2.2. Secondary objectives .. 11

2. STATISTICAL METHODOLOGY ... 11
 2.1. Statistical methods ... 11
 2.2. Determination of sample size ... 12
 2.3. Interim analysis .. 12

3. STUDY PATIENTS .. 13
 3.1. Disposition of patients .. 13
 3.2. Patients recruitment ... 16
 3.3. Protocol deviations .. 18
 3.3.1. Protocol violations .. 18
 3.3.2. Withdrawals ... 18

4. EFFICACY EVALUATION ... 19
 4.1. Eligible patients for analysis ... 19
 4.2. Baseline data ... 23
 4.2.1. Demography .. 23
 4.2.2. Initial diagnosis .. 24
 4.2.3. Initial treatment .. 28
 4.2.4. Progression/relapse diagnosis .. 30
 4.2.5. Medical history ... 37
 4.2.6. Concomitant treatments ... 37
 4.3. Evaluation after induction treatment .. 38
 4.4. Follow-up .. 44
 4.5. Efficacy results .. 45
 4.5.1. Primary criterion .. 45
 4.5.2. Secondary criteria .. 49
 4.5.2.1. Progression-Free Survival ... 49
 4.5.2.2. Overall Survival ... 51
 4.5.2.3. Response at the end of maintenance .. 54
 4.5.3. Exploratory analyses .. 56
 4.5.3.1. Subgroup analysis .. 56
 4.5.3.1.1. By induction treatment ... 56
 4.5.3.2. Prognostic factors .. 62
 4.5.3.2.1. According to response after induction .. 68
 4.5.3.2.2. According to prior rituximab ... 72
 4.5.3.2.3. According to failure from diagnosis .. 77
 4.5.3.2.4. According to age-adjusted IPI (at relapse) ... 81
 4.5.3.3. Multivariate Cox models .. 85
 4.5.4. Non study or new treatment out of progression .. 86
 4.5.5. Progression/relapse ... 87

5. SAFETY EVALUATION ... 91
 5.1. Extent of exposure to trial medication ... 91
 5.2. Adverse events ... 94
 5.2.1. Overview of toxicity profile ... 94
 5.2.2. Description of adverse events ... 99
 5.2.3. Corrective treatments ... 116
 5.3. Deaths and other serious adverse events .. 117
 5.3.1. Serious adverse events .. 117
 5.3.1.1. Description of serious adverse events .. 117
 5.3.1.2. Corrective treatments .. 128
 5.3.2. Deaths .. 129
 5.4. Clinical laboratory evaluation .. 135
 5.5. Vitals signs, physical finding and other observations related to safety 137

6. TABLES, LISTINGS AND FIGURES NOT INCLUDED IN THE REPORT 138
 6.1. Withdrawals ... 138
 6.2. Initial treatment .. 144
6.3. Progression/relapse diagnosis ... 146
6.4. Evaluation after complete induction treatment 154
6.5. Follow-up .. 156
6.6. Efficacy results ... 157
 6.6.1. Secondary criteria ... 157
 6.6.2. Non study or new treatment out of progression 160
 6.6.3. Progression/relapse ... 160
6.7. Safety evaluation ... 173
 6.7.1. Extent of exposure to trial medication 173
 6.7.2. Overview of toxicity profile .. 174
 6.7.3. Serious adverse events .. 189
 6.7.4. Laboratory tests ... 194
 6.7.5. Vital signs .. 204
List of Tables, Listings and Figures

Listing 3.1-1 Patients with CRF not recovered ... 13
Figure 3.1-1 Disposition of patients according to arm of 1st randomization 14
Figure 3.1-2 Disposition of patients according to arm of 2nd randomization 15
Table 3.2-1 Criteria exceptions (MITT) ... 16
Table 3.2-2 Inclusion criteria (MITT) ... 16
Table 3.2-3 Exclusion criteria (MITT) ... 17
Listing 3.2-1 Criteria not fulfilled (MITT) ... 17
Table 3.3-1 Withdrawals from study (MITT) .. 18
Table 3.3-2 Reason of withdrawal from study (MITT) .. 18
Table 4.1-1 Eligible patients for analysis per efficacy populations............................ 20
Table 4.1-2 Eligible patients for analysis per safety populations............................... 21
Listing 4.1-1 Patients excluded from MITT/safety populations 21
Listing 4.1-2 Patients excluded from maintenance safety population 22
Listing 4.1-3 Patients with actual arm for maintenance treatment different from randomized 22
Table 4.2-1 Demography (MITT) .. 23
Table 4.2-2 Age by category and sex ratio (MITT) .. 23
Table 4.2-3 Time between initial diagnosis and 1st randomization (MITT) 24
Table 4.2-4 Time between initial diagnosis and 1st randomization by category 24
Table 4.2-5 Characteristics at initial diagnosis (MITT) ... 24
Table 4.2-6 International Prognostic Index and individual factors at initial diagnosis (MITT) ... 25
Table 4.2-7 p-values of Chi-2 test for characteristics at initial diagnosis (MITT) 26
Table 4.2-8 Anatomopathological report at initial diagnosis - review (MITT) 26
Table 4.2-9 Anatomopathological report at initial diagnosis – review or if missing, local (MITT) 27
Table 4.2-10 Time between initial treatment and 1st randomization (MITT) 28
Table 4.2-11 Characteristics of initial treatment (MITT) ... 29
Table 4.2-12 Response at 1st line (MITT) ... 29
Table 4.2-13 p-value of Chi-2 test for response after 1st line (MITT) 29
Table 4.2-14 Time intervals with progression/relapse diagnosis (MITT) 30
Table 4.2-15 Characteristics at relapse (MITT) .. 30
Table 4.2-16 Number of extra nodal sites at relapse (MITT) .. 31
Table 4.2-17 International Prognostic Index and individual factors at relapse (MITT) 32
Table 4.2-18 p-values of Chi-2 test for individual factors of IPI at progression/relapse diagnosis (MITT) 33
Table 4.2-19 Other characteristics at relapse (MITT) .. 33
Table 4.2-20 Bone marrow biopsy at relapse (MITT) .. 33
Table 4.2-21 PET scan at relapse (MITT) ... 33
Table 4.2-22 Number of sites used for response evaluation at relapse diagnosis (MITT) ... 34
Table 4.2-23 Anatomopathological report at relapse - review (MITT) 35
Table 4.2-24 Anatomopathological report at relapse – review or if missing, local (MITT) ... 36
Table 4.2-25 Medical history (MITT) ... 37
Table 4.2-26 Concomitant treatments (MITT) .. 37
Table 4.3-1 Bonemarrow biopsy after induction (MITT) ... 38
Table 4.3-2 PET scan after induction (MITT) ... 38
Table 4.3-3 Number of sites used for response evaluation after induction (MITT) 38
Table 4.3-4 Response after induction (MITT) .. 39
Table 4.3-5 Complete response rate after induction (MITT) 39
Table 4.3-6 Difference between CR rates after induction (MITT) 39
Table 4.3-7 Collection failure (MITT) ... 39
Table 4.3-8 Reason of collection failure (MITT) ... 39
Table 4.3-9 Mobilization – Collected cells (MITT) ... 40
Table 4.3-10 Mobilization – Number of collections (MITT) 40
Table 4.3-11 Mobilization – Source of stem cells (MITT) .. 41
Table 4.3-12 Consolidation – Period of collection (MITT) ... 41
Table 4.3-13 Overall Response Rate adjusted with successful mobilization (MITT) 42
Table 4.3-14 Mobilization Adjusted Response Rate (MITT) 42
Table 4.5-1 Primary criterion – Events for survival analysis (MITT) .. 45
Figure 4.5-1 Primary criterion – Event-Free Survival (MITT) .. 46
Table 4.5-2 Primary criterion – Duration of Event-Free Survival (MITT) .. 46
Table 4.5-3 Primary criterion – Kaplan-Meier estimates for Event-Free Survival (MITT) 46
Figure 4.5-2 Primary criterion – Event-Free Survival according to treatment arm (MITT) 47
Table 4.5-4 Primary criterion – Duration of Event-Free Survival according to treatment arm (MITT) ... 47
Table 4.5-5 Primary criterion – Kaplan-Meier estimates for Event-Free Survival according to treatment arm (MITT) ... 48
Table 4.5-6 Primary criterion – Hazard ratio of rituximab arm for Event-Free Survival (MITT) 48
Table 4.5-7 Primary criterion – Stratified Analysis according to induction treatment and response to induction (CR/CRu vs others) - Hazard ratio of rituximab arm for Event-Free Survival (MITT) ... 48
Figure 4.5-3 Secondary criterion – Progression-Free Survival (MITT) .. 49
Table 4.5-8 Secondary criterion – Duration of Progression-Free Survival (MITT) 49
Table 4.5-9 Secondary criterion – Kaplan-Meier estimates for Progression-Free Survival (MITT) ... 49
Figure 4.5-4 Secondary criterion – Progression-Free Survival according to treatment arm (MITT) ... 50
Table 4.5-10 Secondary criterion – Duration of Progression-Free Survival according to treatment arm (MITT) ... 50
Table 4.5-11 Secondary criterion – Kaplan-Meier estimates for Progression-Free Survival according to treatment arm (MITT) ... 50
Table 4.5-12 Secondary criterion – Hazard ratio of rituximab arm for Progression-Free Survival (MITT) ... 51
Table 4.5-13 Secondary criterion – Stratified Analysis according to induction treatment and response to induction (CR/CRu vs others) - Hazard ratio of rituximab arm for Progression-Free Survival (MITT) ... 51
Figure 4.5-5 Secondary criterion – Overall Survival (MITT) .. 51
Table 4.5-14 Secondary criterion – Duration of Overall Survival (MITT) 52
Table 4.5-15 Secondary criterion – Kaplan-Meier estimates for Overall Survival (MITT) 52
Figure 4.5-6 Secondary criterion – Overall Survival according to treatment arm (MITT) 52
Table 4.5-16 Secondary criterion – Duration of Overall Survival according to treatment arm (MITT) ... 52
Table 4.5-17 Secondary criterion – Kaplan-Meier estimates for Overall Survival according to treatment arm (MITT) ... 53
Table 4.5-18 Secondary criterion – Hazard ratio of rituximab arm for Overall Survival (MITT) 53
Table 4.5-19 Secondary criterion – Stratified Analysis according to induction treatment and response to induction (CR/CRu vs others) - Hazard ratio of rituximab arm for Progression-Free Survival (MITT) ... 53
Table 4.5-20 Secondary criterion – Response at the end of maintenance (MITT) 54
Table 4.5-21 Overall response rate at the end of maintenance (MITT) .. 54
Table 4.5-22 Difference between CR rates at the end of maintenance (MITT) 54
Table 4.5-23 Complete response rate at the end of maintenance (MITT) 54
Table 4.5-24 Difference between CR rates at the end of maintenance (MITT) 54
Table 4.5-25 Secondary criterion – Response at the end of maintenance including all deaths during maintenance period (MITT) ... 55
Table 4.5-26 Overall response rate at the end of maintenance, including all deaths during maintenance period (MITT) ... 55
Table 4.5-27 Difference between CR rates at the end of maintenance, including all deaths during maintenance period (MITT) ... 55
Table 4.5-28 Complete response rate at the end of maintenance, including all deaths during maintenance period (MITT) ... 55
Table 4.5-29 Difference between CR rates at the end of maintenance, including all deaths during maintenance period (MITT) ... 55
Figure 4.5-7 Exploratory analyses – Event-Free Survival according to treatment arm by induction treatment (MITT)

Table 4.5-30 Exploratory analyses – Duration of Event-Free Survival according to treatment arm by induction treatment (MITT)

Table 4.5-31 Exploratory analyses – Kaplan-Meier estimates for Event-Free Survival according to treatment arm by induction treatment (MITT)

Table 4.5-32 Exploratory analyses – Hazard ratio of rituximab arm by induction treatment for Event-Free Survival (MITT)

Figure 4.5-8 Exploratory analyses – Progression-Free Survival according to treatment arm by induction treatment (MITT)

Table 4.5-33 Exploratory analyses – Duration of Progression-Free Survival according to treatment arm by induction treatment (MITT)

Table 4.5-34 Exploratory analyses – Kaplan-Meier estimates for Progression-Free Survival according to treatment arm by induction treatment (MITT)

Table 4.5-35 Exploratory analyses – Hazard ratio of rituximab arm by induction treatment for Progression-Free Survival (MITT)

Figure 4.5-9 Exploratory analyses – Overall Survival according to treatment arm by induction treatment (MITT)

Table 4.5-36 Exploratory analyses – Duration of Overall Survival according to treatment arm by induction treatment (MITT)

Table 4.5-37 Exploratory analyses – Kaplan-Meier estimates for Overall Survival according to treatment arm by induction treatment (MITT)

Table 4.5-38 Exploratory analyses – Hazard ratio of rituximab arm by induction treatment for Overall Survival (MITT)

Figure 4.5-10 Exploratory analyses – Event-Free Survival according to treatment arm by response to induction (MITT)

Table 4.5-39 Exploratory analyses – Duration of Event-Free Survival according to treatment arm by response to induction (MITT)

Table 4.5-40 Exploratory analyses – Kaplan-Meier estimates for Event-Free Survival according to treatment arm by response to induction (MITT)

Table 4.5-41 Exploratory analyses – Hazard ratio of rituximab arm by response to induction for Event-Free Survival (MITT)

Figure 4.5-11 Exploratory analyses – Progression-Free Survival according to treatment arm by response to induction (MITT)

Table 4.5-42 Exploratory analyses – Duration of Progression-Free Survival according to treatment arm by response to induction (MITT)

Table 4.5-43 Exploratory analyses – Kaplan-Meier estimates for Progression-Free Survival according to treatment arm by response to induction (MITT)

Table 4.5-44 Exploratory analyses – Hazard ratio of rituximab arm by response to induction for Progression-Free Survival (MITT)

Figure 4.5-12 Exploratory analyses – Overall Survival according to treatment arm by response to induction (MITT)

Table 4.5-45 Exploratory analyses – Duration of Overall Survival according to treatment arm by response to induction (MITT)

Table 4.5-46 Exploratory analyses – Kaplan-Meier estimates for Overall Survival according to treatment arm by response to induction (MITT)

Table 4.5-47 Exploratory analyses – Hazard ratio of rituximab arm by response to induction for Overall Survival (MITT)

Figure 4.5-13 Exploratory analyses – Event-Free Survival according to response after induction (MITT)

Table 4.5-48 Exploratory analyses – Duration of Event-Free Survival according to response after induction (MITT)

Table 4.5-49 Exploratory analyses – Kaplan-Meier estimates for Event-Free Survival according to response after induction (MITT)

Table 4.5-50 Exploratory analyses – Hazard ratio of CR/CRu after induction for Event-Free Survival (MITT)

Figure 4.5-14 Exploratory analyses – Progression-Free Survival according to response after induction (MITT)
Table 4.5-72 Exploratory analyses – Duration of Overall Survival according to failure from diagnosis (MITT) ... 79
Table 4.5-73 Exploratory analyses – Kaplan-Meier estimates for Overall Survival according to failure from diagnosis (MITT) ... 79
Table 4.5-74 Exploratory analyses – Hazard ratio of CR/CRu after induction for Overall Survival (MITT) ... 79
Figure 4.5-15 Exploratory analyses – Overall Survival according to response after induction (MITT) ... 80
Table 4.5-75 Exploratory analyses – Duration of Overall Survival according to response after induction (MITT) ... 80
Table 4.5-76 Exploratory analyses – Kaplan-Meier estimates for Overall Survival according to response after induction (MITT) ... 80
Table 4.5-77 Exploratory analyses – Hazard ratio of CR/CRu after induction for Overall Survival (MITT) ... 80
Figure 4.5-16 Exploratory analyses – Event-Free Survival according to prior rituximab (MITT) ... 80
Table 4.5-78 Exploratory analyses – Duration of Event-Free Survival according to prior rituximab (MITT) ... 80
Table 4.5-79 Exploratory analyses – Kaplan-Meier estimates for Event-Free Survival according to prior rituximab (MITT) ... 80
Table 4.5-80 Exploratory analyses – Hazard ratio of no prior rituximab for Event-Free Survival (MITT) ... 80
Figure 4.5-17 Exploratory analyses – Progression-Free Survival according to prior rituximab (MITT) ... 80
Table 4.5-81 Exploratory analyses – Duration of Progression-Free Survival according to prior rituximab (MITT) ... 80
Table 4.5-82 Exploratory analyses – Kaplan-Meier estimates for Progression-Free Survival according to prior rituximab (MITT) ... 80
Table 4.5-83 Exploratory analyses – Hazard ratio of no prior rituximab for Progression-Free Survival (MITT) ... 80
Figure 4.5-18 Exploratory analyses – Overall Survival according to prior rituximab (MITT) ... 80
Table 4.5-84 Exploratory analyses – Duration of Overall Survival according to prior rituximab (MITT) ... 80
Table 4.5-85 Exploratory analyses – Kaplan-Meier estimates for Overall Survival according to prior rituximab (MITT) ... 80
Table 4.5-86 Exploratory analyses – Hazard ratio of no prior rituximab for Overall Survival (MITT) ... 80
Figure 4.5-19 Exploratory analyses – Event-Free Survival according to failure from diagnosis (MITT) ... 80
Table 4.5-87 Exploratory analyses – Duration of Event-Free Survival according to failure from diagnosis (MITT) ... 80
Table 4.5-88 Exploratory analyses – Kaplan-Meier estimates for Event-Free Survival according to failure from diagnosis (MITT) ... 80
Table 4.5-89 Exploratory analyses – Hazard ratio of failure from diagnosis <12 months for Event-Free Survival (MITT) ... 80
Figure 4.5-20 Exploratory analyses – Progression-Free Survival according to failure from diagnosis (MITT) ... 80
Table 4.5-90 Exploratory analyses – Duration of Progression-Free Survival according to failure from diagnosis (MITT) ... 80
Table 4.5-91 Exploratory analyses – Kaplan-Meier estimates for Progression-Free Survival according to failure from diagnosis (MITT) ... 80
Table 4.5-92 Exploratory analyses – Hazard ratio of no failure from diagnosis <12 months for Progression-Free Survival (MITT) ... 80
Figure 4.5-21 Exploratory analyses – Overall Survival according to failure from diagnosis (MITT) ... 80
Table 4.5-93 Exploratory analyses – Duration of Overall Survival according to failure from diagnosis (MITT) ... 80
Table 4.5-94 Exploratory analyses – Kaplan-Meier estimates for Overall Survival according to failure from diagnosis (MITT) ... 80
Table 4.5-74 Exploratory analyses – Hazard ratio of no failure from diagnosis<12 months for Overall Survival (MITT) ... 81
Figure 4.5-22 Exploratory analyses – Event-Free Survival according to age-adjusted IPI (MITT) ... 81
Table 4.5-75 Exploratory analyses – Duration of Event-Free Survival according to age-adjusted IPI (MITT) .. 81
Table 4.5-76 Exploratory analyses – Kaplan-Meier estimates for Event-Free Survival according to age-adjusted IPI (MITT) ... 82
Table 4.5-77 Exploratory analyses – Hazard ratio of no age-adjusted IPI for Event-Free Survival (MITT) .. 82
Figure 4.5-23 Exploratory analyses – Progression-Free Survival according to age-adjusted IPI (MITT) ... 83
Table 4.5-78 Exploratory analyses – Duration of Progression-Free Survival according to age-adjusted IPI (MITT) .. 83
Table 4.5-79 Exploratory analyses – Kaplan-Meier estimates for Progression-Free Survival according to age-adjusted IPI (MITT) ... 83
Table 4.5-80 Exploratory analyses – Hazard ratio of no age-adjusted IPI for Progression-Free Survival (MITT) ... 83
Figure 4.5-24 Exploratory analyses – Overall Survival according to age-adjusted IPI (MITT). 84
Table 4.5-81 Exploratory analyses – Duration of Overall Survival according to age-adjusted IPI (MITT) ... 84
Table 4.5-82 Exploratory analyses – Kaplan-Meier estimates for Overall Survival according to age-adjusted IPI (MITT) ... 85
Table 4.5-83 Exploratory analyses – Hazard ratio of no age-adjusted IPI for Overall Survival (MITT) ... 85
Table 4.5-84 Exploratory analyses – Multivariate Cox model for Event-Free Survival (MITT) 85
Table 4.5-85 Exploratory analyses – Multivariate Cox model for Progression-Free Survival (MITT) ... 85
Table 4.5-86 Exploratory analyses – Multivariate Cox model for Overall Survival (MITT) 86
Table 4.5-87 Patients with non study or new treatment out of progression (MITT) 86
Table 4.5-88 Type of non study or new treatment out of progression (MITT) 86
Table 4.5-89 Patients with progression/relapse (MITT) .. 87
Table 4.5-90 Progression/relapse n°1 – Period (MITT) ... 87
Table 4.5-91 Progression/relapse n°1 – Involvement (MITT) .. 88
Table 4.5-92 Progression/relapse n°1 – Individual factors of IPI (MITT) 88
Table 4.5-93 Progression/relapse n°1 – Progression/relapse treatment (MITT) 89
Table 4.5-94 Progression/relapse n°1 – Type of progression/relapse treatment (MITT) 89
Table 4.5-95 Progression/relapse n°1 – Response after additional treatments (MITT) 90
Table 5.1-1 Number of maintenance visits (MSAP) .. 91
Table 5.1-2 Last maintenance visit (MSAP) ... 91
Table 5.1-3 Time between maintenance visits (MSAP) .. 92
Table 5.1-4 Maintenance - Percentage of planned dose received by cycle for rituximab (MSAP) .. 93
Table 5.2-1 Incidence of toxicities during consolidation phase (MSAP) 94
Table 5.2-2 Patients with RBC and platelets transfusions during consolidation (MSAP) 95
Table 5.2-3 Time intervals for hematological recovery after transplant (MSAP) 95
Table 5.2-4 Incidence of toxicities by worst grade per patient during maintenance phase (MSAP) .. 96
Table 5.2-5 Patients with neutrophils <1 G/L during M3-M12 post transplant (MSAP) 98
Table 5.2-5 Patients with neutrophils <1 G/L during M3-M12 post transplant, excluding values after additional treatment (MSAP) .. 98
Table 5.2-6 Patients with RBC and platelets transfusions during maintenance (MSAP) 98
Table 5.2-7 Patients with at least one AE (MSAP) ... 99
Table 5.2-8 Summary of adverse events by frequency of SOC and PT (MSAP) 100
Table 5.2-9 Summary of adverse events within 100 days after ASCT by frequency of SOC and PT (MSAP) ... 104
Table 5.2-10 Summary of adverse events more than 100 days after ASCT by frequency of SOC and PT (MSAP) ... 108
Table 5.2-11 Characteristics of adverse events (MSAP) 112
Table 5.2-12 Action taken with study drugs due to AEs (MSAP)..............................113
Table 5.2-13 Characteristics of adverse events within 100 days after ASCT (MSAP) ...113
Table 5.2-14 Action taken with study drugs due to AEs within 100 days after ASCT (MSAP) ...114
Table 5.2-15 Characteristics of adverse events more than 100 days after ASCT (MSAP) ...114
Table 5.2-16 Action taken with study drugs due to AEs more than 100 days after ASCT (MSAP) ...115
Table 5.2-17 Patients with corrective treatment (MSAP) ..116
Table 5.2-18 Corrective treatments for AE (MSAP)..116
Table 5.3-1 Patients with SAE (MSAP) ...117
Listing 6.7-3 Serious adverse events with fatal outcome (MSAP)..........................118
Table 5.3-2 Summary of serious adverse events by frequency of SOC and PT (MSAP) ...119
Table 5.3-3 Summary of serious adverse events within 100 days after ASCT by frequency of SOC and PT (MSAP)...120
Table 5.3-4 Summary of serious adverse events more than 100 days after ASCT by frequency of SOC and PT (MSAP)...123
Table 5.3-5 Characteristics of SAEs (MSAP) ..125
Table 5.3-6 Action taken with study drugs due to SAE (MSAP)...............................126
Table 5.3-7 Characteristics of SAEs within 100 days after ASCT (MSAP).................126
Table 5.3-8 Action taken with study drugs due to SAE within 100 days after ASCT (MSAP) ...127
Table 5.3-9 Characteristics of SAEs more than 100 days after ASCT (MSAP)127
Table 5.3-10 Action taken with study drugs due to SAE more than 100 days after ASCT (MSAP) ...128
Table 5.3-11 Patients with corrective treatment (MSAP) ..129
Table 5.3-12 Corrective treatments for AE (MSAP)..128
Table 5.3-13 Summary of deaths (MSAP) ...129
Table 5.3-14 Cause of death (MSAP) ...129
Listing 5.3-1 Deaths (MSAP) ..130
Table 5.4-1 Summary of laboratory tests at relapse diagnosis (MSAP)135
Table 5.4-2 Serum electrophoresis values at relapse diagnosis (induction safety population) 137
Listing 6.1-1 Withdrawals (MITT)...139
Listing 6.2-1 Initial treatment - Patients with other chemotherapy (MITT)144
Listing 6.2-2 Initial treatment – Doses of radiotherapy (MITT)...............................144
Table 6.3-1 Nodal involvement (MITT) ...146
Listing 6.3-1 Other nodal involvement localizations (MITT).................................148
Table 6.3-2 Extra-nodal involvement (MITT) ...149
Listing 6.3-2 Other extra-nodal involvement localizations (MITT).........................152
Table 6.3-3 Codification of sites used for response evaluation at relapse diagnosis, sorted by most frequent (MITT)...153
Table 6.4-1 Codification of sites used for response evaluation after induction treatment, sorted by most frequent (MITT)...154
Listing 6.5- Patients who died durin maintenance period (MITT)156
Listing 6.6-1 Patients who died durin maintenance period (MITT)157
Listing 6.6-2 New treatment out of progression - Chemotherapy (MITT)..............160
Listing 6.6-3 New treatment out of progression - Radiotherapy (MITT)..............160
Table 6.6-1 Progression/relapse n°1 – Extra-nodal involvement (MITT)160
Table 6.6-2 Progression/relapse n°1 – Nodal involvement (MITT).........................162
Listing 6.6-4 Progression/relapse n°1 – Other nodal involvement (MITT)164
Table 6.6-3 Progression/relapse n°1 – Details of extra-nodal involvement (MITT)164
Listing 6.6-5 Progression/relapse n°1 – Other extra-nodal involvement (MITT)167
Table 6.6-4 Progression/relapse n°1 – Documentation (MITT)............................168
Listing 6.6-6 Progression/relapse n°1 – Chemotherapy (MITT).........................168
Listing 6.6-7 Progression/relapse n°1 – Radiotherapy (MITT).........................170
Listing 6.6-8 Progression/relapse n°1 – Immunotherapy (MITT)......................170
Listing 6.6-9 Progression/relapse n°1 – Transplant (MITT).................................171
Listing 6.6-10 Progression/relapse n°1 – Other treatments (MITT).......................172
Table 6.7-1 Maintenance – Frequency of percentage of planned dose received by cycle for Rituximab (MSAP) ...173
Table 6.7-2 Incidence of maintenance toxicities by grade and cycle (MSAP)175
Listing 6.7-1 Other toxicities during maintenance (MSAP)183
Listing 6.7-2 Serious adverse events declared to Pharmacovigilance department but not present in clinical database..189
Listing 6.7-3 Serious adverse events within 100 days after ASCT (MSAP)189
Listing 6.7-4 Serious adverse events more than 100 days after ASCT (MSAP)192
Table 6.7-3 Hemoglobin (MSAP)..194
Table 6.7-4 Leukocytes (MSAP)..196
Table 6.7-5 Neutrophils (MSAP)..198
Table 6.7-6 Platelets (MSAP)..200
Table 6.7-7 LDH (MSAP)..202
Table 6.7-8 Monoclonal component at relapse diagnosis (MSAP)..203
Table 6.7-9 Serologies at relapse diagnosis (MSAP)..203
Table 6.7-10 LVEF value at relapse diagnosis (MSAP)...204
Table 6.7-11 Cardiac exams at relapse diagnosis (MSAP)..204
Table 6.7-12 Other exams at relapse diagnosis (MSAP)..204

LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE</td>
<td>Adverse Event</td>
</tr>
<tr>
<td>CRF</td>
<td>Case Report Form</td>
</tr>
<tr>
<td>MITT</td>
<td>Full Analysis Set</td>
</tr>
<tr>
<td>ITT</td>
<td>Intent-to-Treat</td>
</tr>
<tr>
<td>Max</td>
<td>Maximum</td>
</tr>
<tr>
<td>Min</td>
<td>Minimum</td>
</tr>
<tr>
<td>Q1</td>
<td>First quartile</td>
</tr>
<tr>
<td>Q3</td>
<td>Third quartile</td>
</tr>
<tr>
<td>SAE</td>
<td>Serious Adverse Event</td>
</tr>
<tr>
<td>Std</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>vs</td>
<td>versus</td>
</tr>
<tr>
<td>95% CI</td>
<td>95% Confidence Interval</td>
</tr>
</tbody>
</table>
1. INVESTIGATIONAL PLAN

1.1. Overall study design

This study is a multicenter, phase III open-label, randomized trial evaluating the efficacy of R-ICE compared to R-DHAP in patients aged from 18 to 65 years with previously treated diffuse large B-cell lymphoma, followed by high-dose chemotherapy +/- rituximab maintenance therapy. There will be two phases in the study and patients will undergo two randomizations according to induction phase or maintenance phase.

1.2. Study objectives

1.2.1. Primary objective

Part I (induction chemotherapy): Overall response rate (CR and PR) after 2 and/or 3 cycles of ICE+Rituximab in comparison to DHAP+rituximab, adjusted to successful mobilization of stem cells in patients aged from 18 to 65 years with previously treated diffuse large B-cell lymphoma CD20.

Part II (Maintenance vs. observation): Event free survival (EFS) at 2 years after autotransplant with or without maintenance therapy with rituximab. Events are defined as death from any cause, relapse for complete responders and unconfirmed complete responders (CRu), progression during or after treatment for partial responders, and institution of new antilymphoma therapy. The absence of transplantation procedure will be not considered as an event for the intent to treat analysis.

1.2.2. Secondary objectives

- Eligibility for transplant, (independent from whether transplantation was done or not) transplantation done or not.
- Safety toxicities.
- Event-Free Survival, Progression-Free Survival and Overall Survival for the whole randomized population, for patients submitted to ASCT.
- Progression-Free Survival and Overall Survival for patients randomized in maintenance.

2. STATISTICAL METHODOLOGY

2.1. Statistical methods

Statistical analysis was planned and performed as it follows:

Descriptive statistics

Quantitative variables were summarized in tables displaying sample size, mean, standard deviation, median, range; quartiles were presented when considered relevant.

Qualitative variables were described in terms of frequencies of each response category and frequencies converted into percentages of the number of patients or adverse events examined depending on the statistical unit under investigation.

Censored data were presented as Kaplan-Meier plots of time to first event and summary tables of Kaplan-Meier estimates for criterion rates at fixed time points, with 95% CIs. The median time to event was calculated (if reached) with 95% CIs. Estimates of the treatment effect were expressed as hazard ratios based on the Cox regression with 95% confidence interval.
Statistical inference

Statistical tests were two-sided and performed using a 5% level of significance. 95% confidence intervals were also presented when considered relevant. Survival endpoints were analyzed using the log rank test (unstratified) and Cox model for corresponding hazard ratio and p-value of treatment effect and multivariate models. The number and proportion of responders and non responders in each treatment group, together with the two-sided 95% Pearson-Clopper CI were presented, as well as the difference between proportion, the two-sided 95% asymptotic confidence interval and p-value of chi-square test.

All statistical analyses were carried out with SAS 9.1.3 software (SAS Institute, Cary, NC).

2.2. Determination of sample size

Part I induction:
The primary end point is mobilization adjusted response rate after 3 cycles of chemotherapy and it is expected to detect a difference in mobilization adjusted response rate of 15% between R-ICE 60% (75% response rate and 15% mobilization failure) and R-DHAP 45% (65% response rate and 20% mobilization failure) with a 82% power at 5% significance level. 400 patients should be randomized between the two chemotherapy arms. Initially 400 patients are to be randomised 1:1 to either R-ICE or R-DHAP.

It was expected that 40% of these patients will either not achieve Complete Response or Partial Response or drop-out before ASCT. Immediately prior to ASCT it was expected that there will be 240 patients (400 x 60%) available for second randomisation (1:1) into the maintenance or mabthera arms. First safety analysis on 100 patients (reviewed by DSMC on 14th November 2005) and first interim analysis on 200 patients (18th April 2007) showed that the drop-out rate is 50%. Then, in order to keep the planned power with 240 patients for the maintenance or mabthera arms, we increase the initial sample size from 400 to 480 (240 each)

Part II maintenance:
The primary endpoint of event free survival (EFS) was used to assess sample size. If we wish to detect after transplantation a change in the 2 year event-free of 15% in favor of the MabThera arm 65% versus no maintenance 50%, 240 patients transplanted, randomized 1:1 between the two treatment groups recruited over 3 years and followed for a minimum of two years, will provide 80% power at the overall 5% (2-sided) significance level to detect the expected difference.

2.3. Interim analysis

An interim analysis of the two parts, response rate and EFS efficacy parameter was planned after 200 patients, necessitating an adjustment of the nominal significance (α-level) for the final analysis to maintain the overall global significance level. The O’Brien-Fleming adjustment will be used to partition the α-level with α=0.003 at the first interim for response and α=0.05 at the final analysis. An interim analysis of the primary efficacy parameter was planned after the inclusion of 200 patients leading to 100 patients randomized to the maintenance treatment. It necessitates an adjustment of the nominal significance (α-level) for the final analysis to maintain the overall global significance level. The O’Brien-Fleming adjustment will be used to partition the α-level with α=8.10^-5 (40 events) at the first interim and α=0.05 at the final analysis. The expected number of events during the five years is 140 to 145.
3. STUDY PATIENTS

3.1. Disposition of patients

The whole set of 481 patients was first randomized from July 24, 2003 to June 30, 2008 (approximately five years of enrollment). 245 patients were then randomized in the 2nd part of the study from October 21, 2003 to October 21, 2008.

Nevertheless, CRFs for 4 patients could not be recovered.

Listing 3.1-1 Patients with CRF not recovered

<table>
<thead>
<tr>
<th>Arm of treatment=ARM A / R-ICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomization Number</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>5003620201405</td>
</tr>
<tr>
<td>5003631201412</td>
</tr>
</tbody>
</table>

N = 3

<table>
<thead>
<tr>
<th>Arm of treatment=ARM B / R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomization Number</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>5003613301404</td>
</tr>
</tbody>
</table>

N = 1

Thus, 477 patients, 243 from R-ICE arm and 234 from R-DHAP arm, are evaluable for induction part, and 242 patients, 122 from the rituximab arm and 120 from the observation arm, are evaluable for maintenance part of the study.

This report deals with analysis of the maintenance part of the study.

The following flowcharts describe the disposition of patients during the whole study.
Figure 3.1-1 Disposition of patients according to arm of 1st randomization

Randomized patients
N = 481

CRF not recovered
N = 4

Evaluable patients
N = 477

R-ICE
N = 243

No study treatment received
N = 4
(one death, 3 protocol violations)

R-DHAP
N = 234

No study treatment received
N = 4
(one death, one protocol violation, 2 patient voluntary withdrawals)

Received study treatment
N = 239

Received study treatment
N = 230

Withdrawn during induction
N = 34
(14 after C1, 19 after C2)
(24 for induction treatment failure, 4 for treatment toxicity, 5 for death, one other reason, one unknown)

Withdrawn during induction
N = 34
(14 after C1, 19 after C2)
(24 for induction treatment failure, 4 for treatment toxicity, 5 for death, one other reason)

Completed induction phase
N = 205
(one pt with only 2 cycles)

Completed induction phase
N = 196

Withdrawn during induction but after 3 cycles
N = 82
(74 for induction treatment failure, 1 protocol violation, 1 death, 1 voluntary withdrawal, 5 other reasons)

Withdrawn during induction but after 3 cycles
N = 64
(49 for induction treatment failure, 6 treatment toxicity, 2 voluntary withdrawal, 1 death, 6 other reason)

Received BEAM+ASCT
N = 123

Received BEAM+ASCT
N = 132

Withdrawn during consolidation
N = 7
(2 deaths, 5 other reasons)

Withdrawn during consolidation
N = 6
(one death, 5 other reasons)

Randomized in maintenance
N = 116
(60 rituximab, 56 observation)

Randomized in maintenance
N = 126
(62 rituximab, 64 observation)
Figure 3.1-2 Disposition of patients according to arm of 2nd randomization

Randomized in maintenance
- N = 245

Evaluable patients
- N = 242

Rituximab
- N = 122
 (60 with R-ICE, 62 with R-DHAP)

Observation
- N = 120
 (56 with R-ICE, 64 with R-DHAP)

No study treatment received
- N = 6
 (2 voluntary withdrawals, one lost to FU after ASCT, one missing withdrawal, 2 not treated with rituximab but maintenance visits)

Switched from rituximab arm
- N = 2

Received study treatment (i.e. at least one injection)
- N = 116

Completed maintenance phase (6 injections)
- N = 78

Received study treatment (i.e. at least one visit)
- N = 119

Completed maintenance phase (6 visits)
- N = 30

No maintenance visit
- N = 3
 (one transplantation failure, one voluntary withdrawal, one missing withdrawal)

CRF not recovered
- N = 3
3.2. Patients recruitment

8 patients (3%) did not respect at least one criterion of inclusion/non inclusion: 5 patients (4%) from rituximab arm and 3 patients (3%) from observation arm.

Table 3.2-1 Criteria exceptions (MITT)

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>AT LEAST ONE CRITERIA EXCEPTION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>117</td>
<td>96</td>
<td>117</td>
</tr>
<tr>
<td>Yes</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL</td>
<td>122</td>
<td>100</td>
<td>120</td>
</tr>
</tbody>
</table>

The following tables details inclusion and non inclusion criteria.

Inclusion criteria
1- Patient with histologically proven, CD20+ diffuse large B cell lymphoma in 1st relapse after CR, less than PR or partial response to first line treatment
2- Aged from 18 to 65 years inclusive
3- Eligible for transplant
4- Previously treated with chemotherapy regimen containing anthracyclin with or without rituximab
5- ECOG performance status ≤ 2
6- With a minimum life expectancy of 3 months
7- Signed informed consent form prior to randomization

The following table presents the number and the percentage of patients respecting or not the inclusion criteria:

Table 3.2-2 Inclusion criteria (MITT)

<table>
<thead>
<tr>
<th>CRITERIA</th>
<th>FULFILLED</th>
<th></th>
<th></th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No</td>
<td>%</td>
<td>Yes</td>
<td>%</td>
</tr>
<tr>
<td>Inclusion Criteria 1</td>
<td>1</td>
<td>0</td>
<td>241</td>
<td>100</td>
</tr>
<tr>
<td>Inclusion Criteria 2</td>
<td>0</td>
<td>0</td>
<td>242</td>
<td>100</td>
</tr>
<tr>
<td>Inclusion Criteria 3</td>
<td>0</td>
<td>0</td>
<td>242</td>
<td>100</td>
</tr>
<tr>
<td>Inclusion Criteria 4</td>
<td>0</td>
<td>0</td>
<td>242</td>
<td>100</td>
</tr>
<tr>
<td>Inclusion Criteria 5</td>
<td>0</td>
<td>0</td>
<td>242</td>
<td>100</td>
</tr>
<tr>
<td>Inclusion Criteria 6</td>
<td>0</td>
<td>0</td>
<td>242</td>
<td>100</td>
</tr>
<tr>
<td>Inclusion Criteria 7</td>
<td>0</td>
<td>0</td>
<td>242</td>
<td>100</td>
</tr>
</tbody>
</table>

Exclusion criteria
1- Burkitt, mantle cell, T-cell lymphoma
2- CD20-negative NHL
3- HIV or HBV disease
4- Central nervous system or meningeal involvement by lymphoma
5- Not previously treated with anthracycline containing regimens
6- Prior transplantation
7- Contraindication to any drug contained in the chemotherapy regimens
8- Any serious active disease or co-morbid medical condition (according to the investigator’s decision)
9- Poor renal function (creatinin level > 150 µmol/l), poor hepatic function (total bilirubin level > 30 mmol/l, transaminases > 2.5 maximum normal level) unless these abnormalities are related to the lymphoma
10- Poor bone marrow reserve as defined by neutrophils < 1.5 G/l or platelets < 100 G/l, unless related to bone marrow infiltration
11- Any history of cancer during the last 5 years, with the exception of non-melanoma skin tumors or stage 0 (in situ) cervical carcinoma
12- Treatment with any investigational drug within 30 days before planned first cycle of chemotherapy and during the study
13- Pregnant woman
14- Adult patient unable to give informed consent because of intellectual impairment

The following table presents the number and the percentage of patients respecting or not the non inclusion criteria:

<table>
<thead>
<tr>
<th>Table 3.2-3 Exclusion criteria (MITT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FULFILLED</td>
</tr>
<tr>
<td>FULFILLED</td>
</tr>
<tr>
<td>Missing</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>CRITERIA</td>
</tr>
<tr>
<td>Exclusion Criteria 1</td>
</tr>
<tr>
<td>Exclusion Criteria 2</td>
</tr>
<tr>
<td>Exclusion Criteria 3</td>
</tr>
<tr>
<td>Exclusion Criteria 4</td>
</tr>
<tr>
<td>Exclusion Criteria 5</td>
</tr>
<tr>
<td>Exclusion Criteria 6</td>
</tr>
<tr>
<td>Exclusion Criteria 7</td>
</tr>
<tr>
<td>Exclusion Criteria 8</td>
</tr>
<tr>
<td>Exclusion Criteria 9</td>
</tr>
<tr>
<td>Exclusion Criteria 10</td>
</tr>
<tr>
<td>Exclusion Criteria 11</td>
</tr>
<tr>
<td>Exclusion Criteria 12</td>
</tr>
<tr>
<td>Exclusion Criteria 13</td>
</tr>
<tr>
<td>Exclusion Criteria 14</td>
</tr>
</tbody>
</table>

Listing 3.2-1 Criteria not fulfilled (MITT)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of 2nd randomization</th>
<th>Sex</th>
<th>Age (years)</th>
<th>CRITERIA</th>
<th>FULFILLED</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003101031001</td>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>65</td>
<td>Exclusion Criteria 11</td>
<td>No</td>
</tr>
<tr>
<td>5003101061617</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>54</td>
<td>Exclusion Criteria 9</td>
<td>No</td>
</tr>
<tr>
<td>5003101171637</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>63</td>
<td>Exclusion Criteria 3</td>
<td>Missing</td>
</tr>
<tr>
<td>5003604701002</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>30</td>
<td>Exclusion Criteria 10</td>
<td>No</td>
</tr>
<tr>
<td>5003608301205</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>59</td>
<td>Exclusion Criteria 9</td>
<td>No</td>
</tr>
<tr>
<td>5003638501023</td>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>60</td>
<td>Exclusion Criteria 10</td>
<td>No</td>
</tr>
<tr>
<td>5003101071005</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>56</td>
<td>Inclusion Criteria 1</td>
<td>No</td>
</tr>
<tr>
<td>5003610201615</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>62</td>
<td>Exclusion Criteria 9</td>
<td>No</td>
</tr>
<tr>
<td>5003622501604</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>47</td>
<td>Exclusion Criteria 10</td>
<td>No</td>
</tr>
</tbody>
</table>

N = 9
3.3. Protocol deviations

3.3.1. Protocol violations

Protocol violations in course of the study were described in blind-review document.

3.3.2. Withdrawals

83 premature withdrawals (66%) were observed in maintenance ITT population during follow-up period: 43 patients (35%) in rituximab arm versus 40 patients (33%) in observation arm.

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>RITUXIMAB N</th>
<th>RITUXIMAB %</th>
<th>OBSERVATION N</th>
<th>OBSERVATION %</th>
<th>All N</th>
<th>All %</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREMATURE WITHDRAWAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>79</td>
<td>65</td>
<td>80</td>
<td>67</td>
<td>159</td>
<td>66</td>
</tr>
<tr>
<td>Yes</td>
<td>43</td>
<td>35</td>
<td>40</td>
<td>33</td>
<td>83</td>
<td>34</td>
</tr>
<tr>
<td>Total</td>
<td>122</td>
<td>100</td>
<td>120</td>
<td>100</td>
<td>242</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reason for premature withdrawal</th>
<th>Arm of 2nd randomization</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RITUXIMAB</td>
<td>OBSERVATION</td>
</tr>
<tr>
<td>Transplantation failure</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Treatment toxicity</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Patient voluntary withdrawal</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Death</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Other</td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td>Total</td>
<td>43</td>
<td>40</td>
</tr>
</tbody>
</table>

The main reasons for premature withdrawal were other reason (64%), which includes progression during maintenance period, and transplantation failure (23%).

3 patients (7% of withdrawals) were withdrawn in rituximab arm due to treatment toxicity.

All patients that withdrew during maintenance period are listed in section §6.1.
4. EFFICACY EVALUATION

4.1. Eligible patients for analysis

Five populations of patients were identified:

- **Induction full analysis set** (following the intent-to-treat principle) refers to all randomized patients regardless they have received study treatment or not: 477 patients analyzed according the therapy they were randomized to receive (243 in R-ICE arm and 234 in R-DHAP arm).

- **Induction Intent-To-Treat (ITT) population** refers to patients receiving at least one injection of study treatment, regardless the quantity injected: 469 patients analyzed according the therapy they were randomized to receive (239 in R-ICE arm and 230 in R-DHAP arm).

- **Induction safety population** refers to patients receiving at least one injection of study treatment: 469 patients analyzed according the therapy they actually received (239 in R-ICE arm and 230 in R-DHAP arm).

- **Maintenance Intent-To-Treat (ITT) population** refers to all patients formally randomized in the 2nd part of the study: 242 patients analyzed according the therapy they were randomized to receive (122 in rituximab arm and 120 in observation arm).

- **Maintenance safety population** refers to all patients formally randomized in the 2nd part of the study and have received at least one dose of rituximab or have only been observed, and have at least one maintenance follow-up assessment: 235 patients analyzed according the therapy they actually received, i.e. patient will be included in rituximab arm if he/she had received at least one dose of rituximab during any maintenance visit otherwise, he/she will be included in observation arm (thus, 116 in rituximab arm and 119 in observation arm).

Since all patients received randomized induction treatment, induction ITT and safety populations are equivalent.

The following tables summarize the repartition of patients per population and lists present excluded patients.
<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>Arm of treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>RITUXIMAB</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Induction full analysis population</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>60</td>
<td>13</td>
<td>56</td>
<td>12</td>
<td>127</td>
<td>27</td>
<td>243</td>
</tr>
<tr>
<td>Induction ITT population</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>60</td>
<td>13</td>
<td>56</td>
<td>12</td>
<td>123</td>
<td>26</td>
<td>239</td>
</tr>
<tr>
<td>No</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>50</td>
<td>4</td>
</tr>
<tr>
<td>Maintenance ITT population</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>60</td>
<td>25</td>
<td>56</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>116</td>
</tr>
<tr>
<td>No</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>127</td>
<td>54</td>
<td>127</td>
</tr>
<tr>
<td>TOTAL</td>
<td>60</td>
<td>13</td>
<td>56</td>
<td>12</td>
<td>127</td>
<td>27</td>
<td>243</td>
</tr>
</tbody>
</table>
Table 4.1-2 Eligible patients for analysis per safety populations

<table>
<thead>
<tr>
<th>Arm of induction</th>
<th>Actual arm of maintenance</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
<th>NOT APPLICABLE</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Induction Safety population</td>
<td>Yes</td>
<td>59</td>
<td>13</td>
<td>56</td>
<td>12</td>
</tr>
<tr>
<td>Maintenance safety population</td>
<td>Yes</td>
<td>59</td>
<td>25</td>
<td>56</td>
<td>24</td>
</tr>
<tr>
<td>No</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>124</td>
</tr>
<tr>
<td>TOTAL</td>
<td>59</td>
<td>13</td>
<td>56</td>
<td>12</td>
<td>124</td>
</tr>
</tbody>
</table>

Listing 4.1-1 Patients excluded from MITT/safety populations

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of treatment</th>
<th>First Randomization Date</th>
<th>Date of withdrawal</th>
<th>Treatment period at withdrawal</th>
<th>Reason for premature withdrawal</th>
<th>Other reason for premature withdrawal</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 30101041606</td>
<td>ARM A / R-ICE</td>
<td>03/12/2003</td>
<td>05/12/2003</td>
<td>BEFORE TREATMENT</td>
<td>MAJOR PROTOCOL VIOLATION</td>
<td></td>
</tr>
<tr>
<td>500 3010201627</td>
<td>ARM A / R-ICE</td>
<td>28/03/2007</td>
<td>03/04/2007</td>
<td>BEFORE TREATMENT</td>
<td>DEATH</td>
<td></td>
</tr>
<tr>
<td>500 30109010113</td>
<td>ARM A / R-ICE</td>
<td>14/03/2005</td>
<td>14/03/2005</td>
<td>BEFORE TREATMENT</td>
<td>OTHER</td>
<td>MEET NOT INCLUSION CRITERIAS</td>
</tr>
<tr>
<td>500 3014301614</td>
<td>ARM A / R-ICE</td>
<td>16/06/2005</td>
<td>17/06/2005</td>
<td>BEFORE TREATMENT</td>
<td>MAJOR PROTOCOL VIOLATION</td>
<td></td>
</tr>
<tr>
<td>500 30101017620</td>
<td>ARM B / R-DHAP</td>
<td>29/10/2004</td>
<td>29/10/2004</td>
<td>BEFORE TREATMENT</td>
<td>PATIENT VOLONTARY WITHDRAWAL</td>
<td></td>
</tr>
<tr>
<td>500 3016010104</td>
<td>ARM B / R-DHAP</td>
<td>02/11/2007</td>
<td>04/11/2007</td>
<td>BEFORE TREATMENT</td>
<td>PATIENT VOLONTARY WITHDRAWAL</td>
<td></td>
</tr>
<tr>
<td>500 3010301005</td>
<td>ARM B / R-DHAP</td>
<td>08/10/2004</td>
<td>12/10/2004</td>
<td>BEFORE TREATMENT</td>
<td>MAJOR PROTOCOL VIOLATION</td>
<td></td>
</tr>
<tr>
<td>500 3010301027</td>
<td>ARM B / R-DHAP</td>
<td>26/01/2006</td>
<td>26/01/2006</td>
<td>BEFORE TREATMENT</td>
<td>DEATH</td>
<td></td>
</tr>
</tbody>
</table>

N = 8
Listing 4.1-2 Patients excluded from maintenance safety population

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of 2nd randomization</th>
<th>Date of 2nd randomization</th>
<th>Date of withdrawal</th>
<th>Treatment period at withdrawal</th>
<th>Reason for premature withdrawal</th>
<th>Other reason for premature withdrawal</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003601301015</td>
<td>RITUXIMAB</td>
<td>08/02/2008</td>
<td>18/03/2008</td>
<td>FOLLOW UP PERIOD</td>
<td>PATIENT VOLONTARY WITHDRAWAL</td>
<td></td>
</tr>
<tr>
<td>5003604901602</td>
<td>RITUXIMAB</td>
<td>02/05/2005</td>
<td>28/06/2005</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>LOST TO FOLLOW-UP AFTER BMT</td>
</tr>
<tr>
<td>5003608301605</td>
<td>RITUXIMAB</td>
<td>25/08/2004</td>
<td>13/09/2004</td>
<td>FOLLOW UP PERIOD</td>
<td>PATIENT VOLONTARY WITHDRAWAL</td>
<td></td>
</tr>
<tr>
<td>5003617201613</td>
<td>RITUXIMAB</td>
<td>22/09/2005</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5003101601610</td>
<td>OBSERVATION</td>
<td>17/05/2004</td>
<td>11/08/2004</td>
<td>FOLLOW UP PERIOD</td>
<td>TRANSPLANTATION FAILURE</td>
<td></td>
</tr>
<tr>
<td>5003102361203</td>
<td>OBSERVATION</td>
<td>19/02/2004</td>
<td>13/03/2004</td>
<td>FOLLOW UP PERIOD</td>
<td>PATIENT VOLONTARY WITHDRAWAL</td>
<td></td>
</tr>
<tr>
<td>5003631201619</td>
<td>OBSERVATION</td>
<td>14/06/2006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

N = 7

Listing 4.1-3 Patients with actual arm for maintenance treatment different from randomized

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of 2nd randomization</th>
<th>Actual arm of maintenance</th>
<th>Date of 2nd randomization</th>
<th>Date of withdrawal</th>
<th>Treatment period at withdrawal</th>
<th>Reason for premature withdrawal</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003617201021</td>
<td>RITUXIMAB</td>
<td>OBSERVATION</td>
<td>14/02/2006</td>
<td>17/03/2006</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PATIENT STATUS : DUE TO HEP C INFECTION AFTER APERESIS AND BAD CONDITION WE DECIDED TO STOP RITUXIMAB THERAPY / EXAMINATION ABNORMAL DUE TO LYMPHOMA ; NO B-SYMPTOMS / LDH = 344 U/L (< 250 U/L)</td>
</tr>
</tbody>
</table>

N = 2
4.2. Baseline data

4.2.1. Demography

<table>
<thead>
<tr>
<th>Table 4.2-1 Demography (MITT)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at 1st randomization (years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>122</td>
<td>120</td>
<td>242</td>
</tr>
<tr>
<td>Mean</td>
<td>51.3</td>
<td>50.7</td>
<td>51.0</td>
</tr>
<tr>
<td>Std</td>
<td>10.02</td>
<td>11.66</td>
<td>10.85</td>
</tr>
<tr>
<td>Median</td>
<td>54.0</td>
<td>53.0</td>
<td>54.0</td>
</tr>
<tr>
<td>Min</td>
<td>19</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>Max</td>
<td>65</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>122</td>
<td>120</td>
<td>242</td>
</tr>
<tr>
<td>Mean</td>
<td>76.7</td>
<td>80.8</td>
<td>78.7</td>
</tr>
<tr>
<td>Std</td>
<td>16.36</td>
<td>16.68</td>
<td>16.61</td>
</tr>
<tr>
<td>Median</td>
<td>74.5</td>
<td>80.5</td>
<td>76.0</td>
</tr>
<tr>
<td>Height (cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>122</td>
<td>120</td>
<td>242</td>
</tr>
<tr>
<td>Mean</td>
<td>172.1</td>
<td>172.6</td>
<td>172.4</td>
</tr>
<tr>
<td>Std</td>
<td>9.07</td>
<td>8.99</td>
<td>9.02</td>
</tr>
<tr>
<td>Median</td>
<td>172.0</td>
<td>173.0</td>
<td>173.0</td>
</tr>
<tr>
<td>Body Area (m²)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>121</td>
<td>120</td>
<td>241</td>
</tr>
<tr>
<td>Mean</td>
<td>1.879</td>
<td>1.925</td>
<td>1.902</td>
</tr>
<tr>
<td>Std</td>
<td>0.2188</td>
<td>0.2049</td>
<td>0.2128</td>
</tr>
<tr>
<td>Median</td>
<td>1.870</td>
<td>1.955</td>
<td>1.900</td>
</tr>
<tr>
<td>The median age at 1st randomization was 54 years old (range from 19 to 65).</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 4.2-2 Age by category and sex ratio (MITT)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>MALE</td>
<td>76</td>
<td>62</td>
<td>83</td>
</tr>
<tr>
<td>FEMALE</td>
<td>46</td>
<td>38</td>
<td>37</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><40 years</td>
<td>17</td>
<td>14</td>
<td>22</td>
</tr>
<tr>
<td>>=40 years</td>
<td>105</td>
<td>86</td>
<td>98</td>
</tr>
<tr>
<td>Total</td>
<td>122</td>
<td>100</td>
<td>120</td>
</tr>
</tbody>
</table>
4.2.2. Initial diagnosis

Table 4.2-3 Time between initial diagnosis and 1st randomization (MITT)

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>122</td>
<td>119</td>
<td>241</td>
</tr>
<tr>
<td>Mean</td>
<td>38.2</td>
<td>36.8</td>
<td>37.6</td>
</tr>
<tr>
<td>Std</td>
<td>41.02</td>
<td>41.17</td>
<td>41.01</td>
</tr>
<tr>
<td>Median</td>
<td>24.0</td>
<td>20.0</td>
<td>21.0</td>
</tr>
<tr>
<td>Min</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Max</td>
<td>238</td>
<td>174</td>
<td>238</td>
</tr>
<tr>
<td>N</td>
<td>121</td>
<td>118</td>
<td>239</td>
</tr>
<tr>
<td>Mean</td>
<td>36.6</td>
<td>35.7</td>
<td>36.2</td>
</tr>
<tr>
<td>Std</td>
<td>36.90</td>
<td>39.36</td>
<td>38.06</td>
</tr>
<tr>
<td>Median</td>
<td>23.7</td>
<td>19.6</td>
<td>20.7</td>
</tr>
<tr>
<td>Min</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Max</td>
<td>197</td>
<td>171</td>
<td>197</td>
</tr>
</tbody>
</table>

Table 4.2-4 Time between initial diagnosis and 1st randomization by category (MITT)

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time from initial diagnostic biopsy to 1st randomization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><12 months</td>
<td>29</td>
<td>24</td>
<td>40</td>
</tr>
<tr>
<td>>=12 months</td>
<td>92</td>
<td>76</td>
<td>78</td>
</tr>
<tr>
<td>TOTAL</td>
<td>121</td>
<td>100</td>
<td>118</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time from Initial Treatment to 1st randomization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><12 months</td>
<td>33</td>
<td>27</td>
<td>41</td>
</tr>
<tr>
<td>>=12 months</td>
<td>89</td>
<td>73</td>
<td>76</td>
</tr>
<tr>
<td>TOTAL</td>
<td>122</td>
<td>100</td>
<td>117</td>
</tr>
</tbody>
</table>

Table 4.2-5 Characteristics at initial diagnosis (MITT)

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Performance Status at initial diagnosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>66</td>
<td>60</td>
<td>57</td>
</tr>
<tr>
<td>1</td>
<td>41</td>
<td>37</td>
<td>32</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>110</td>
<td>100</td>
<td>108</td>
</tr>
<tr>
<td>Arm of 2nd randomization</td>
<td>RITUXIMAB</td>
<td>OBSERVATION</td>
<td>All</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------</td>
<td>-------------</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Ann Arbor Stage at initial diagnosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAGE 1</td>
<td>25</td>
<td>20</td>
<td>26</td>
</tr>
<tr>
<td>STAGE 2</td>
<td>35</td>
<td>29</td>
<td>33</td>
</tr>
<tr>
<td>STAGE 3</td>
<td>19</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>STAGE 4</td>
<td>43</td>
<td>35</td>
<td>41</td>
</tr>
<tr>
<td>TOTAL</td>
<td>122</td>
<td>100</td>
<td>118</td>
</tr>
<tr>
<td>B Symptom at initial diagnosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>46</td>
<td>39</td>
<td>39</td>
</tr>
<tr>
<td>No</td>
<td>73</td>
<td>61</td>
<td>74</td>
</tr>
<tr>
<td>TOTAL</td>
<td>119</td>
<td>100</td>
<td>113</td>
</tr>
</tbody>
</table>

Table 4.2-6 International Prognostic Index and individual factors at initial diagnosis (MITT)

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Performance Status at initial diagnosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><2</td>
<td>107</td>
<td>97</td>
<td>89</td>
</tr>
<tr>
<td>>=2</td>
<td>3</td>
<td>3</td>
<td>19</td>
</tr>
<tr>
<td>TOTAL</td>
<td>110</td>
<td>100</td>
<td>108</td>
</tr>
<tr>
<td>Ann Arbor Stage at initial diagnosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-II</td>
<td>60</td>
<td>49</td>
<td>59</td>
</tr>
<tr>
<td>III-IV</td>
<td>62</td>
<td>51</td>
<td>59</td>
</tr>
<tr>
<td>TOTAL</td>
<td>122</td>
<td>100</td>
<td>118</td>
</tr>
<tr>
<td>LDH at initial diagnosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><= Normal</td>
<td>64</td>
<td>59</td>
<td>56</td>
</tr>
<tr>
<td>> Normal</td>
<td>44</td>
<td>41</td>
<td>46</td>
</tr>
<tr>
<td>TOTAL</td>
<td>108</td>
<td>100</td>
<td>102</td>
</tr>
<tr>
<td>Age adjusted IPI at initial diagnosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>34</td>
<td>33</td>
<td>29</td>
</tr>
<tr>
<td>1</td>
<td>43</td>
<td>42</td>
<td>29</td>
</tr>
<tr>
<td>2</td>
<td>23</td>
<td>23</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>Subtotal 0-1</td>
<td>77</td>
<td>75</td>
<td>58</td>
</tr>
<tr>
<td>Subtotal 2-3</td>
<td>25</td>
<td>25</td>
<td>35</td>
</tr>
<tr>
<td>TOTAL</td>
<td>102</td>
<td>100</td>
<td>93</td>
</tr>
<tr>
<td>Nb of extra-nodal sites at initial diagnosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><=1</td>
<td>93</td>
<td>78</td>
<td>94</td>
</tr>
<tr>
<td>>1</td>
<td>26</td>
<td>22</td>
<td>24</td>
</tr>
<tr>
<td>TOTAL</td>
<td>119</td>
<td>100</td>
<td>118</td>
</tr>
</tbody>
</table>
ARM OF 2ND RANDOMIZATION

<table>
<thead>
<tr>
<th></th>
<th>RITUXIMAB</th>
<th></th>
<th>OBSERVATION</th>
<th></th>
<th>All</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>IPI at initial diagnosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>29</td>
<td>28</td>
<td>25</td>
<td>27</td>
<td>54</td>
<td>28</td>
</tr>
<tr>
<td>1</td>
<td>37</td>
<td>36</td>
<td>24</td>
<td>26</td>
<td>61</td>
<td>31</td>
</tr>
<tr>
<td>2</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>26</td>
<td>48</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>17</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Subtotal 0-2</td>
<td>90</td>
<td>88</td>
<td>73</td>
<td>78</td>
<td>163</td>
<td>84</td>
</tr>
<tr>
<td>Subtotal 3-5</td>
<td>12</td>
<td>12</td>
<td>20</td>
<td>22</td>
<td>32</td>
<td>16</td>
</tr>
<tr>
<td>TOTAL</td>
<td>102</td>
<td>100</td>
<td>93</td>
<td>100</td>
<td>195</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 4.2-7 p-values of Chi-2 test for characteristics at initial diagnosis (MITT)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>P-value (Chi-2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance Status at diagnosis (<2 Vs >=2)</td>
<td>0.0003</td>
</tr>
<tr>
<td>Ann Arbor Stage at diagnosis (I-II Vs III-IV)</td>
<td>0.8990</td>
</tr>
<tr>
<td>LDH at diagnosis (<= 1 N Vs > 1 N)</td>
<td>0.5237</td>
</tr>
<tr>
<td>Age adjusted IPI at diagnosis (0-1 Vs 2-3)</td>
<td>0.0473</td>
</tr>
<tr>
<td>Extra nodal involvement at diagnosis (<=1 Vs >1)</td>
<td>0.7758</td>
</tr>
<tr>
<td>IPI at diagnosis (0-2 Vs 3-5)</td>
<td>0.0666</td>
</tr>
<tr>
<td>B Symptoms at diagnosis (No Vs Yes)</td>
<td>0.5128</td>
</tr>
</tbody>
</table>

Table 4.2-8 Anatomopathological report at initial diagnosis - review (MITT)

<table>
<thead>
<tr>
<th></th>
<th>RITUXIMAB</th>
<th></th>
<th>OBSERVATION</th>
<th></th>
<th>All</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Histology (review) at initial diagnosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lymphome diffus à grandes cellules B</td>
<td>33</td>
<td>46</td>
<td>29</td>
<td>45</td>
<td>62</td>
<td>45</td>
</tr>
<tr>
<td>Lymphome diffus à grandes cellules B (centroblastique)</td>
<td>7</td>
<td>10</td>
<td>9</td>
<td>14</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td>Lymphome à grandes cellules B développé (ou associé) à un Lymphome B folliculaire</td>
<td>8</td>
<td>11</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>Lymphome diffus à grandes cellules B (immunoblastique)</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Lymphome diffus à grandes cellules B (B riche en T / histiocytes)</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Lymphome à grandes cellules B thymique</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Lymphome à grandes cellules B développé (ou associé) à un Lymphome B de la zone marginale</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Lymphome folliculaire grade 2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Lymphome à grandes cellules B développé (ou associé) à un Lymphome B à “petites cellules” sans précision</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Hodgkin à prédominance lymphocytaire nodulaire (paragranulome nodulaire)</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Final anatomo-pathological review was done for 137 patients (57%). Considering local diagnosis (only reported for non Gela patients) if review was not done, histology is available for 173 patients (71%).

Table 4.2-9 Anatomopathological report at initial diagnosis – review or if missing, local (MITT)
4.2.3. Initial treatment

Table 4.2-10 Time between initial treatment and 1st randomization (MITT)

<table>
<thead>
<tr>
<th>Time from initial treatment to 1st randomization (months)</th>
<th>Arm of 2nd randomization</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RITUXIMAB</td>
<td>OBSERVATION</td>
</tr>
<tr>
<td>N</td>
<td>122</td>
<td>117</td>
</tr>
<tr>
<td>Mean</td>
<td>37.3</td>
<td>35.8</td>
</tr>
<tr>
<td>Std</td>
<td>40.92</td>
<td>41.31</td>
</tr>
<tr>
<td>Median</td>
<td>22.2</td>
<td>17.9</td>
</tr>
<tr>
<td>Min</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Max</td>
<td>238</td>
<td>173</td>
</tr>
</tbody>
</table>
Table 4.2-11 Characteristics of initial treatment (MITT)

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Chemotherapy regimen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHOP - LIKE</td>
<td>102</td>
<td>84</td>
<td>100</td>
</tr>
<tr>
<td>ACVB - LIKE</td>
<td>19</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>OTHER</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Immunotherapy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>63</td>
<td>52</td>
<td>62</td>
</tr>
<tr>
<td>UNKNOWN</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>59</td>
<td>48</td>
<td>57</td>
</tr>
<tr>
<td>Radiotherapy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOCAL</td>
<td>34</td>
<td>28</td>
<td>34</td>
</tr>
<tr>
<td>OTHER</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>UNKNOWN</td>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>83</td>
<td>68</td>
<td>85</td>
</tr>
<tr>
<td>TOTAL</td>
<td>122</td>
<td>100</td>
<td>120</td>
</tr>
</tbody>
</table>

Overall 202 patients (83%) received CHOP-like chemotherapy as initial treatment and 125 patients (52%) received rituximab.

Details of other chemotherapy regimens and doses of radiotherapy are listed in section §6.2.

Table 4.2-12 Response at 1st line (MITT)

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Response after first line</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPLETE RESPONSE</td>
<td>85</td>
<td>70</td>
<td>75</td>
</tr>
<tr>
<td>UNCONFIRMED COMPLETE RESPONSE</td>
<td>8</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>PARTIAL RESPONSE</td>
<td>19</td>
<td>16</td>
<td>21</td>
</tr>
<tr>
<td>STABLE DISEASE</td>
<td>6</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>PROGRESSIVE DISEASE</td>
<td>3</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>NOT EVALUATED</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>122</td>
<td>100</td>
<td>120</td>
</tr>
</tbody>
</table>

Table 4.2-13 p-value of Chi-2 test for response after 1st line (MITT)

<table>
<thead>
<tr>
<th>Variable/Treatment</th>
<th>P-value (Chi-2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response after first line (CR/CRu vs others)</td>
<td>0.4187</td>
</tr>
</tbody>
</table>
4.2.4. Progression/relapse diagnosis

Table 4.2-14 Time intervals with progression/relapse diagnosis (MITT)

<table>
<thead>
<tr>
<th>Time intervals with progression/relapse diagnosis (MITT)</th>
<th>Arm of 2nd randomization</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time from 1st treatment to relapse diagnostic biopsy (months)</td>
<td>N</td>
<td>96</td>
<td>94</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>43.5</td>
<td>41.3</td>
<td>42.4</td>
</tr>
<tr>
<td></td>
<td>Std</td>
<td>43.24</td>
<td>43.56</td>
<td>43.30</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>28.6</td>
<td>22.9</td>
<td>25.0</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>237</td>
<td>172</td>
<td>237</td>
</tr>
<tr>
<td>Time from relapse diagnostic biopsy to 1st randomization (months)</td>
<td>N</td>
<td>96</td>
<td>97</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>0.8</td>
<td>0.6</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>Std</td>
<td>0.72</td>
<td>0.43</td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>0.6</td>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

The following tables present the number and percentage of patients for baseline clinical assessments:

Table 4.2-15 Characteristics at relapse (MITT)

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance Status at relapse</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>0</td>
<td>72</td>
<td>59</td>
<td>60</td>
</tr>
<tr>
<td>1</td>
<td>46</td>
<td>38</td>
<td>51</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Ann Arbor stage at relapse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAGE 1</td>
<td>20</td>
<td>16</td>
<td>21</td>
</tr>
<tr>
<td>STAGE 2</td>
<td>33</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>STAGE 3</td>
<td>22</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>STAGE 4</td>
<td>47</td>
<td>39</td>
<td>53</td>
</tr>
<tr>
<td>TOTAL</td>
<td>122</td>
<td>100</td>
<td>119</td>
</tr>
<tr>
<td>B symptoms at relapse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>97</td>
<td>80</td>
<td>93</td>
</tr>
<tr>
<td>Yes</td>
<td>24</td>
<td>20</td>
<td>24</td>
</tr>
<tr>
<td>TOTAL</td>
<td>121</td>
<td>100</td>
<td>117</td>
</tr>
<tr>
<td>Total of extra-nodal sites at relapse</td>
<td>Arm of 2nd randomization</td>
<td>All</td>
<td></td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--------------------------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RITUXIMAB</td>
<td>OBSERVATION</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>122</td>
<td>119</td>
<td>241</td>
</tr>
<tr>
<td>Mean</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Std</td>
<td>1.37</td>
<td>1.12</td>
<td>1.25</td>
</tr>
<tr>
<td>Median</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Min</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Max</td>
<td>6</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

The median number of extra nodal sites was 1 in both arms.
The details of nodal and extra-nodal involvement are listed in section §6.3.
Table 4.2-17 International Prognostic Index and individual factors at relapse (MITT)

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Performance Status at relapse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><2</td>
<td>118</td>
<td>97</td>
<td>111</td>
</tr>
<tr>
<td>>=2</td>
<td>4</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>TOTAL</td>
<td>122</td>
<td>100</td>
<td>119</td>
</tr>
<tr>
<td>Ann Arbor stage at relapse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-II</td>
<td>53</td>
<td>43</td>
<td>48</td>
</tr>
<tr>
<td>III-IV</td>
<td>69</td>
<td>57</td>
<td>71</td>
</tr>
<tr>
<td>TOTAL</td>
<td>122</td>
<td>100</td>
<td>119</td>
</tr>
<tr>
<td>LDH at relapse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><=Normal</td>
<td>66</td>
<td>55</td>
<td>67</td>
</tr>
<tr>
<td>>Normal</td>
<td>54</td>
<td>45</td>
<td>51</td>
</tr>
<tr>
<td>TOTAL</td>
<td>120</td>
<td>100</td>
<td>118</td>
</tr>
<tr>
<td>Age-adjusted IPI at relapse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>33</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>1</td>
<td>51</td>
<td>43</td>
<td>53</td>
</tr>
<tr>
<td>2</td>
<td>34</td>
<td>28</td>
<td>33</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Subtotal 0-1</td>
<td>84</td>
<td>70</td>
<td>81</td>
</tr>
<tr>
<td>Subtotal 2-3</td>
<td>36</td>
<td>30</td>
<td>36</td>
</tr>
<tr>
<td>TOTAL</td>
<td>120</td>
<td>100</td>
<td>117</td>
</tr>
<tr>
<td>Nb of extra-nodal sites at relapse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><=1</td>
<td>92</td>
<td>75</td>
<td>89</td>
</tr>
<tr>
<td>>1</td>
<td>30</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>TOTAL</td>
<td>122</td>
<td>100</td>
<td>119</td>
</tr>
<tr>
<td>IPI at relapse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>32</td>
<td>27</td>
<td>18</td>
</tr>
<tr>
<td>1</td>
<td>30</td>
<td>25</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>31</td>
<td>26</td>
<td>37</td>
</tr>
<tr>
<td>3</td>
<td>24</td>
<td>20</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Subtotal 0-2</td>
<td>93</td>
<td>78</td>
<td>95</td>
</tr>
<tr>
<td>Subtotal 3-5</td>
<td>27</td>
<td>23</td>
<td>22</td>
</tr>
<tr>
<td>TOTAL</td>
<td>120</td>
<td>100</td>
<td>117</td>
</tr>
</tbody>
</table>
Table 4.2-18 p-values of Chi-2 test for individual factors of IPI at progression/relapse diagnosis (MITT)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>P-value (Chi-2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance Status at relapse (<2 Vs >=2)</td>
<td>0.2191</td>
</tr>
<tr>
<td>Ann Arbor stage at relapse (I-II Vs III-IV)</td>
<td>0.6251</td>
</tr>
<tr>
<td>LDH at relapse (=< 1 N Vs > 1 N)</td>
<td>0.7822</td>
</tr>
<tr>
<td>Age adjusted IPI at relapse (0-1 Vs 2-3)</td>
<td>0.8976</td>
</tr>
<tr>
<td>Total of extra nodal site at relapse (<=1 Vs >1)</td>
<td>0.9114</td>
</tr>
<tr>
<td>B Symptoms at relapse (No Vs Yes)</td>
<td>0.8963</td>
</tr>
<tr>
<td>IPI at relapse (0-2 Vs 3-5)</td>
<td>0.4823</td>
</tr>
</tbody>
</table>

Table 4.2-19 Other characteristics at relapse (MITT)

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Beta 2 microglobulin (mg/l)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><3</td>
<td>76</td>
<td>88</td>
<td>78</td>
</tr>
<tr>
<td>>=3</td>
<td>10</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>Total</td>
<td>86</td>
<td>100</td>
<td>94</td>
</tr>
<tr>
<td>Albumin (G/L)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><=35</td>
<td>15</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>>35</td>
<td>97</td>
<td>87</td>
<td>96</td>
</tr>
<tr>
<td>Total</td>
<td>112</td>
<td>100</td>
<td>110</td>
</tr>
</tbody>
</table>

Table 4.2-20 Bone marrow biopsy at relapse (MITT)

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Bone marrow Biopsy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not involved</td>
<td>99</td>
<td>82</td>
<td>98</td>
</tr>
<tr>
<td>Involved</td>
<td>13</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>Unspecified</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Not Done</td>
<td>8</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>TOTAL</td>
<td>121</td>
<td>100</td>
<td>120</td>
</tr>
<tr>
<td>If BM involved, type of cells</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LARGE CELLS</td>
<td>7</td>
<td>54</td>
<td>6</td>
</tr>
<tr>
<td>SMALL CELLS</td>
<td>6</td>
<td>46</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td>13</td>
<td>100</td>
<td>8</td>
</tr>
</tbody>
</table>

Overall, 21 patients (9%) presented an involved bone marrow biopsy at relapse, mainly with large cells (62%).
Table 4.2-21 PET scan at relapse (MITT)

| | Arm of 2nd randomization | | | | | |
|------------------------|--------------------------|---------------|---------------|---------------|---------------|
| | RITUXIMAB | OBSERVATION | All | | |
| PET Scan at relapse | N | % | N | % | N | % |
| NEGATIVE | 2 | 2 | 2 | 2 | 4 | 2 |
| POSITIVE | 51 | 42 | 40 | 34 | 91 | 38 |
| NOT DONE | 68 | 56 | 76 | 64 | 144 | 60 |
| Total | 121 | 100 | 118 | 100 | 239 | 100 |

PET scan at relapse is available for 95 patients (40%).

Table 4.2-22 Number of sites used for response evaluation at relapse diagnosis (MITT)

<table>
<thead>
<tr>
<th></th>
<th>Arm of 2nd randomization</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RITUXIMAB</td>
<td>OBSERVATION</td>
<td>All</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of sites used</td>
<td>N</td>
<td>122</td>
<td>120</td>
<td>242</td>
<td></td>
</tr>
<tr>
<td>for evaluation of</td>
<td>Mean</td>
<td>2.5</td>
<td>2.3</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>response per patient</td>
<td>Std</td>
<td>1.45</td>
<td>1.39</td>
<td>1.43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td>307</td>
<td>271</td>
<td>578</td>
<td></td>
</tr>
</tbody>
</table>

The median number of sites used for response evaluation was 2 (range: 1 to 6). The lesions' codification is presented in section §6.3.
Table 4.2-23 Anatomopathological report at relapse - review (MITT)

<table>
<thead>
<tr>
<th>Histology (review) at relapse</th>
<th>Arm of 2nd randomization</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arm of 2nd randomization RITUXIMAB</td>
<td>OBSERVATION</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>73</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Histology (review) at relapse</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymphome diffus à grandes cellules B</td>
<td>31</td>
<td>42</td>
<td>63</td>
</tr>
<tr>
<td>Lymphome diffus à grandes cellules B (centroblastique)</td>
<td>14</td>
<td>19</td>
<td>26</td>
</tr>
<tr>
<td>Lymphome diffus à grandes cellules B (immunoblastique)</td>
<td>5</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Lymphome à grandes cellules B développé (ou associé) à un</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Lymphome B folliculaire grade 2</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Lymphome folliculaire grade 3 B</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Lymphome folliculaire grade 3 A</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Lymphome diffus à grandes cellules B (B riche en T / histiocytes)</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Lymphome folliculaire grade 1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Hodgkin à prédominance lymphocytaire nodulaire (paragramulome nodulaire)</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Lymphome B à "petites cellules" non classable pour raisons techniques</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>lymphome B agressif non classable</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Lymphome folliculaire grade 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Lymphome folliculaire et diffus</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Lymphome folliculaire non gradable</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Zone grise entre Hodgkin / lymphoprolifération EBV</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Insuffisance de matériel</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Final anatomo-pathological review was done for 139 patients (57%).
Considering local diagnosis (only reported for non Gela patients) if review was not done, histology is available for 167 patients (69%).
<table>
<thead>
<tr>
<th>Table 4.2-24 Anatomopathological report at relapse – review or if missing, local (MITT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arm of 2nd randomization</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Histology (review if available, otherwise local) at relapse</td>
</tr>
<tr>
<td>Lymphome diffus à grandes cellules B</td>
</tr>
<tr>
<td>Lymphome diffus à grandes cellules B (centroblastique)</td>
</tr>
<tr>
<td>Lymphome à grandes cellules B thymique</td>
</tr>
<tr>
<td>Lymphome diffus à grandes cellules B (immunoblastique)</td>
</tr>
<tr>
<td>Lymphome à grandes cellules B développé (ou associé) à un Lymphome B folliculaire</td>
</tr>
<tr>
<td>Lymphome diffus à grandes cellules B (B riche en T / histiocytes)</td>
</tr>
<tr>
<td>Lymphome folliculaire grade 2</td>
</tr>
<tr>
<td>Lymphome à grandes cellules B développé (ou associé) à un Lymphome B de la zone marginale</td>
</tr>
<tr>
<td>Lymphome B non classable pour raisons techniques</td>
</tr>
<tr>
<td>Lymphome folliculaire grade 3 B</td>
</tr>
<tr>
<td>Lymphome T angio-immunoblastique</td>
</tr>
<tr>
<td>Lymphome folliculaire grade 3 A</td>
</tr>
<tr>
<td>Lymphome diffus à grandes cellules B (anaplasique)</td>
</tr>
<tr>
<td>Lymphome à grandes cellules B plasmoblastique</td>
</tr>
<tr>
<td>Insuffisance de matériel</td>
</tr>
<tr>
<td>Hodgkin à prédominance lymphocytaire nodulaire (paragranulome nodulaire)</td>
</tr>
<tr>
<td>Lymphome B à "petites cellules" non classable pour raisons techniques</td>
</tr>
<tr>
<td>lymphome B agressif non classable</td>
</tr>
<tr>
<td>Lymphome à grandes cellules non classable</td>
</tr>
<tr>
<td>Lymphome folliculaire grade 1</td>
</tr>
<tr>
<td>Lymphome folliculaire et diffus</td>
</tr>
<tr>
<td>Lymphome folliculaire non gradable</td>
</tr>
<tr>
<td>Zone grise entre Hodgkin / lymphoprolifération EBV</td>
</tr>
<tr>
<td>TOTAL</td>
</tr>
</tbody>
</table>
4.2.5. Medical history

168 patients (69%) presented with medical relevant history and 125 patients (52%) presented at least one persisting disease at baseline.

Table 4.2-25 Medical history (MITT)

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Medical relevant history</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>83</td>
<td>68</td>
<td>85</td>
</tr>
<tr>
<td>No</td>
<td>39</td>
<td>32</td>
<td>35</td>
</tr>
<tr>
<td>At least one persisting disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>59</td>
<td>48</td>
<td>66</td>
</tr>
<tr>
<td>No</td>
<td>63</td>
<td>52</td>
<td>54</td>
</tr>
<tr>
<td>Total</td>
<td>122</td>
<td>100</td>
<td>120</td>
</tr>
</tbody>
</table>

4.2.6. Concomitant treatments

142 patients (59%) presented at least one concomitant treatment at inclusion and 41 patients (17%) presented at least one prescription due to lymphoma.

Table 4.2-26 Concomitant treatments (MITT)

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Concomitant treatment at randomization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>67</td>
<td>55</td>
<td>75</td>
</tr>
<tr>
<td>No</td>
<td>55</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>At least one due to symptoms related to lymphoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>13</td>
<td>11</td>
<td>28</td>
</tr>
<tr>
<td>No</td>
<td>109</td>
<td>89</td>
<td>92</td>
</tr>
<tr>
<td>Total</td>
<td>122</td>
<td>100</td>
<td>120</td>
</tr>
</tbody>
</table>
4.3. Evaluation after induction treatment

Table 4.3-1 Bone marrow biopsy after induction (MITT)

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Bone marrow biopsy after induction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NHL negative</td>
<td>15</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>NHL positive</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Indeterminate</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Not Done</td>
<td>106</td>
<td>87</td>
<td>97</td>
</tr>
<tr>
<td>TOTAL</td>
<td>122</td>
<td>100</td>
<td>117</td>
</tr>
</tbody>
</table>

Table 4.3-2 PET scan after induction (MITT)

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>PET scan after induction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEGATIVE</td>
<td>36</td>
<td>30</td>
<td>24</td>
</tr>
<tr>
<td>POSITIVE</td>
<td>15</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>NOT DONE</td>
<td>69</td>
<td>58</td>
<td>78</td>
</tr>
<tr>
<td>TOTAL</td>
<td>120</td>
<td>100</td>
<td>116</td>
</tr>
</tbody>
</table>

Table 4.3-3 Number of sites used for response evaluation after induction (MITT)

<table>
<thead>
<tr>
<th>Number of sites used for evaluation of response per patient</th>
<th>Arm of 2nd randomization</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RITUXIMAB</td>
<td>OBSERVATION</td>
</tr>
<tr>
<td>N</td>
<td>122</td>
<td>118</td>
</tr>
<tr>
<td>Mean</td>
<td>2.5</td>
<td>2.3</td>
</tr>
<tr>
<td>Std</td>
<td>1.45</td>
<td>1.44</td>
</tr>
<tr>
<td>Median</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Min</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Max</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Sum</td>
<td>307</td>
<td>270</td>
</tr>
</tbody>
</table>

The lesions’ codification is presented in section §6.4.
Table 4.3-4 Response after induction (MITT)

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>COMPLETE RESPONSE</td>
<td>52</td>
<td>43</td>
</tr>
<tr>
<td>UNCONFIRMED COMPLETE RESPONSE</td>
<td>21</td>
<td>17</td>
</tr>
<tr>
<td>PARTIAL RESPONSE</td>
<td>47</td>
<td>39</td>
</tr>
<tr>
<td>STABLE DISEASE</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>122</td>
<td>100</td>
</tr>
</tbody>
</table>

7 patients (2 in rituximab arm and 5 in observation arm) were in stable disease after induction. One patient in observation arm had a missing response.

Table 4.3-5 Complete response rate after induction (MITT)

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>Nb patients</th>
<th>Nb responders (CR/CRu)</th>
<th>CR rate (%)</th>
<th>95% CI lower</th>
<th>95% CI upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>RITUXIMAB</td>
<td>122</td>
<td>73</td>
<td>59.8</td>
<td>50.6</td>
<td>68.6</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>120</td>
<td>69</td>
<td>57.5</td>
<td>48.1</td>
<td>66.5</td>
</tr>
</tbody>
</table>

Table 4.3-6 Difference between CR rates after induction (MITT)

<table>
<thead>
<tr>
<th>Difference between CR rates (%)</th>
<th>95% CI lower</th>
<th>95% CI upper</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rituximab vs Observation</td>
<td>2.3</td>
<td>-10.1</td>
<td>14.7</td>
</tr>
</tbody>
</table>

Following tables describe details about mobilization:

Table 4.3-7 Collection failure (MITT)

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>COLLECTION FAILURE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NO</td>
<td>119</td>
<td>98</td>
</tr>
<tr>
<td>YES</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>122</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 4.3-8 Reason of collection failure (MITT)

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>COLLECTION FAILURE - REASON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOT ENOUGH CELLS</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OTHER CAUSE</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>3</td>
<td>100</td>
</tr>
</tbody>
</table>
Table 4.3-9 Mobilization – Collected cells (MITT)

<table>
<thead>
<tr>
<th>Collection failure</th>
<th>Arm of 2nd randomization</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>N</td>
<td>119</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>6.217</td>
<td>17.421</td>
</tr>
<tr>
<td></td>
<td>Std</td>
<td>4.0184</td>
<td>75.5999</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>5.240</td>
<td>5.220</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>1.36</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>28.54</td>
<td>629.00</td>
</tr>
<tr>
<td>Yes</td>
<td>N</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>6.250</td>
<td>7.313</td>
</tr>
<tr>
<td></td>
<td>Std</td>
<td>4.4831</td>
<td>6.9400</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>6.250</td>
<td>5.100</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>3.08</td>
<td>1.75</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>9.42</td>
<td>15.09</td>
</tr>
<tr>
<td>All</td>
<td>N</td>
<td>121</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>6.217</td>
<td>17.162</td>
</tr>
<tr>
<td></td>
<td>Std</td>
<td>4.0057</td>
<td>74.6387</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>5.240</td>
<td>5.220</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>1.36</td>
<td>1.75</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>28.54</td>
<td>629.00</td>
</tr>
</tbody>
</table>

Table 4.3-10 Mobilization – Number of collections (MITT)

<table>
<thead>
<tr>
<th>Collection failure</th>
<th>Arm of 2nd randomization</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>N</td>
<td>119</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>1.8</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>Std</td>
<td>0.93</td>
<td>0.82</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>1.0</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>Std</td>
<td>0.00</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
Table 4.3-11 Mobilization – Source of stem cells (MITT)

<table>
<thead>
<tr>
<th>Source of Stem Cells</th>
<th>Arm of 2nd randomization</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RITUXIMAB</td>
<td>OBSERVATION</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Peripheral source</td>
<td>118</td>
<td>98</td>
<td>117</td>
</tr>
<tr>
<td>Bone marrow</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Peripheral source + Bone marrow</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>121</td>
<td>100</td>
<td>118</td>
</tr>
</tbody>
</table>

Table 4.3-12 Consolidation – Period of collection (MITT)

<table>
<thead>
<tr>
<th>Period of collections</th>
<th>Arm of 2nd randomization</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RITUXIMAB</td>
<td>OBSERVATION</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Before C1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>C1-C2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>C2-C3</td>
<td>35</td>
<td>29</td>
<td>25</td>
</tr>
<tr>
<td>After C3</td>
<td>83</td>
<td>69</td>
<td>87</td>
</tr>
<tr>
<td>Total</td>
<td>121</td>
<td>100</td>
<td>117</td>
</tr>
</tbody>
</table>
Thus, results on overall response rate adjusted with successful mobilization are the following ones:

Table 4.3-13 Overall Response Rate adjusted with successful mobilization (MITT)

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>CR/CRu/PR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collection failure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>No</td>
<td>117</td>
<td>96</td>
</tr>
<tr>
<td>Yes</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>No</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Yes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>122</td>
<td>100</td>
</tr>
</tbody>
</table>

15 patients underwent randomization in maintenance part without respect of response (at least PR) or successful mobilization criteria:
- 7 patients (2 in rituximab arm and 5 in observation arm) in stable disease but successful mobilization.
- One patient (in observation arm) with missing response but successful mobilization.
- 5 responder patients (2 in rituximab arm and 3 in observation arm) with no mobilization according to protocol rules but who have had a previous collection.
- One patient (in observation arm) who was reported with collection failure (only 1.75 10^6 CD34/KG) but underwent transplant.
- One patient (in rituximab arm) who, after failure of the first collection, received an additional treatment to undergo a second one (a 2nd collect was done on 20/05/2008 after 1 cycle of ifosfamide etoposide (4.19 10^6 cd34/kg) / transplantation done after 1 cycle of ifosfamide etoposide (25/05/08) / cells infused = 3.96: issue of 2nd collection because failure of 1st collection).

Table 4.3-14 Mobilization Adjusted Response Rate (MITT)

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>Nb patients</th>
<th>Nb responders with successful mobilization</th>
<th>MARR (%)</th>
<th>95% CI lower</th>
<th>95% CI upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>RITUXIMAB</td>
<td>122</td>
<td>117</td>
<td>95.9</td>
<td>1.3</td>
<td>9.3</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>120</td>
<td>110</td>
<td>91.7</td>
<td>4.1</td>
<td>14.8</td>
</tr>
</tbody>
</table>

Table 4.3-15 Mobilization Adjusted Response Rate (MITT)

<table>
<thead>
<tr>
<th>Difference between MARR (%)</th>
<th>95% CI lower</th>
<th>95% CI upper</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rituximab vs Observation</td>
<td>4.2</td>
<td>-1.8</td>
<td>10.3</td>
</tr>
</tbody>
</table>
Table 4.3-16 Consolidation – Time intervals with collection and transplantation (MITT)

<table>
<thead>
<tr>
<th>Time from C3 to 1st collection date (days)</th>
<th>Arm of 2nd randomization</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>121</td>
<td>117</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>-0.9</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Std</td>
<td>89.40</td>
<td>61.19</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>13.0</td>
<td>13.0</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>-966</td>
<td>-580</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>56</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Time from 1st collection date to 1st administration of BEAM (days)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>121</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>40.3</td>
<td>41.2</td>
<td></td>
</tr>
<tr>
<td>Std</td>
<td>91.11</td>
<td>62.14</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>28.0</td>
<td>28.0</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>6</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>1017</td>
<td>625</td>
<td></td>
</tr>
<tr>
<td>Time from 1st collection date to transplantation (days)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>121</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>46.6</td>
<td>47.4</td>
<td></td>
</tr>
<tr>
<td>Std</td>
<td>91.08</td>
<td>62.08</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>35.0</td>
<td>35.0</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>12</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>1023</td>
<td>631</td>
<td></td>
</tr>
<tr>
<td>Time from 1st administration of BEAM to transplantation (days)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>122</td>
<td>119</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>6.3</td>
<td>6.3</td>
<td></td>
</tr>
<tr>
<td>Std</td>
<td>0.60</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>6.0</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>10</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Time from transplantation to 2nd randomization date (days)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>122</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>7.2</td>
<td>8.3</td>
<td></td>
</tr>
<tr>
<td>Std</td>
<td>17.38</td>
<td>16.10</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>5.5</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>-77</td>
<td>-84</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>68</td>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>
4.4. Follow-up

Stopping date was set to June 1, 2010 since last event occurred on this date. 92% of patients had a date of last contact after September 1, 2009.

Table 4.4-1 Stopping date (MITT)

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Date of last contact earlier than 01/06/2010 (stopping date)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>68</td>
<td>56</td>
</tr>
<tr>
<td>Yes</td>
<td>54</td>
<td>44</td>
</tr>
<tr>
<td>Date of last contact earlier than 01/09/2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>114</td>
<td>93</td>
</tr>
<tr>
<td>Yes</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>122</td>
<td>100</td>
</tr>
</tbody>
</table>

The list of the 18 patients with a date of contact earlier than September 1, 2009 is presented in section §6.5.

Table 4.4-2 Follow-up duration (MITT)

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>N</th>
<th>Median</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Follow-up (months) ALL 242 44 1 76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Follow-up (months) RITUXIMAB 122 43 1 76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Follow-up (months) OBSERVATION 120 44 1 74</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

With date of last contact censored at stopping date, the median duration of follow-up for the MITT population (calculated from date of 2nd randomization) is 44 months overall (range from 1 to 76 months), 43 months in the rituximab arm and 44 months in the observation arm.
4.5. Efficacy results

4.5.1. Primary criterion

The aim of the 2nd part of the study was to evaluate the efficacy of rituximab given every eight weeks starting at day 28 after ASCT for a maximum of 6 doses in comparison to observation as measured by the event-free survival (EFS), events defined as death from any cause, relapse for complete responders and undocumented complete responders, progression during or after treatment, changes of therapy during allocated treatment.

140 events were required to conclude. Nevertheless, due to low rate of events since more than one year, analysis is performed with 111 events.

According to the definition of events, 55 patients in the rituximab arm and 56 patients in observation arm presented with an event (respectively 45% and 47%): 1 and 4 (respectively 1% and 3%) with a new treatment out of progression, 46 and 46 (respectively 38% and 38%) with progression/relapse, and 8 and 6 (respectively 7% and 5%) with death without progression.

![Table 4.5-1 Primary criterion – Events for survival analysis (MITT)](image)

Event-Free survival is measured from date of 2nd randomization to date of first event.
Figure 4.5-1 Primary criterion – Event-Free Survival (MITT)

Table 4.5-2 Primary criterion – Duration of Event-Free Survival (MITT)

<table>
<thead>
<tr>
<th>Time Point (months)</th>
<th>EFS (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>67.2</td>
<td>60.9</td>
<td>72.8</td>
<td>158</td>
</tr>
<tr>
<td>24</td>
<td>59.2</td>
<td>52.6</td>
<td>65.2</td>
<td>118</td>
</tr>
<tr>
<td>36</td>
<td>53.8</td>
<td>47.0</td>
<td>60.1</td>
<td>86</td>
</tr>
<tr>
<td>48</td>
<td>52.8</td>
<td>45.8</td>
<td>59.3</td>
<td>53</td>
</tr>
<tr>
<td>60</td>
<td>47.8</td>
<td>39.5</td>
<td>55.6</td>
<td>26</td>
</tr>
<tr>
<td>72</td>
<td>45.6</td>
<td>36.6</td>
<td>54.1</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 4.5-3 Primary criterion – Kaplan-Meier estimates for Event-Free Survival (MITT)

<table>
<thead>
<tr>
<th>Time Point (months)</th>
<th>EFS (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>67.2</td>
<td>60.9</td>
<td>72.8</td>
<td>158</td>
</tr>
<tr>
<td>24</td>
<td>59.2</td>
<td>52.6</td>
<td>65.2</td>
<td>118</td>
</tr>
<tr>
<td>36</td>
<td>53.8</td>
<td>47.0</td>
<td>60.1</td>
<td>86</td>
</tr>
<tr>
<td>48</td>
<td>52.8</td>
<td>45.8</td>
<td>59.3</td>
<td>53</td>
</tr>
<tr>
<td>60</td>
<td>47.8</td>
<td>39.5</td>
<td>55.6</td>
<td>26</td>
</tr>
<tr>
<td>72</td>
<td>45.6</td>
<td>36.6</td>
<td>54.1</td>
<td>6</td>
</tr>
</tbody>
</table>

No. of Subjects | Event | Censored | Median Survival (95% CL)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>242</td>
<td>46% (111)</td>
<td>54% (131)</td>
<td>57.59 (28.78 NA)</td>
</tr>
</tbody>
</table>
Figure 4.5-2 Primary criterion – Event-Free Survival according to treatment arm (MITT)

![Graph showing survival probability over time for different treatment arms.](image)

Logrank p=0.7435

Table 4.5-4 Primary criterion – Duration of Event-Free Survival according to treatment arm (MITT)

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>N</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFS (months)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>122</td>
<td>58</td>
<td>25</td>
<td>-</td>
<td>1</td>
<td>76</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>120</td>
<td>58</td>
<td>26</td>
<td>-</td>
<td>1</td>
<td>74</td>
</tr>
</tbody>
</table>
Table 4.5-5 Primary criterion – Kaplan-Meier estimates for Event-Free Survival according to treatment arm (MITT)

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>Time Point (months)</th>
<th>EFS (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>RITUXIMAB</td>
<td>12</td>
<td>69.8</td>
<td>60.7</td>
<td>77.2</td>
<td>82</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>24</td>
<td>59.2</td>
<td>49.7</td>
<td>67.5</td>
<td>62</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>36</td>
<td>53.9</td>
<td>44.3</td>
<td>62.6</td>
<td>44</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>48</td>
<td>52.0</td>
<td>42.0</td>
<td>61.1</td>
<td>27</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>60</td>
<td>48.5</td>
<td>37.1</td>
<td>59.1</td>
<td>14</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>72</td>
<td>48.5</td>
<td>37.1</td>
<td>59.1</td>
<td>4</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>12</td>
<td>64.6</td>
<td>55.3</td>
<td>72.5</td>
<td>76</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>24</td>
<td>59.3</td>
<td>49.8</td>
<td>67.5</td>
<td>56</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>36</td>
<td>53.7</td>
<td>43.9</td>
<td>62.5</td>
<td>42</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>48</td>
<td>53.7</td>
<td>43.9</td>
<td>62.5</td>
<td>26</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>60</td>
<td>47.2</td>
<td>35.0</td>
<td>58.3</td>
<td>12</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>72</td>
<td>42.4</td>
<td>28.6</td>
<td>55.6</td>
<td>2</td>
</tr>
</tbody>
</table>

The 3-yr EFS is 54% in both arms.

Table 4.5-6 Primary criterion – Hazard ratio of rituximab arm for Event-Free Survival (MITT)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>p-value</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>rituximab</td>
<td>0.7436</td>
<td>0.940</td>
<td>0.648 1.363</td>
</tr>
</tbody>
</table>

Table 4.5-7 Primary criterion – Stratified Analysis according to induction treatment and response to induction (CR/CRu vs others) - Hazard ratio of rituximab arm for Event-Free Survival (MITT)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>p-value</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>rituximab</td>
<td>0.7373</td>
<td>0.938</td>
<td>0.643 1.367</td>
</tr>
</tbody>
</table>
4.5.2. Secondary criteria

4.5.2.1. Progression-Free Survival

Progression-Free survival is measured from date of 2nd randomization to date of progression/relapse or death from any cause.

Figure 4.5-3 Secondary criteria – Progression-Free Survival (MITT)

![Graph showing progression-free survival over time with key metrics and data points.]

Table 4.5-8 Secondary criteria – Duration of Progression-Free Survival (MITT)

<table>
<thead>
<tr>
<th>PFS (months)</th>
<th>N</th>
<th>Median</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>58</td>
<td>32</td>
<td>-</td>
<td>47.0</td>
<td>1</td>
<td>76</td>
</tr>
</tbody>
</table>

Table 4.5-9 Secondary criteria – Kaplan-Meier estimates for Progression-Free Survival (MITT)

<table>
<thead>
<tr>
<th>Time Point (months)</th>
<th>PFS (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>68.9</td>
<td>62.6</td>
<td>74.4</td>
<td>162</td>
</tr>
<tr>
<td>24</td>
<td>60.8</td>
<td>54.2</td>
<td>66.8</td>
<td>120</td>
</tr>
<tr>
<td>36</td>
<td>55.4</td>
<td>48.6</td>
<td>61.7</td>
<td>86</td>
</tr>
<tr>
<td>48</td>
<td>54.4</td>
<td>47.4</td>
<td>60.8</td>
<td>53</td>
</tr>
<tr>
<td>60</td>
<td>49.2</td>
<td>40.7</td>
<td>57.1</td>
<td>26</td>
</tr>
<tr>
<td>72</td>
<td>47.0</td>
<td>37.8</td>
<td>55.6</td>
<td>6</td>
</tr>
</tbody>
</table>
Figure 4.5-4 Secondary criteria – Progression-Free Survival according to treatment arm (MITT)

![Graph showing survival probability over time for RITUXIMAB and OBSERVATION arms, with Logrank p=0.8314]

Table 4.5-10 Secondary criteria – Duration of Progression-Free Survival according to treatment arm (MITT)

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>Time Point (months)</th>
<th>PFS (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>RITUXIMAB</td>
<td>12</td>
<td>69.8</td>
<td>60.7</td>
<td>77.2</td>
<td>82</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>24</td>
<td>59.2</td>
<td>49.7</td>
<td>67.5</td>
<td>62</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>36</td>
<td>53.9</td>
<td>44.3</td>
<td>62.6</td>
<td>44</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>48</td>
<td>52.0</td>
<td>42.0</td>
<td>61.1</td>
<td>27</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>60</td>
<td>48.5</td>
<td>37.1</td>
<td>59.1</td>
<td>14</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>72</td>
<td>48.5</td>
<td>37.1</td>
<td>59.1</td>
<td>4</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>12</td>
<td>68.0</td>
<td>58.8</td>
<td>75.6</td>
<td>80</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>24</td>
<td>62.6</td>
<td>53.1</td>
<td>70.7</td>
<td>58</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>36</td>
<td>56.9</td>
<td>47.1</td>
<td>65.6</td>
<td>42</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>48</td>
<td>56.9</td>
<td>47.1</td>
<td>65.6</td>
<td>26</td>
</tr>
</tbody>
</table>
The 3-yr PFS is 54% in the rituximab arm vs 57% in the observation arm.

Table 4.5-12 Secondary criteria – Hazard ratio of rituximab arm for Progression-Free Survival (MITT)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>p-value</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>rituximab</td>
<td>0.8316</td>
<td>1.042</td>
<td>0.713 - 1.522</td>
</tr>
</tbody>
</table>

Table 4.5-13 Secondary criteria – Stratified Analysis according to induction treatment and response to induction (CR/CRu vs others) - Hazard ratio of rituximab arm for Progression-Free Survival (MITT)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>p-value</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>rituximab</td>
<td>0.8219</td>
<td>1.045</td>
<td>0.712 - 1.535</td>
</tr>
</tbody>
</table>

4.5.2.2. Overall Survival

Overall survival is measured from date of 2nd randomization to date of death from any cause.

![Overall Survival](image-url)
Table 4.5-14 Secondary criteria – Duration of Overall Survival (MITT)

<table>
<thead>
<tr>
<th>OS (months)</th>
<th>N</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>242</td>
<td></td>
<td>58</td>
<td>-</td>
<td>1</td>
<td>76</td>
</tr>
</tbody>
</table>

Table 4.5-15 Secondary criteria – Kaplan-Meier estimates for Overall Survival (MITT)

<table>
<thead>
<tr>
<th>Time Point (months)</th>
<th>OS (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>84.4</td>
<td>79.2</td>
<td>88.5</td>
<td>199</td>
</tr>
<tr>
<td>24</td>
<td>73.7</td>
<td>67.5</td>
<td>78.9</td>
<td>145</td>
</tr>
<tr>
<td>36</td>
<td>67.7</td>
<td>61.0</td>
<td>73.5</td>
<td>104</td>
</tr>
<tr>
<td>48</td>
<td>63.1</td>
<td>55.9</td>
<td>69.5</td>
<td>63</td>
</tr>
<tr>
<td>60</td>
<td>54.8</td>
<td>45.4</td>
<td>63.3</td>
<td>30</td>
</tr>
<tr>
<td>72</td>
<td>51.9</td>
<td>41.3</td>
<td>61.5</td>
<td>6</td>
</tr>
</tbody>
</table>

Figure 4.5-6 Secondary criteria – Overall Survival according to treatment arm (MITT)

Table 4.5-16 Secondary criteria – Duration of Overall Survival according to treatment arm (MITT)

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>N</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OS (months)</td>
<td>RITUXIMAB</td>
<td>58</td>
<td>-</td>
<td>1</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>OS (months)</td>
<td>OBSERVATION</td>
<td>63</td>
<td>57</td>
<td>1</td>
<td>74</td>
</tr>
</tbody>
</table>
Table 4.5-17 Secondary criteria – Kaplan-Meier estimates for Overall Survival according to treatment arm (MITT)

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>Time Point (months)</th>
<th>OS (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>RITUXIMAB</td>
<td>12</td>
<td>85.7</td>
<td>78.0</td>
<td>90.9</td>
<td>101</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>24</td>
<td>69.1</td>
<td>59.8</td>
<td>76.6</td>
<td>73</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>36</td>
<td>66.0</td>
<td>56.5</td>
<td>74.0</td>
<td>54</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>48</td>
<td>61.5</td>
<td>51.2</td>
<td>70.3</td>
<td>32</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>60</td>
<td>55.0</td>
<td>42.2</td>
<td>66.1</td>
<td>17</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>72</td>
<td>55.0</td>
<td>42.2</td>
<td>66.1</td>
<td>4</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>12</td>
<td>83.2</td>
<td>75.1</td>
<td>88.8</td>
<td>98</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>24</td>
<td>78.8</td>
<td>70.2</td>
<td>85.1</td>
<td>72</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>36</td>
<td>69.5</td>
<td>59.6</td>
<td>77.4</td>
<td>50</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>48</td>
<td>64.9</td>
<td>54.3</td>
<td>73.7</td>
<td>31</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>60</td>
<td>55.0</td>
<td>40.8</td>
<td>67.1</td>
<td>13</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>72</td>
<td>48.1</td>
<td>30.4</td>
<td>63.8</td>
<td>2</td>
</tr>
</tbody>
</table>

The 3-yr OS is 66% in the rituximab arm vs 69% in the observation arm.

Table 4.5-18 Secondary criteria – Hazard ratio of rituximab arm for Overall Survival (MITT)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>p-value</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>rituximab</td>
<td>0.7550</td>
<td>1.071</td>
<td>0.698 1.643</td>
</tr>
</tbody>
</table>

Table 4.5-19 Secondary criteria – Stratified Analysis according to induction treatment and response to induction (CR/CRu vs others) - Hazard ratio of rituximab arm for Progression-Free Survival (MITT)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>p-value</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>rituximab</td>
<td>0.9110</td>
<td>1.025</td>
<td>0.664 1.583</td>
</tr>
</tbody>
</table>
4.5.2.3. Response at the end of maintenance

Considering response reported at follow-up M12 post transplant if patient was not withdrawn before, otherwise response at withdrawal, results are the following ones:

Table 4.5-20 Secondary criteria – Response at the end of maintenance (MITT)

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>N</th>
<th>%</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response at the end of maintenance (including deaths for not evaluated patients)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPLETE RESPONSE</td>
<td>65</td>
<td>53</td>
<td>53</td>
<td>44</td>
</tr>
<tr>
<td>UNCONFIRMED COMPLETE RESPONSE</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>PARTIAL RESPONSE</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>STABLE DISEASE</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PROGRESSIVE DISEASE</td>
<td>31</td>
<td>25</td>
<td>36</td>
<td>30</td>
</tr>
<tr>
<td>DEATH</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>NOT EVALUATED</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Missing</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>122</td>
<td>100</td>
<td>120</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 4.5-21 Overall response rate at the end of maintenance (MITT)

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>Nb patients</th>
<th>Nb responders (CR/CRu/PR)</th>
<th>OR rate (%)</th>
<th>95% CI lower</th>
<th>95% CI upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>RITUXIMAB</td>
<td>122</td>
<td>80</td>
<td>65.6</td>
<td>56.4</td>
<td>73.9</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>120</td>
<td>70</td>
<td>58.3</td>
<td>49.0</td>
<td>67.3</td>
</tr>
</tbody>
</table>

Table 4.5-22 Difference between CR rates at the end of maintenance (MITT)

<table>
<thead>
<tr>
<th>Difference between CR rates (%)</th>
<th>95% CI lower</th>
<th>95% CI upper</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rituximab vs Observation</td>
<td>7.2</td>
<td>-5.0</td>
<td>19.4</td>
</tr>
</tbody>
</table>

Table 4.5-23 Complete response rate at the end of maintenance (MITT)

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>Nb patients</th>
<th>Nb responders (CR/CRu)</th>
<th>CR rate (%)</th>
<th>95% CI lower</th>
<th>95% CI upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>RITUXIMAB</td>
<td>122</td>
<td>73</td>
<td>59.8</td>
<td>50.6</td>
<td>68.6</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>120</td>
<td>61</td>
<td>50.8</td>
<td>41.6</td>
<td>60.1</td>
</tr>
</tbody>
</table>

Table 4.5-24 Difference between CR rates at the end of maintenance (MITT)

<table>
<thead>
<tr>
<th>Difference between CR rates (%)</th>
<th>95% CI lower</th>
<th>95% CI upper</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rituximab vs Observation</td>
<td>9.0</td>
<td>-3.5</td>
<td>21.5</td>
</tr>
</tbody>
</table>
Considering all deaths reported within one year after transplant (even if patient had a previous response), 17 deaths in rituximab arm and 19 deaths in observation arm were reported:

Table 4.5-25 Secondary criteria – Response at the end of maintenance including all deaths during maintenance period (MITT)

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Response at the end of maintenance (including deaths for all patients)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPLETE RESPONSE</td>
<td>62</td>
<td>51</td>
</tr>
<tr>
<td>UNCONFIRMED COMPLETE RESPONSE</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>PARTIAL RESPONSE</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>STABLE DISEASE</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PROGRESSIVE DISEASE</td>
<td>18</td>
<td>15</td>
</tr>
<tr>
<td>DEATH</td>
<td>17</td>
<td>14</td>
</tr>
<tr>
<td>NOT EVALUATED</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Missing</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>122</td>
<td>100</td>
</tr>
</tbody>
</table>

The list of the 17 patients in rituximab arm and 19 patients in observation arm who died in maintenance period is shown in section §6.6.1.

Table 4.5-26 Overall response rate at the end of maintenance, including all deaths during maintenance period (MITT)

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>Nb patients</th>
<th>Nb responders (CR/CRu/PR)</th>
<th>OR rate (%)</th>
<th>95% CI lower</th>
<th>95% CI upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>RITUXIMAB</td>
<td>122</td>
<td>76</td>
<td>62.3</td>
<td>53.1</td>
<td>70.9</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>120</td>
<td>70</td>
<td>58.3</td>
<td>49.0</td>
<td>67.3</td>
</tr>
</tbody>
</table>

Table 4.5-27 Difference between CR rates at the end of maintenance, including all deaths during maintenance period (MITT)

<table>
<thead>
<tr>
<th>Difference between OR rates (%)</th>
<th>95% CI lower</th>
<th>95% CI upper</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rituximab vs Observation</td>
<td>4.0</td>
<td>-8.4</td>
<td>16.3</td>
</tr>
</tbody>
</table>

Table 4.5-28 Complete response rate at the end of maintenance, including all deaths during maintenance period (MITT)

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>Nb patients</th>
<th>Nb responders (CR/CRu)</th>
<th>CR rate (%)</th>
<th>95% CI lower</th>
<th>95% CI upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>RITUXIMAB</td>
<td>122</td>
<td>70</td>
<td>57.4</td>
<td>48.1</td>
<td>66.3</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>120</td>
<td>61</td>
<td>50.8</td>
<td>41.6</td>
<td>60.1</td>
</tr>
</tbody>
</table>

Table 4.5-29 Difference between CR rates at the end of maintenance, including all deaths during maintenance period (MITT)

<table>
<thead>
<tr>
<th>Difference between CR rates (%)</th>
<th>95% CI lower</th>
<th>95% CI upper</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rituximab vs Observation</td>
<td>6.5</td>
<td>-6.0</td>
<td>19.1</td>
</tr>
</tbody>
</table>
4.5.3. Exploratory analyses

4.5.3.1. Subgroup analysis

4.5.3.1.1. By induction treatment

Figure 4.5-7 Exploratory analyses – Event-Free Survival according to treatment arm by induction treatment (MITT)

Induction treatment=ARM A / R-ICE

![Graph showing Event-Free Survival (EFS) for ARM A and R-ICE, with Logrank p=0.4978.]

- **Observation**
- **Rituximab**

Induction treatment=ARM B / R-DHAP

![Graph showing Event-Free Survival (EFS) for ARM B and R-DHAP, with Logrank p=0.7769.]

Table:

<table>
<thead>
<tr>
<th></th>
<th>Observation</th>
<th>Event</th>
<th>Censored</th>
<th>Median Survival (95% CL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM A / R-ICE</td>
<td>56</td>
<td>54%</td>
<td>46%</td>
<td>28.22 (9.99, NA)</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>60</td>
<td>47%</td>
<td>53%</td>
<td>31.67 (22.14, NA)</td>
</tr>
</tbody>
</table>

Table:

<table>
<thead>
<tr>
<th></th>
<th>Observation</th>
<th>Event</th>
<th>Censored</th>
<th>Median Survival (95% CL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM B / R-DHAP</td>
<td>64</td>
<td>41%</td>
<td>59%</td>
<td>NA (31.61, NA)</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>62</td>
<td>44%</td>
<td>56%</td>
<td>57.59 (15.87, NA)</td>
</tr>
</tbody>
</table>
Table 4.5-30 Exploratory analyses – Duration of Event-Free Survival according to treatment arm by induction treatment (MITT)

<table>
<thead>
<tr>
<th>Induction treatment</th>
<th>Arm of 2nd randomization</th>
<th>N</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>60</td>
<td>32</td>
<td>22</td>
<td>-</td>
<td>1</td>
<td>73</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>OBSERVATION</td>
<td>56</td>
<td>28</td>
<td>10</td>
<td>-</td>
<td>1</td>
<td>67</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>62</td>
<td>58</td>
<td>16</td>
<td>-</td>
<td>1</td>
<td>76</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>64</td>
<td>-</td>
<td>32</td>
<td>-</td>
<td>1</td>
<td>74</td>
</tr>
</tbody>
</table>

Table 4.5-31 Exploratory analyses – Kaplan-Meier estimates for Event-Free Survival according to treatment arm by induction treatment (MITT)

<table>
<thead>
<tr>
<th>Induction treatment</th>
<th>Arm of 2nd randomization</th>
<th>Time Point (years)</th>
<th>Survival (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>12</td>
<td>72.9</td>
<td>59.6</td>
<td>82.4</td>
<td>42</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>24</td>
<td>58.2</td>
<td>44.3</td>
<td>69.8</td>
<td>30</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>36</td>
<td>49.9</td>
<td>36.0</td>
<td>62.3</td>
<td>18</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>48</td>
<td>49.9</td>
<td>36.0</td>
<td>62.3</td>
<td>8</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>60</td>
<td>49.9</td>
<td>36.0</td>
<td>62.3</td>
<td>5</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>OBSERVATION</td>
<td>72</td>
<td>49.9</td>
<td>36.0</td>
<td>62.3</td>
<td>1</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>OBSERVATION</td>
<td>12</td>
<td>58.2</td>
<td>44.1</td>
<td>69.9</td>
<td>32</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>OBSERVATION</td>
<td>24</td>
<td>54.3</td>
<td>40.2</td>
<td>66.4</td>
<td>25</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>OBSERVATION</td>
<td>36</td>
<td>47.6</td>
<td>33.5</td>
<td>60.3</td>
<td>18</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>OBSERVATION</td>
<td>48</td>
<td>47.6</td>
<td>33.5</td>
<td>60.3</td>
<td>11</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>OBSERVATION</td>
<td>60</td>
<td>39.6</td>
<td>21.9</td>
<td>56.9</td>
<td>5</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>OBSERVATION</td>
<td>72</td>
<td>29.7</td>
<td>11.0</td>
<td>51.4</td>
<td>0</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>12</td>
<td>66.7</td>
<td>53.3</td>
<td>77.1</td>
<td>40</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>24</td>
<td>59.9</td>
<td>46.4</td>
<td>71.1</td>
<td>32</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>36</td>
<td>57.9</td>
<td>44.2</td>
<td>69.3</td>
<td>26</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>48</td>
<td>55.0</td>
<td>40.9</td>
<td>67.0</td>
<td>19</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>60</td>
<td>49.5</td>
<td>33.2</td>
<td>63.9</td>
<td>9</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>72</td>
<td>49.5</td>
<td>33.2</td>
<td>63.9</td>
<td>3</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>12</td>
<td>70.2</td>
<td>57.4</td>
<td>79.9</td>
<td>44</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>24</td>
<td>63.6</td>
<td>50.4</td>
<td>74.1</td>
<td>31</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>36</td>
<td>59.2</td>
<td>45.6</td>
<td>70.5</td>
<td>24</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>48</td>
<td>59.2</td>
<td>45.6</td>
<td>70.5</td>
<td>15</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>60</td>
<td>53.8</td>
<td>37.6</td>
<td>67.5</td>
<td>7</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>72</td>
<td>53.8</td>
<td>37.6</td>
<td>67.5</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 4.5-32 Exploratory analyses – Hazard ratio of rituximab arm by induction treatment for Event-Free Survival (MITT)

<table>
<thead>
<tr>
<th>Induction treatment</th>
<th>Parameter</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM A / R-ICE</td>
<td>rituximab</td>
<td>0.4087</td>
<td>0.805 0.480 1.348</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>rituximab</td>
<td>0.7771</td>
<td>1.081 0.631 1.853</td>
</tr>
</tbody>
</table>
Figure 4.5-8 Exploratory analyses – Progression-Free Survival according to treatment arm by induction treatment (MITT)

Induction treatment=ARM A / R-ICE

<table>
<thead>
<tr>
<th></th>
<th>Observation</th>
<th>R-ICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Subjects</td>
<td>56</td>
<td>60</td>
</tr>
<tr>
<td>Event</td>
<td>52% (29)</td>
<td>47% (28)</td>
</tr>
<tr>
<td>Censored</td>
<td>48% (27)</td>
<td>53% (32)</td>
</tr>
<tr>
<td>Median Survival (95% CL)</td>
<td>31.44 (11.70, NA)</td>
<td>31.67 (22.14, NA)</td>
</tr>
</tbody>
</table>

Logrank p=0.5313

Induction treatment=ARM B / R-DHAP

<table>
<thead>
<tr>
<th></th>
<th>Observation</th>
<th>R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Subjects</td>
<td>64</td>
<td>62</td>
</tr>
<tr>
<td>Event</td>
<td>36% (23)</td>
<td>44% (27)</td>
</tr>
<tr>
<td>Censored</td>
<td>64% (41)</td>
<td>56% (35)</td>
</tr>
<tr>
<td>Median Survival (95% CL)</td>
<td>NA (56.97, NA)</td>
<td>57.59 (15.67, NA)</td>
</tr>
</tbody>
</table>

Logrank p=0.3974
Table 4.5-33 Exploratory analyses – Duration of Progression-Free Survival according to treatment arm by induction treatment (MITT)

<table>
<thead>
<tr>
<th>Induction treatment</th>
<th>Arm of 2nd randomization</th>
<th>N</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>60</td>
<td>32</td>
<td>22</td>
<td>-</td>
<td>1</td>
<td>73</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>OBSERVATION</td>
<td>56</td>
<td>31</td>
<td>12</td>
<td>-</td>
<td>1</td>
<td>67</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>62</td>
<td>58</td>
<td>16</td>
<td>-</td>
<td>1</td>
<td>76</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>64</td>
<td>-</td>
<td>57</td>
<td>-</td>
<td>1</td>
<td>74</td>
</tr>
</tbody>
</table>

Table 4.5-34 Exploratory analyses – Kaplan-Meier estimates for Progression-Free Survival according to treatment arm by induction treatment (MITT)

<table>
<thead>
<tr>
<th>Induction treatment</th>
<th>Arm of 2nd randomization</th>
<th>Time Point (years)</th>
<th>Survival (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>12</td>
<td>72.9</td>
<td>59.6</td>
<td>82.4</td>
<td>42</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>24</td>
<td>58.2</td>
<td>44.3</td>
<td>69.8</td>
<td>30</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>36</td>
<td>49.9</td>
<td>36.0</td>
<td>62.3</td>
<td>18</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>48</td>
<td>49.9</td>
<td>36.0</td>
<td>62.3</td>
<td>8</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>60</td>
<td>49.9</td>
<td>36.0</td>
<td>62.3</td>
<td>5</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>72</td>
<td>49.9</td>
<td>36.0</td>
<td>62.3</td>
<td>1</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>OBSERVATION</td>
<td>12</td>
<td>60.0</td>
<td>45.9</td>
<td>71.6</td>
<td>33</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>OBSERVATION</td>
<td>24</td>
<td>56.1</td>
<td>42.0</td>
<td>68.1</td>
<td>26</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>OBSERVATION</td>
<td>36</td>
<td>49.5</td>
<td>35.3</td>
<td>62.1</td>
<td>18</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>OBSERVATION</td>
<td>48</td>
<td>49.5</td>
<td>35.3</td>
<td>62.1</td>
<td>11</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>OBSERVATION</td>
<td>60</td>
<td>41.2</td>
<td>22.9</td>
<td>58.7</td>
<td>5</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>OBSERVATION</td>
<td>72</td>
<td>30.9</td>
<td>11.4</td>
<td>53.1</td>
<td>0</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>12</td>
<td>66.7</td>
<td>53.3</td>
<td>77.1</td>
<td>40</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>24</td>
<td>59.9</td>
<td>46.4</td>
<td>71.1</td>
<td>32</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>36</td>
<td>57.9</td>
<td>44.2</td>
<td>69.3</td>
<td>26</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>48</td>
<td>55.0</td>
<td>40.9</td>
<td>67.0</td>
<td>19</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>60</td>
<td>49.5</td>
<td>33.2</td>
<td>63.9</td>
<td>9</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>72</td>
<td>49.5</td>
<td>33.2</td>
<td>63.9</td>
<td>3</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>12</td>
<td>74.9</td>
<td>62.4</td>
<td>83.8</td>
<td>47</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>24</td>
<td>68.1</td>
<td>55.0</td>
<td>78.2</td>
<td>32</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>36</td>
<td>63.6</td>
<td>49.8</td>
<td>74.5</td>
<td>24</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>48</td>
<td>63.6</td>
<td>49.8</td>
<td>74.5</td>
<td>15</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>60</td>
<td>57.8</td>
<td>40.8</td>
<td>71.6</td>
<td>7</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>72</td>
<td>57.8</td>
<td>40.8</td>
<td>71.6</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 4.5-35 Exploratory analyses – Hazard ratio of rituximab arm by induction treatment for Progression-Free Survival (MITT)

<table>
<thead>
<tr>
<th>Induction treatment</th>
<th>Parameter</th>
<th>p-value</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM A / R-ICE</td>
<td>rituximab</td>
<td>0.5319</td>
<td>0.847</td>
<td>0.504 1.425</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>rituximab</td>
<td>0.3989</td>
<td>1.271</td>
<td>0.728 2.217</td>
</tr>
</tbody>
</table>
Figure 4.5-9 Exploratory analyses – Overall Survival according to treatment arm by induction treatment (MITT)

Induction treatment=ARM A / R-ICE

Induction treatment=ARM B / R-DHAP

Logrank p=0.3794

Logrank p=0.1849

<table>
<thead>
<tr>
<th>No. of Subjects</th>
<th>Event</th>
<th>Censored</th>
<th>Median Survival (95% CL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBSERVATION</td>
<td>56</td>
<td>45% (25)</td>
<td>55% (31) 58.22 (34.20 NA)</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>60</td>
<td>37% (22)</td>
<td>63% (35) NA (39.20 NA)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Subjects</th>
<th>Event</th>
<th>Censored</th>
<th>Median Survival (95% CL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBSERVATION</td>
<td>64</td>
<td>23% (15)</td>
<td>77% (49) NA (56.97 NA)</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>62</td>
<td>35% (22)</td>
<td>65% (40) NA (47.87 NA)</td>
</tr>
</tbody>
</table>
Table 4.5-36 Exploratory analyses – Duration of Overall Survival according to treatment arm by induction treatment (MITT)

<table>
<thead>
<tr>
<th>Induction treatment</th>
<th>Arm of 2nd randomization</th>
<th>N</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>60</td>
<td>-</td>
<td>39</td>
<td>-</td>
<td>1</td>
<td>73</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>OBSERVATION</td>
<td>56</td>
<td>58</td>
<td>34</td>
<td>-</td>
<td>1</td>
<td>67</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>62</td>
<td>-</td>
<td>48</td>
<td>-</td>
<td>1</td>
<td>76</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>64</td>
<td>-</td>
<td>57</td>
<td>-</td>
<td>2</td>
<td>74</td>
</tr>
</tbody>
</table>

Table 4.5-37 Exploratory analyses – Kaplan-Meier estimates for Overall Survival according to treatment arm by induction treatment (MITT)

<table>
<thead>
<tr>
<th>Induction treatment</th>
<th>Arm of 2nd randomization</th>
<th>Time Point (years)</th>
<th>Survival (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>12</td>
<td>84.7</td>
<td>72.7</td>
<td>91.8</td>
<td>49</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>24</td>
<td>66.7</td>
<td>52.8</td>
<td>77.3</td>
<td>35</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>36</td>
<td>66.7</td>
<td>52.8</td>
<td>77.3</td>
<td>25</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>48</td>
<td>60.9</td>
<td>45.9</td>
<td>72.9</td>
<td>11</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>OBSERVATION</td>
<td>60</td>
<td>53.3</td>
<td>33.7</td>
<td>69.4</td>
<td>7</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>72</td>
<td>53.3</td>
<td>33.7</td>
<td>69.4</td>
<td>1</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>OBSERVATION</td>
<td>12</td>
<td>78.2</td>
<td>64.8</td>
<td>87.0</td>
<td>43</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>OBSERVATION</td>
<td>24</td>
<td>72.5</td>
<td>58.5</td>
<td>82.4</td>
<td>34</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>OBSERVATION</td>
<td>36</td>
<td>61.2</td>
<td>46.3</td>
<td>73.1</td>
<td>23</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>OBSERVATION</td>
<td>48</td>
<td>52.7</td>
<td>37.1</td>
<td>66.1</td>
<td>13</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>OBSERVATION</td>
<td>60</td>
<td>43.9</td>
<td>24.0</td>
<td>62.2</td>
<td>5</td>
</tr>
<tr>
<td>ARM A / R-ICE</td>
<td>OBSERVATION</td>
<td>72</td>
<td>21.9</td>
<td>1.9</td>
<td>56.0</td>
<td>0</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>12</td>
<td>86.7</td>
<td>75.1</td>
<td>93.1</td>
<td>52</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>24</td>
<td>71.5</td>
<td>58.2</td>
<td>81.2</td>
<td>38</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>36</td>
<td>65.4</td>
<td>51.5</td>
<td>76.2</td>
<td>29</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>48</td>
<td>62.4</td>
<td>47.9</td>
<td>74.0</td>
<td>21</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>60</td>
<td>56.7</td>
<td>39.4</td>
<td>70.8</td>
<td>10</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>72</td>
<td>56.7</td>
<td>39.4</td>
<td>70.8</td>
<td>3</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>12</td>
<td>87.5</td>
<td>76.5</td>
<td>93.5</td>
<td>55</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>24</td>
<td>84.3</td>
<td>72.8</td>
<td>91.2</td>
<td>38</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>36</td>
<td>77.2</td>
<td>63.6</td>
<td>86.3</td>
<td>27</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>48</td>
<td>77.2</td>
<td>63.6</td>
<td>86.3</td>
<td>18</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>60</td>
<td>65.8</td>
<td>45.3</td>
<td>80.1</td>
<td>8</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>72</td>
<td>65.8</td>
<td>45.3</td>
<td>80.1</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 4.5-38 Exploratory analyses – Hazard ratio of rituximab arm by induction treatment for Overall Survival (MITT)

<table>
<thead>
<tr>
<th>Induction treatment</th>
<th>Parameter</th>
<th>p-value</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM A / R-ICE</td>
<td>rituximab</td>
<td>0.3809</td>
<td>0.774</td>
<td>0.436 1.374</td>
</tr>
<tr>
<td>ARM B / R-DHAP</td>
<td>rituximab</td>
<td>0.1884</td>
<td>1.554</td>
<td>0.806 2.995</td>
</tr>
</tbody>
</table>
4.5.3.1.2. By response to induction

Figure 4.5-10 Exploratory analyses – Event-Free Survival according to treatment arm by response to induction (MITT)

Response to induction=CR/CRu

Response to induction=PR
Table 4.5-39 Exploratory analyses – Duration of Event-Free Survival according to treatment arm by response to induction (MITT)

<table>
<thead>
<tr>
<th>Response to induction</th>
<th>Arm of 2nd randomization</th>
<th>N</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR/CRu</td>
<td>RITUXIMAB</td>
<td>73</td>
<td>-</td>
<td>48</td>
<td>-</td>
<td>1</td>
<td>73</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>OBSERVATION</td>
<td>69</td>
<td>58</td>
<td>28</td>
<td>-</td>
<td>1</td>
<td>73</td>
</tr>
<tr>
<td>PR</td>
<td>RITUXIMAB</td>
<td>47</td>
<td>25</td>
<td>15</td>
<td>-</td>
<td>1</td>
<td>76</td>
</tr>
<tr>
<td>PR</td>
<td>OBSERVATION</td>
<td>45</td>
<td>-</td>
<td>7</td>
<td>-</td>
<td>1</td>
<td>74</td>
</tr>
</tbody>
</table>

Table 4.5-40 Exploratory analyses – Kaplan-Meier estimates for Event-Free Survival according to treatment arm by response to induction (MITT)

<table>
<thead>
<tr>
<th>Response to induction</th>
<th>Arm of 2nd randomization</th>
<th>Time Point (years)</th>
<th>Survival (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR/CRu</td>
<td>RITUXIMAB</td>
<td>12</td>
<td>73.6</td>
<td>61.8</td>
<td>82.3</td>
<td>52</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>RITUXIMAB</td>
<td>24</td>
<td>65.0</td>
<td>52.7</td>
<td>74.8</td>
<td>41</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>RITUXIMAB</td>
<td>36</td>
<td>61.7</td>
<td>49.2</td>
<td>71.9</td>
<td>34</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>RITUXIMAB</td>
<td>48</td>
<td>59.0</td>
<td>45.9</td>
<td>69.9</td>
<td>22</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>RITUXIMAB</td>
<td>60</td>
<td>59.0</td>
<td>45.9</td>
<td>69.9</td>
<td>10</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>OBSERVATION</td>
<td>12</td>
<td>71.9</td>
<td>59.6</td>
<td>81.1</td>
<td>48</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>OBSERVATION</td>
<td>24</td>
<td>63.9</td>
<td>51.1</td>
<td>74.2</td>
<td>33</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>OBSERVATION</td>
<td>36</td>
<td>58.1</td>
<td>44.9</td>
<td>69.2</td>
<td>26</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>OBSERVATION</td>
<td>48</td>
<td>58.1</td>
<td>44.9</td>
<td>69.2</td>
<td>18</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>OBSERVATION</td>
<td>60</td>
<td>47.9</td>
<td>31.0</td>
<td>63.0</td>
<td>8</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>OBSERVATION</td>
<td>72</td>
<td>39.9</td>
<td>20.7</td>
<td>58.5</td>
<td>1</td>
</tr>
<tr>
<td>PR</td>
<td>RITUXIMAB</td>
<td>12</td>
<td>64.6</td>
<td>48.9</td>
<td>76.6</td>
<td>29</td>
</tr>
<tr>
<td>PR</td>
<td>RITUXIMAB</td>
<td>24</td>
<td>52.4</td>
<td>36.7</td>
<td>65.9</td>
<td>21</td>
</tr>
<tr>
<td>PR</td>
<td>RITUXIMAB</td>
<td>36</td>
<td>43.4</td>
<td>27.8</td>
<td>58.0</td>
<td>10</td>
</tr>
<tr>
<td>PR</td>
<td>RITUXIMAB</td>
<td>48</td>
<td>43.4</td>
<td>27.8</td>
<td>58.0</td>
<td>5</td>
</tr>
<tr>
<td>PR</td>
<td>RITUXIMAB</td>
<td>60</td>
<td>34.7</td>
<td>16.5</td>
<td>53.8</td>
<td>4</td>
</tr>
<tr>
<td>PR</td>
<td>RITUXIMAB</td>
<td>72</td>
<td>34.7</td>
<td>16.5</td>
<td>53.8</td>
<td>3</td>
</tr>
<tr>
<td>PR</td>
<td>OBSERVATION</td>
<td>12</td>
<td>57.8</td>
<td>42.1</td>
<td>70.6</td>
<td>26</td>
</tr>
<tr>
<td>PR</td>
<td>OBSERVATION</td>
<td>24</td>
<td>57.8</td>
<td>42.1</td>
<td>70.6</td>
<td>23</td>
</tr>
<tr>
<td>PR</td>
<td>OBSERVATION</td>
<td>36</td>
<td>51.7</td>
<td>35.7</td>
<td>65.5</td>
<td>16</td>
</tr>
<tr>
<td>PR</td>
<td>OBSERVATION</td>
<td>48</td>
<td>51.7</td>
<td>35.7</td>
<td>65.5</td>
<td>8</td>
</tr>
<tr>
<td>PR</td>
<td>OBSERVATION</td>
<td>60</td>
<td>51.7</td>
<td>35.7</td>
<td>65.5</td>
<td>4</td>
</tr>
<tr>
<td>PR</td>
<td>OBSERVATION</td>
<td>72</td>
<td>51.7</td>
<td>35.7</td>
<td>65.5</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 4.5-41 Exploratory analyses – Hazard ratio of rituximab arm by response to induction for Event-Free Survival (MITT)

<table>
<thead>
<tr>
<th>Response to induction</th>
<th>Parameter</th>
<th>p-value</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR/CRu</td>
<td>rituximab</td>
<td>0.5453</td>
<td>0.853</td>
<td>0.509 1.428</td>
</tr>
<tr>
<td>PR</td>
<td>rituximab</td>
<td>0.5486</td>
<td>1.195</td>
<td>0.668 2.137</td>
</tr>
</tbody>
</table>
Figure 4.5-11 Exploratory analyses – Progression-Free Survival according to treatment arm by response to induction (MITT)

Response to induction=CR/CRu

Response to induction=PR
Table 4.5-42 Exploratory analyses – Duration of Progression-Free Survival according to treatment arm by response to induction (MITT)

<table>
<thead>
<tr>
<th>Response to induction</th>
<th>Arm of 2nd randomization</th>
<th>N</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR/CRu</td>
<td>RITUXIMAB</td>
<td>73</td>
<td>-</td>
<td>48</td>
<td>-</td>
<td>1</td>
<td>73</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>OBSERVATION</td>
<td>69</td>
<td>58</td>
<td>28</td>
<td>-</td>
<td>1</td>
<td>73</td>
</tr>
<tr>
<td>PR</td>
<td>RITUXIMAB</td>
<td>47</td>
<td>25</td>
<td>15</td>
<td>-</td>
<td>1</td>
<td>76</td>
</tr>
<tr>
<td>PR</td>
<td>OBSERVATION</td>
<td>45</td>
<td>31</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>74</td>
</tr>
</tbody>
</table>

Table 4.5-43 Exploratory analyses – Kaplan-Meier estimates for Progression-Free Survival according to treatment arm by response to induction (MITT)

<table>
<thead>
<tr>
<th>Response to induction</th>
<th>Arm of 2nd randomization</th>
<th>Time Point (years)</th>
<th>Survival (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR/CRu</td>
<td>RITUXIMAB</td>
<td>12</td>
<td>73.6</td>
<td>61.8</td>
<td>82.3</td>
<td>52</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>RITUXIMAB</td>
<td>24</td>
<td>65.0</td>
<td>52.7</td>
<td>74.8</td>
<td>41</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>RITUXIMAB</td>
<td>36</td>
<td>61.7</td>
<td>49.2</td>
<td>71.9</td>
<td>34</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>RITUXIMAB</td>
<td>48</td>
<td>59.0</td>
<td>45.9</td>
<td>69.9</td>
<td>22</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>RITUXIMAB</td>
<td>60</td>
<td>59.0</td>
<td>45.9</td>
<td>69.9</td>
<td>10</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>RITUXIMAB</td>
<td>72</td>
<td>59.0</td>
<td>45.9</td>
<td>69.9</td>
<td>1</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>OBSERVATION</td>
<td>12</td>
<td>71.9</td>
<td>59.6</td>
<td>81.1</td>
<td>48</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>OBSERVATION</td>
<td>24</td>
<td>63.9</td>
<td>51.1</td>
<td>74.2</td>
<td>33</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>OBSERVATION</td>
<td>36</td>
<td>58.1</td>
<td>44.9</td>
<td>69.2</td>
<td>26</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>OBSERVATION</td>
<td>48</td>
<td>58.1</td>
<td>44.9</td>
<td>69.2</td>
<td>18</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>OBSERVATION</td>
<td>60</td>
<td>47.9</td>
<td>31.0</td>
<td>63.0</td>
<td>8</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>OBSERVATION</td>
<td>72</td>
<td>39.9</td>
<td>20.7</td>
<td>58.5</td>
<td>1</td>
</tr>
<tr>
<td>PR</td>
<td>RITUXIMAB</td>
<td>12</td>
<td>64.6</td>
<td>48.9</td>
<td>76.6</td>
<td>29</td>
</tr>
<tr>
<td>PR</td>
<td>RITUXIMAB</td>
<td>24</td>
<td>52.4</td>
<td>36.7</td>
<td>65.9</td>
<td>21</td>
</tr>
<tr>
<td>PR</td>
<td>RITUXIMAB</td>
<td>36</td>
<td>43.4</td>
<td>27.8</td>
<td>58.0</td>
<td>10</td>
</tr>
<tr>
<td>PR</td>
<td>RITUXIMAB</td>
<td>48</td>
<td>43.4</td>
<td>27.8</td>
<td>58.0</td>
<td>5</td>
</tr>
<tr>
<td>PR</td>
<td>RITUXIMAB</td>
<td>60</td>
<td>34.7</td>
<td>16.5</td>
<td>53.8</td>
<td>4</td>
</tr>
<tr>
<td>PR</td>
<td>RITUXIMAB</td>
<td>72</td>
<td>34.7</td>
<td>16.5</td>
<td>53.8</td>
<td>3</td>
</tr>
<tr>
<td>PR</td>
<td>OBSERVATION</td>
<td>12</td>
<td>64.4</td>
<td>48.7</td>
<td>76.5</td>
<td>29</td>
</tr>
<tr>
<td>PR</td>
<td>OBSERVATION</td>
<td>24</td>
<td>64.4</td>
<td>48.7</td>
<td>76.5</td>
<td>24</td>
</tr>
<tr>
<td>PR</td>
<td>OBSERVATION</td>
<td>36</td>
<td>58.0</td>
<td>41.5</td>
<td>71.4</td>
<td>16</td>
</tr>
<tr>
<td>PR</td>
<td>OBSERVATION</td>
<td>48</td>
<td>58.0</td>
<td>41.5</td>
<td>71.4</td>
<td>8</td>
</tr>
<tr>
<td>PR</td>
<td>OBSERVATION</td>
<td>60</td>
<td>58.0</td>
<td>41.5</td>
<td>71.4</td>
<td>4</td>
</tr>
<tr>
<td>PR</td>
<td>OBSERVATION</td>
<td>72</td>
<td>58.0</td>
<td>41.5</td>
<td>71.4</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 4.5-44 Exploratory analyses – Hazard ratio of rituximab arm by response to induction for Progression-Free Survival (MITT)

<table>
<thead>
<tr>
<th>Response to induction</th>
<th>Parameter</th>
<th>p-value</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR/CRu</td>
<td>rituximab</td>
<td>0.5453</td>
<td>0.853</td>
<td>0.509</td>
</tr>
<tr>
<td>PR</td>
<td>rituximab</td>
<td>0.2155</td>
<td>1.468</td>
<td>0.800</td>
</tr>
</tbody>
</table>
Figure 4.5-12 Exploratory analyses – Overall Survival according to treatment arm by response to induction (MITT)

Response to induction=CR/CRu

Logrank p=0.5199

<table>
<thead>
<tr>
<th></th>
<th>Observation</th>
<th>Rituximab</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Subjects</td>
<td>69</td>
<td>73</td>
</tr>
<tr>
<td>Event</td>
<td>36% (25)</td>
<td>32% (23)</td>
</tr>
<tr>
<td>Censored</td>
<td>64% (44)</td>
<td>68% (50)</td>
</tr>
<tr>
<td>Median Survival (95% CL)</td>
<td>62.92 (53.72 NA)</td>
<td>NA (68.26 NA)</td>
</tr>
</tbody>
</table>

Response to induction=PR

Logrank p=0.2487

<table>
<thead>
<tr>
<th></th>
<th>Observation</th>
<th>Rituximab</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Subjects</td>
<td>45</td>
<td>47</td>
</tr>
<tr>
<td>Event</td>
<td>31% (14)</td>
<td>43% (20)</td>
</tr>
<tr>
<td>Censored</td>
<td>69% (31)</td>
<td>57% (27)</td>
</tr>
<tr>
<td>Median Survival (95% CL)</td>
<td>NA (40.87 NA)</td>
<td>56.05 (23.56 NA)</td>
</tr>
</tbody>
</table>
Table 4.5-45 Exploratory analyses – Duration of Overall Survival according to treatment arm by response to induction (MITT)

<table>
<thead>
<tr>
<th>Response to induction</th>
<th>Arm of 2nd randomization</th>
<th>N</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR/CRu</td>
<td>RITUXIMAB</td>
<td>73</td>
<td>-</td>
<td>58</td>
<td>-</td>
<td>1</td>
<td>73</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>OBSERVATION</td>
<td>69</td>
<td>63</td>
<td>54</td>
<td>-</td>
<td>1</td>
<td>73</td>
</tr>
<tr>
<td>PR</td>
<td>RITUXIMAB</td>
<td>47</td>
<td>58</td>
<td>24</td>
<td>-</td>
<td>1</td>
<td>76</td>
</tr>
<tr>
<td>PR</td>
<td>OBSERVATION</td>
<td>45</td>
<td>-</td>
<td>41</td>
<td>-</td>
<td>3</td>
<td>74</td>
</tr>
</tbody>
</table>

Table 4.5-46 Exploratory analyses – Kaplan-Meier estimates for Overall Survival according to treatment arm by response to induction (MITT)

<table>
<thead>
<tr>
<th>Response to induction</th>
<th>Arm of 2nd randomization</th>
<th>Time Point (years)</th>
<th>Survival (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR/CRu</td>
<td>RITUXIMAB</td>
<td>12</td>
<td>84.7</td>
<td>74.1</td>
<td>91.2</td>
<td>60</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>RITUXIMAB</td>
<td>24</td>
<td>74.7</td>
<td>62.9</td>
<td>83.2</td>
<td>48</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>RITUXIMAB</td>
<td>36</td>
<td>73.1</td>
<td>61.1</td>
<td>82.0</td>
<td>42</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>RITUXIMAB</td>
<td>48</td>
<td>66.7</td>
<td>53.5</td>
<td>77.0</td>
<td>25</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>RITUXIMAB</td>
<td>60</td>
<td>61.2</td>
<td>44.5</td>
<td>74.2</td>
<td>11</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>OBSERVATION</td>
<td>12</td>
<td>85.2</td>
<td>74.3</td>
<td>91.8</td>
<td>57</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>OBSERVATION</td>
<td>24</td>
<td>80.6</td>
<td>68.9</td>
<td>88.3</td>
<td>43</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>OBSERVATION</td>
<td>36</td>
<td>69.0</td>
<td>55.4</td>
<td>79.1</td>
<td>31</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>OBSERVATION</td>
<td>48</td>
<td>64.2</td>
<td>49.9</td>
<td>75.3</td>
<td>21</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>OBSERVATION</td>
<td>60</td>
<td>50.5</td>
<td>32.5</td>
<td>66.0</td>
<td>9</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>OBSERVATION</td>
<td>72</td>
<td>43.3</td>
<td>23.7</td>
<td>61.5</td>
<td>1</td>
</tr>
<tr>
<td>PR</td>
<td>RITUXIMAB</td>
<td>12</td>
<td>86.7</td>
<td>72.7</td>
<td>93.8</td>
<td>39</td>
</tr>
<tr>
<td>PR</td>
<td>RITUXIMAB</td>
<td>24</td>
<td>60.8</td>
<td>44.6</td>
<td>73.6</td>
<td>24</td>
</tr>
<tr>
<td>PR</td>
<td>RITUXIMAB</td>
<td>36</td>
<td>54.5</td>
<td>37.9</td>
<td>68.4</td>
<td>11</td>
</tr>
<tr>
<td>PR</td>
<td>RITUXIMAB</td>
<td>48</td>
<td>54.5</td>
<td>37.9</td>
<td>68.4</td>
<td>6</td>
</tr>
<tr>
<td>PR</td>
<td>RITUXIMAB</td>
<td>60</td>
<td>45.4</td>
<td>24.5</td>
<td>64.3</td>
<td>5</td>
</tr>
<tr>
<td>PR</td>
<td>RITUXIMAB</td>
<td>72</td>
<td>45.4</td>
<td>24.5</td>
<td>64.3</td>
<td>3</td>
</tr>
<tr>
<td>PR</td>
<td>OBSERVATION</td>
<td>12</td>
<td>80.0</td>
<td>65.1</td>
<td>89.1</td>
<td>36</td>
</tr>
<tr>
<td>PR</td>
<td>OBSERVATION</td>
<td>24</td>
<td>75.6</td>
<td>60.2</td>
<td>85.6</td>
<td>27</td>
</tr>
<tr>
<td>PR</td>
<td>OBSERVATION</td>
<td>36</td>
<td>69.0</td>
<td>52.1</td>
<td>80.9</td>
<td>18</td>
</tr>
<tr>
<td>PR</td>
<td>OBSERVATION</td>
<td>48</td>
<td>64.7</td>
<td>46.6</td>
<td>78.0</td>
<td>9</td>
</tr>
<tr>
<td>PR</td>
<td>OBSERVATION</td>
<td>60</td>
<td>64.7</td>
<td>46.6</td>
<td>78.0</td>
<td>4</td>
</tr>
<tr>
<td>PR</td>
<td>OBSERVATION</td>
<td>72</td>
<td>64.7</td>
<td>46.6</td>
<td>78.0</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 4.5-47 Exploratory analyses – Hazard ratio of rituximab arm by response to induction for Overall Survival (MITT)

<table>
<thead>
<tr>
<th>Response to induction</th>
<th>Parameter</th>
<th>p-value</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR/CRu</td>
<td>rituximab</td>
<td>0.5197</td>
<td>0.830</td>
<td>0.471 1.463</td>
</tr>
<tr>
<td>PR</td>
<td>rituximab</td>
<td>0.2518</td>
<td>1.493</td>
<td>0.752 2.962</td>
</tr>
</tbody>
</table>
4.5.3.2. Prognostic factors

4.5.3.2.1. According to response after induction

Only patients in CR, CRu or PR are taken into account.

Figure 4.5-13 Exploratory analyses – Event-Free Survival according to response after induction (MITT)

![Graph showing Event-Free Survival (EFS) probability over time for CR/CRu and PR responses.](image)

Table 4.5-48 Exploratory analyses – Duration of Event-Free Survival according to response after induction (MITT)

<table>
<thead>
<tr>
<th>Response after induction</th>
<th>N</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR/CRu</td>
<td>142</td>
<td>62</td>
<td>48</td>
<td>-</td>
<td>1</td>
<td>73</td>
</tr>
<tr>
<td>PR</td>
<td>92</td>
<td>31</td>
<td>15</td>
<td>-</td>
<td>1</td>
<td>76</td>
</tr>
</tbody>
</table>

Table 4.5-49 Exploratory analyses – Kaplan-Meier estimates for Event-Free Survival according to response after induction (MITT)

<table>
<thead>
<tr>
<th>Response after induction</th>
<th>Time Point (years)</th>
<th>Survival (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR/CRu</td>
<td>12</td>
<td>72.8</td>
<td>64.6</td>
<td>79.4</td>
<td>100</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>24</td>
<td>64.5</td>
<td>55.9</td>
<td>71.9</td>
<td>74</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>36</td>
<td>60.0</td>
<td>51.1</td>
<td>67.8</td>
<td>60</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>48</td>
<td>58.5</td>
<td>49.4</td>
<td>66.6</td>
<td>40</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>60</td>
<td>53.1</td>
<td>41.9</td>
<td>63.0</td>
<td>18</td>
</tr>
</tbody>
</table>
Table 4.5-50 Exploratory analyses – Hazard ratio of CR/CRu after induction for Event-Free Survival (MITT)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>p-value</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR/CRu</td>
<td>0.0748</td>
<td>0.703</td>
<td>0.477 1.036</td>
</tr>
</tbody>
</table>

Figure 4.5-14 Exploratory analyses – Progression-Free Survival according to response after induction (MITT)

![Graph showing progression-free survival (PFS) for response after induction]

Logrank p=0.2014

Table 4.5-51 Exploratory analyses – Duration of Progression-Free Survival according to response after induction (MITT)

<table>
<thead>
<tr>
<th>Response after induction</th>
<th>N</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR/CRu</td>
<td>142</td>
<td>62</td>
<td>48</td>
<td>-</td>
<td>1</td>
<td>73</td>
</tr>
<tr>
<td>PR</td>
<td>92</td>
<td>58</td>
<td>23</td>
<td>-</td>
<td>1</td>
<td>76</td>
</tr>
</tbody>
</table>
Table 4.5-52 Exploratory analyses – Kaplan-Meier estimates for Progression-Free Survival according to response after induction (MITT)

<table>
<thead>
<tr>
<th>Response after induction</th>
<th>Time Point (years)</th>
<th>Survival (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR/CRu</td>
<td>12</td>
<td>72.8</td>
<td>64.6</td>
<td>79.4</td>
<td>100</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>24</td>
<td>64.5</td>
<td>55.9</td>
<td>71.9</td>
<td>74</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>36</td>
<td>60.0</td>
<td>51.1</td>
<td>67.8</td>
<td>60</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>48</td>
<td>58.5</td>
<td>49.4</td>
<td>66.6</td>
<td>40</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>60</td>
<td>53.1</td>
<td>41.9</td>
<td>63.0</td>
<td>18</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>72</td>
<td>49.3</td>
<td>36.7</td>
<td>60.8</td>
<td>2</td>
</tr>
<tr>
<td>PR</td>
<td>12</td>
<td>64.5</td>
<td>53.7</td>
<td>73.4</td>
<td>58</td>
</tr>
<tr>
<td>PR</td>
<td>24</td>
<td>58.4</td>
<td>47.4</td>
<td>67.9</td>
<td>45</td>
</tr>
<tr>
<td>PR</td>
<td>36</td>
<td>50.8</td>
<td>39.4</td>
<td>61.1</td>
<td>26</td>
</tr>
<tr>
<td>PR</td>
<td>48</td>
<td>50.8</td>
<td>39.4</td>
<td>61.1</td>
<td>13</td>
</tr>
<tr>
<td>PR</td>
<td>60</td>
<td>45.7</td>
<td>31.8</td>
<td>58.6</td>
<td>8</td>
</tr>
<tr>
<td>PR</td>
<td>72</td>
<td>45.7</td>
<td>31.8</td>
<td>58.6</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 4.5-53 Exploratory analyses – Hazard ratio of CR/CRu after induction for Progression-Free Survival (MITT)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>p-value</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR/CRu</td>
<td>0.2028</td>
<td>0.774</td>
<td>0.521</td>
</tr>
</tbody>
</table>
Figure 4.5-15 Exploratory analyses – Overall Survival according to response after induction (MITT)

Table 4.5-54 Exploratory analyses – Duration of Overall Survival according to response after induction (MITT)

<table>
<thead>
<tr>
<th>Response after induction</th>
<th>N</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR/CRu</td>
<td>142</td>
<td>-</td>
<td>58</td>
<td>-</td>
<td>1</td>
<td>73</td>
</tr>
<tr>
<td>PR</td>
<td>92</td>
<td>-</td>
<td>41</td>
<td>-</td>
<td>1</td>
<td>76</td>
</tr>
</tbody>
</table>

Table 4.5-55 Exploratory analyses – Kaplan-Meier estimates for Overall Survival according to response after induction (MITT)

<table>
<thead>
<tr>
<th>Response after induction</th>
<th>Time Point (years)</th>
<th>Survival (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR/CRu</td>
<td>12</td>
<td>85.0</td>
<td>77.9</td>
<td>89.9</td>
<td>117</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>24</td>
<td>77.5</td>
<td>69.5</td>
<td>83.6</td>
<td>91</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>36</td>
<td>71.3</td>
<td>62.7</td>
<td>78.3</td>
<td>73</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>48</td>
<td>65.7</td>
<td>56.3</td>
<td>73.5</td>
<td>46</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>60</td>
<td>55.5</td>
<td>43.1</td>
<td>66.3</td>
<td>20</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>72</td>
<td>51.6</td>
<td>37.7</td>
<td>63.8</td>
<td>2</td>
</tr>
<tr>
<td>PR</td>
<td>12</td>
<td>83.3</td>
<td>73.9</td>
<td>89.6</td>
<td>75</td>
</tr>
<tr>
<td>PR</td>
<td>24</td>
<td>68.0</td>
<td>57.0</td>
<td>76.7</td>
<td>51</td>
</tr>
<tr>
<td>PR</td>
<td>36</td>
<td>61.6</td>
<td>49.9</td>
<td>71.3</td>
<td>29</td>
</tr>
<tr>
<td>PR</td>
<td>48</td>
<td>59.1</td>
<td>46.9</td>
<td>69.4</td>
<td>15</td>
</tr>
</tbody>
</table>
Table 4.5-56: Exploratory analyses – Hazard ratio of CR/CRu after induction for Overall Survival (MITT)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>p-value</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR/CRu</td>
<td>0.3242</td>
<td>0.801</td>
<td>0.516 1.245</td>
</tr>
</tbody>
</table>

4.5.3.2.2. According to prior rituximab

Figure 4.5-16: Exploratory analyses – Event-Free Survival according to prior rituximab (MITT)

Table 4.5-57: Exploratory analyses – Duration of Event-Free Survival according to prior rituximab (MITT)

<table>
<thead>
<tr>
<th>Prior treatment with Rituximab</th>
<th>N</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>117</td>
<td>-</td>
<td>48</td>
<td>-</td>
<td>1</td>
<td>76</td>
</tr>
<tr>
<td>Yes</td>
<td>125</td>
<td>25</td>
<td>11</td>
<td>-</td>
<td>1</td>
<td>74</td>
</tr>
</tbody>
</table>
Table 4.5-58 Exploratory analyses – Kaplan-Meier estimates for Event-Free Survival according to prior rituximab (MITT)

<table>
<thead>
<tr>
<th>Prior treatment with Rituximab</th>
<th>Time Point (years)</th>
<th>Survival (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>12</td>
<td>78.9</td>
<td>70.2</td>
<td>85.4</td>
<td>88</td>
</tr>
<tr>
<td>No</td>
<td>24</td>
<td>68.7</td>
<td>59.1</td>
<td>76.4</td>
<td>67</td>
</tr>
<tr>
<td>No</td>
<td>36</td>
<td>61.2</td>
<td>51.2</td>
<td>69.7</td>
<td>53</td>
</tr>
<tr>
<td>No</td>
<td>48</td>
<td>59.5</td>
<td>49.3</td>
<td>68.4</td>
<td>36</td>
</tr>
<tr>
<td>No</td>
<td>60</td>
<td>51.8</td>
<td>39.5</td>
<td>62.7</td>
<td>18</td>
</tr>
<tr>
<td>No</td>
<td>72</td>
<td>51.8</td>
<td>39.5</td>
<td>62.7</td>
<td>5</td>
</tr>
<tr>
<td>Yes</td>
<td>12</td>
<td>56.5</td>
<td>47.3</td>
<td>64.6</td>
<td>70</td>
</tr>
<tr>
<td>Yes</td>
<td>24</td>
<td>50.5</td>
<td>41.3</td>
<td>58.9</td>
<td>51</td>
</tr>
<tr>
<td>Yes</td>
<td>36</td>
<td>47.2</td>
<td>37.9</td>
<td>55.9</td>
<td>33</td>
</tr>
<tr>
<td>Yes</td>
<td>48</td>
<td>47.2</td>
<td>37.9</td>
<td>55.9</td>
<td>17</td>
</tr>
<tr>
<td>Yes</td>
<td>60</td>
<td>47.2</td>
<td>37.9</td>
<td>55.9</td>
<td>8</td>
</tr>
<tr>
<td>Yes</td>
<td>72</td>
<td>39.3</td>
<td>23.6</td>
<td>54.6</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 4.5-59 Exploratory analyses – Hazard ratio of no prior rituximab for Event-Free Survival (MITT)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>p-value</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior rituximab: No</td>
<td>0.0089</td>
<td>0.602</td>
<td>0.412</td>
</tr>
</tbody>
</table>
Figure 4.5-17 Exploratory analyses – Progression-Free Survival according to prior rituximab (MITT)

![Survival Probability](image)

Logrank p=0.0331

Table 4.5-60 Exploratory analyses – Duration of Progression-Free Survival according to prior rituximab (MITT)

<table>
<thead>
<tr>
<th>Prior treatment with Rituximab</th>
<th>N</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>117</td>
<td>48</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>76</td>
</tr>
<tr>
<td>Yes</td>
<td>125</td>
<td>62</td>
<td>15</td>
<td>-</td>
<td>1</td>
<td>74</td>
</tr>
</tbody>
</table>

Table 4.5-61 Exploratory analyses – Kaplan-Meier estimates for Progression-Free Survival according to prior rituximab (MITT)

<table>
<thead>
<tr>
<th>Prior treatment with Rituximab</th>
<th>Time Point (years)</th>
<th>Survival (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>12</td>
<td>78.9</td>
<td>70.2</td>
<td>85.4</td>
<td>88</td>
</tr>
<tr>
<td>No</td>
<td>24</td>
<td>68.7</td>
<td>59.1</td>
<td>76.4</td>
<td>67</td>
</tr>
<tr>
<td>No</td>
<td>36</td>
<td>61.2</td>
<td>51.2</td>
<td>69.7</td>
<td>53</td>
</tr>
<tr>
<td>No</td>
<td>48</td>
<td>59.5</td>
<td>49.3</td>
<td>68.4</td>
<td>36</td>
</tr>
<tr>
<td>No</td>
<td>60</td>
<td>51.8</td>
<td>39.5</td>
<td>62.7</td>
<td>18</td>
</tr>
<tr>
<td>No</td>
<td>72</td>
<td>51.8</td>
<td>39.5</td>
<td>62.7</td>
<td>5</td>
</tr>
<tr>
<td>Yes</td>
<td>12</td>
<td>59.7</td>
<td>50.5</td>
<td>67.7</td>
<td>74</td>
</tr>
<tr>
<td>Yes</td>
<td>24</td>
<td>53.7</td>
<td>44.4</td>
<td>62.0</td>
<td>53</td>
</tr>
<tr>
<td>Yes</td>
<td>36</td>
<td>50.3</td>
<td>40.9</td>
<td>59.0</td>
<td>33</td>
</tr>
<tr>
<td>Yes</td>
<td>48</td>
<td>50.3</td>
<td>40.9</td>
<td>59.0</td>
<td>17</td>
</tr>
</tbody>
</table>
Prior treatment with Rituximab | Time Point (years) | Survival (%) | 95% CI Lower | 95% CI Upper | Patients at risk
--- | --- | --- | --- | --- | ---
Yes | 60 | 50.3 | 40.9 | 59.0 | 8
Yes | 72 | 41.9 | 25.2 | 57.8 | 1

Table 4.5-62 Exploratory analyses – Hazard ratio of no prior rituximab for Progression-Free Survival (MITT)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>p-value</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior rituximab: No</td>
<td>0.0344</td>
<td>0.660</td>
<td>0.449 0.970</td>
</tr>
</tbody>
</table>

Figure 4.5-18 Exploratory analyses – Overall Survival according to prior rituximab (MITT)

Table 4.5-63 Exploratory analyses – Duration of Overall Survival according to prior rituximab (MITT)

<table>
<thead>
<tr>
<th>Prior treatment with Rituximab</th>
<th>N</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>117</td>
<td>-</td>
<td>58</td>
<td>-</td>
<td>1</td>
<td>76</td>
</tr>
<tr>
<td>Yes</td>
<td>125</td>
<td>63</td>
<td>41</td>
<td>-</td>
<td>1</td>
<td>74</td>
</tr>
</tbody>
</table>
Table 4.5-64 Exploratory analyses – Kaplan-Meier estimates for Overall Survival according to prior rituximab (MITT)

<table>
<thead>
<tr>
<th>Prior treatment with Rituximab</th>
<th>Time Point (years)</th>
<th>Survival (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>12</td>
<td>92.1</td>
<td>85.4</td>
<td>95.8</td>
<td>103</td>
</tr>
<tr>
<td>No</td>
<td>24</td>
<td>82.9</td>
<td>74.5</td>
<td>88.8</td>
<td>83</td>
</tr>
<tr>
<td>No</td>
<td>36</td>
<td>75.5</td>
<td>66.0</td>
<td>82.6</td>
<td>65</td>
</tr>
<tr>
<td>No</td>
<td>48</td>
<td>69.1</td>
<td>58.8</td>
<td>77.4</td>
<td>42</td>
</tr>
<tr>
<td>No</td>
<td>60</td>
<td>56.5</td>
<td>43.0</td>
<td>68.0</td>
<td>20</td>
</tr>
<tr>
<td>No</td>
<td>72</td>
<td>56.5</td>
<td>43.0</td>
<td>68.0</td>
<td>5</td>
</tr>
<tr>
<td>Yes</td>
<td>12</td>
<td>77.4</td>
<td>69.0</td>
<td>83.8</td>
<td>96</td>
</tr>
<tr>
<td>Yes</td>
<td>24</td>
<td>65.2</td>
<td>55.9</td>
<td>73.0</td>
<td>62</td>
</tr>
<tr>
<td>Yes</td>
<td>36</td>
<td>60.6</td>
<td>50.9</td>
<td>69.0</td>
<td>39</td>
</tr>
<tr>
<td>Yes</td>
<td>48</td>
<td>58.5</td>
<td>48.1</td>
<td>67.4</td>
<td>21</td>
</tr>
<tr>
<td>Yes</td>
<td>60</td>
<td>58.5</td>
<td>48.1</td>
<td>67.4</td>
<td>10</td>
</tr>
<tr>
<td>Yes</td>
<td>72</td>
<td>46.8</td>
<td>24.5</td>
<td>66.3</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 4.5-65 Exploratory analyses – Hazard ratio of no prior rituximab for Overall Survival (MITT)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>p-value</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior rituximab: No</td>
<td>0.0287</td>
<td>0.614</td>
<td>0.397 0.951</td>
</tr>
</tbody>
</table>
4.5.3.2.3. According to failure from diagnosis

Figure 4.5-19 Exploratory analyses – Event-Free Survival according to failure from diagnosis (MITT)

Table 4.5-66 Exploratory analyses – Duration of Event-Free Survival according to failure from diagnosis (MITT)

<table>
<thead>
<tr>
<th>Failure from diagnosis</th>
<th>N</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 12 months</td>
<td>105</td>
<td>31</td>
<td>10</td>
<td>-</td>
<td>1</td>
<td>74</td>
</tr>
<tr>
<td>>= 12 months</td>
<td>137</td>
<td>58</td>
<td>32</td>
<td>-</td>
<td>1</td>
<td>76</td>
</tr>
</tbody>
</table>

Table 4.5-67 Exploratory analyses – Kaplan-Meier estimates for Event-Free Survival according to failure from diagnosis (MITT)

<table>
<thead>
<tr>
<th>Failure from diagnosis</th>
<th>Time Point (years)</th>
<th>Survival (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 12 months</td>
<td>12</td>
<td>56.3</td>
<td>46.1</td>
<td>65.2</td>
<td>57</td>
</tr>
<tr>
<td>< 12 months</td>
<td>24</td>
<td>52.2</td>
<td>42.1</td>
<td>61.4</td>
<td>46</td>
</tr>
<tr>
<td>< 12 months</td>
<td>36</td>
<td>48.4</td>
<td>38.2</td>
<td>57.9</td>
<td>34</td>
</tr>
<tr>
<td>< 12 months</td>
<td>48</td>
<td>48.4</td>
<td>38.2</td>
<td>57.9</td>
<td>25</td>
</tr>
<tr>
<td>< 12 months</td>
<td>60</td>
<td>45.2</td>
<td>33.9</td>
<td>55.8</td>
<td>13</td>
</tr>
<tr>
<td>< 12 months</td>
<td>72</td>
<td>40.7</td>
<td>27.7</td>
<td>53.3</td>
<td>1</td>
</tr>
<tr>
<td>>= 12 months</td>
<td>12</td>
<td>75.6</td>
<td>67.4</td>
<td>82.0</td>
<td>101</td>
</tr>
<tr>
<td>>= 12 months</td>
<td>24</td>
<td>64.5</td>
<td>55.6</td>
<td>72.0</td>
<td>72</td>
</tr>
<tr>
<td>Failure from diagnosis</td>
<td>Time Point (years)</td>
<td>Survival (%)</td>
<td>95% CI Lower</td>
<td>95% CI Upper</td>
<td>Patients at risk</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>----------------</td>
</tr>
<tr>
<td>>= 12 months</td>
<td>36</td>
<td>57.9</td>
<td>48.7</td>
<td>66.0</td>
<td>52</td>
</tr>
<tr>
<td>>= 12 months</td>
<td>48</td>
<td>55.9</td>
<td>46.1</td>
<td>64.5</td>
<td>28</td>
</tr>
<tr>
<td>>= 12 months</td>
<td>60</td>
<td>49.3</td>
<td>37.1</td>
<td>60.4</td>
<td>13</td>
</tr>
<tr>
<td>>= 12 months</td>
<td>72</td>
<td>49.3</td>
<td>37.1</td>
<td>60.4</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 4.5-68 Exploratory analyses – Hazard ratio of failure from diagnosis <12 months for Event-Free Survival (MITT)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>p-value</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure from diagnosis < 12 months</td>
<td>0.0453</td>
<td>1.463</td>
<td>1.008</td>
</tr>
</tbody>
</table>

Figure 4.5-20 Exploratory analyses – Progression-Free Survival according to failure from diagnosis (MITT)

<table>
<thead>
<tr>
<th>Failure from diagnosis</th>
<th>N</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 12 months</td>
<td>105</td>
<td>58</td>
<td>12</td>
<td>-</td>
<td>1</td>
<td>74</td>
</tr>
<tr>
<td>>= 12 months</td>
<td>137</td>
<td>58</td>
<td>32</td>
<td>-</td>
<td>1</td>
<td>76</td>
</tr>
</tbody>
</table>

Table 4.5-69 Exploratory analyses – Duration of Progression-Free Survival according to failure from diagnosis (MITT)
Table 4.5-70 Exploratory analyses – Kaplan-Meier estimates for Progression-Free Survival according to failure from diagnosis (MITT)

<table>
<thead>
<tr>
<th>Failure from diagnosis</th>
<th>Time Point (years)</th>
<th>Survival (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 12 months</td>
<td>12</td>
<td>59.2</td>
<td>49.0</td>
<td>68.0</td>
<td>60</td>
</tr>
<tr>
<td>< 12 months</td>
<td>24</td>
<td>55.1</td>
<td>45.0</td>
<td>64.2</td>
<td>48</td>
</tr>
<tr>
<td>< 12 months</td>
<td>36</td>
<td>51.3</td>
<td>41.0</td>
<td>60.7</td>
<td>34</td>
</tr>
<tr>
<td>< 12 months</td>
<td>48</td>
<td>51.3</td>
<td>41.0</td>
<td>60.7</td>
<td>25</td>
</tr>
<tr>
<td>< 12 months</td>
<td>60</td>
<td>47.9</td>
<td>36.3</td>
<td>58.6</td>
<td>13</td>
</tr>
<tr>
<td>< 12 months</td>
<td>72</td>
<td>43.1</td>
<td>29.5</td>
<td>56.0</td>
<td>1</td>
</tr>
<tr>
<td>>= 12 months</td>
<td>12</td>
<td>76.3</td>
<td>68.2</td>
<td>82.6</td>
<td>102</td>
</tr>
<tr>
<td>>= 12 months</td>
<td>24</td>
<td>65.1</td>
<td>56.3</td>
<td>72.6</td>
<td>72</td>
</tr>
<tr>
<td>>= 12 months</td>
<td>36</td>
<td>58.5</td>
<td>49.2</td>
<td>66.6</td>
<td>52</td>
</tr>
<tr>
<td>>= 12 months</td>
<td>48</td>
<td>56.4</td>
<td>46.7</td>
<td>65.1</td>
<td>28</td>
</tr>
<tr>
<td>>= 12 months</td>
<td>60</td>
<td>49.8</td>
<td>37.5</td>
<td>61.0</td>
<td>13</td>
</tr>
<tr>
<td>>= 12 months</td>
<td>72</td>
<td>49.8</td>
<td>37.5</td>
<td>61.0</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 4.5-71 Exploratory analyses – Hazard ratio of no failure from diagnosis <12 months for Progression-Free Survival (MITT)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>p-value</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure from diagnosis < 12 months</td>
<td>0.1041</td>
<td>1.370</td>
<td>0.937 2.003</td>
</tr>
</tbody>
</table>
Figure 4.5-21 Exploratory analyses – Overall Survival according to failure from diagnosis (MITT)

Table 4.5-72 Exploratory analyses – Duration of Overall Survival according to failure from diagnosis (MITT)

<table>
<thead>
<tr>
<th>Failure from diagnosis</th>
<th>N</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 12 months</td>
<td>105</td>
<td>63</td>
<td>41</td>
<td>-</td>
<td>1</td>
<td>74</td>
</tr>
<tr>
<td>>= 12 months</td>
<td>137</td>
<td>-</td>
<td>57</td>
<td>-</td>
<td>1</td>
<td>76</td>
</tr>
</tbody>
</table>

Table 4.5-73 Exploratory analyses – Kaplan-Meier estimates for Overall Survival according to failure from diagnosis (MITT)

<table>
<thead>
<tr>
<th>Failure from diagnosis</th>
<th>Time Point (years)</th>
<th>Survival (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 12 months</td>
<td>12</td>
<td>75.7</td>
<td>66.2</td>
<td>82.9</td>
<td>77</td>
</tr>
<tr>
<td>< 12 months</td>
<td>24</td>
<td>64.4</td>
<td>54.2</td>
<td>72.9</td>
<td>55</td>
</tr>
<tr>
<td>< 12 months</td>
<td>36</td>
<td>60.5</td>
<td>50.0</td>
<td>69.5</td>
<td>40</td>
</tr>
<tr>
<td>< 12 months</td>
<td>48</td>
<td>58.8</td>
<td>48.1</td>
<td>68.1</td>
<td>29</td>
</tr>
<tr>
<td>< 12 months</td>
<td>60</td>
<td>55.4</td>
<td>43.1</td>
<td>66.0</td>
<td>15</td>
</tr>
<tr>
<td>< 12 months</td>
<td>72</td>
<td>47.4</td>
<td>29.5</td>
<td>63.4</td>
<td>1</td>
</tr>
<tr>
<td>>= 12 months</td>
<td>12</td>
<td>91.1</td>
<td>84.9</td>
<td>94.9</td>
<td>122</td>
</tr>
<tr>
<td>>= 12 months</td>
<td>24</td>
<td>80.9</td>
<td>73.0</td>
<td>86.7</td>
<td>90</td>
</tr>
<tr>
<td>>= 12 months</td>
<td>36</td>
<td>73.1</td>
<td>64.2</td>
<td>80.2</td>
<td>64</td>
</tr>
<tr>
<td>>= 12 months</td>
<td>48</td>
<td>66.3</td>
<td>56.1</td>
<td>74.7</td>
<td>34</td>
</tr>
</tbody>
</table>
Table 4.5-74 Exploratory analyses – Hazard ratio of no failure from diagnosis < 12 months for Overall Survival (MITT)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>p-value</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure from diagnosis < 12 months</td>
<td>0.0730</td>
<td>1.480</td>
<td>0.964 2.270</td>
</tr>
</tbody>
</table>

4.5.3.2.4. According to age-adjusted IPI (at relapse)

Figure 4.5-22 Exploratory analyses – Event-Free Survival according to age-adjusted IPI (MITT)

Table 4.5-75 Exploratory analyses – Duration of Event-Free Survival according to age-adjusted IPI (MITT)

<table>
<thead>
<tr>
<th>Age-adjusted IPI</th>
<th>N</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>165</td>
<td>-</td>
<td>57</td>
<td>-</td>
<td>1</td>
<td>76</td>
</tr>
<tr>
<td>2-3</td>
<td>72</td>
<td>21</td>
<td>8</td>
<td>58</td>
<td>1</td>
<td>71</td>
</tr>
</tbody>
</table>
Table 4.5-76 Exploratory analyses – Kaplan-Meier estimates for Event-Free Survival according to age-adjusted IPI (MITT)

<table>
<thead>
<tr>
<th>Age-adjusted IPI</th>
<th>Time Point (years)</th>
<th>Survival (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>12</td>
<td>72.8</td>
<td>65.3</td>
<td>79.0</td>
<td>118</td>
</tr>
<tr>
<td>0-1</td>
<td>24</td>
<td>66.3</td>
<td>58.3</td>
<td>73.0</td>
<td>89</td>
</tr>
<tr>
<td>0-1</td>
<td>36</td>
<td>60.7</td>
<td>52.5</td>
<td>68.0</td>
<td>69</td>
</tr>
<tr>
<td>0-1</td>
<td>48</td>
<td>60.7</td>
<td>52.5</td>
<td>68.0</td>
<td>42</td>
</tr>
<tr>
<td>0-1</td>
<td>60</td>
<td>55.4</td>
<td>44.9</td>
<td>64.8</td>
<td>19</td>
</tr>
<tr>
<td>0-1</td>
<td>72</td>
<td>52.2</td>
<td>40.4</td>
<td>62.7</td>
<td>6</td>
</tr>
<tr>
<td>2-3</td>
<td>12</td>
<td>56.3</td>
<td>44.0</td>
<td>66.9</td>
<td>38</td>
</tr>
<tr>
<td>2-3</td>
<td>24</td>
<td>44.5</td>
<td>32.6</td>
<td>55.7</td>
<td>28</td>
</tr>
<tr>
<td>2-3</td>
<td>36</td>
<td>41.0</td>
<td>29.3</td>
<td>52.4</td>
<td>17</td>
</tr>
<tr>
<td>2-3</td>
<td>48</td>
<td>37.6</td>
<td>25.3</td>
<td>49.8</td>
<td>11</td>
</tr>
<tr>
<td>2-3</td>
<td>60</td>
<td>32.9</td>
<td>19.6</td>
<td>46.8</td>
<td>7</td>
</tr>
<tr>
<td>2-3</td>
<td>72</td>
<td>32.9</td>
<td>19.6</td>
<td>46.8</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 4.5-77 Exploratory analyses – Hazard ratio of no age-adjusted IPI for Event-Free Survival (MITT)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>p-value</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age adjusted IPI 0-1</td>
<td>0.0018</td>
<td>0.539</td>
<td>0.366 0.794</td>
</tr>
</tbody>
</table>
Figure 4.5-23 Exploratory analyses – Progression-Free Survival according to age-adjusted IPI (MITT)

<table>
<thead>
<tr>
<th>Age-adjusted IPI</th>
<th>N</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>165</td>
<td>-</td>
<td>58</td>
<td>-</td>
<td>1</td>
<td>76</td>
</tr>
<tr>
<td>2-3</td>
<td>72</td>
<td>21</td>
<td>8</td>
<td>58</td>
<td>1</td>
<td>71</td>
</tr>
</tbody>
</table>

Table 4.5-78 Exploratory analyses – Duration of Progression-Free Survival according to age-adjusted IPI (MITT)

<table>
<thead>
<tr>
<th>Age-adjusted IPI</th>
<th>Time Point (years)</th>
<th>Survival (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>12</td>
<td>75.3</td>
<td>67.9</td>
<td>81.2</td>
<td>122</td>
</tr>
<tr>
<td>0-1</td>
<td>24</td>
<td>68.7</td>
<td>60.9</td>
<td>75.3</td>
<td>91</td>
</tr>
<tr>
<td>0-1</td>
<td>36</td>
<td>63.1</td>
<td>54.8</td>
<td>70.3</td>
<td>69</td>
</tr>
<tr>
<td>0-1</td>
<td>48</td>
<td>63.1</td>
<td>54.8</td>
<td>70.3</td>
<td>42</td>
</tr>
<tr>
<td>0-1</td>
<td>60</td>
<td>57.6</td>
<td>46.8</td>
<td>67.0</td>
<td>19</td>
</tr>
<tr>
<td>0-1</td>
<td>72</td>
<td>54.2</td>
<td>42.1</td>
<td>64.9</td>
<td>6</td>
</tr>
<tr>
<td>2-3</td>
<td>12</td>
<td>56.3</td>
<td>44.0</td>
<td>66.9</td>
<td>38</td>
</tr>
<tr>
<td>2-3</td>
<td>24</td>
<td>44.5</td>
<td>32.6</td>
<td>55.7</td>
<td>28</td>
</tr>
<tr>
<td>2-3</td>
<td>36</td>
<td>41.0</td>
<td>29.3</td>
<td>52.4</td>
<td>17</td>
</tr>
<tr>
<td>2-3</td>
<td>48</td>
<td>37.6</td>
<td>25.3</td>
<td>49.8</td>
<td>11</td>
</tr>
</tbody>
</table>
Table 4.5-80 Exploratory analyses – Hazard ratio of no age-adjusted IPI for Progression-Free Survival (MITT)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>p-value</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age adjusted IPI 0-1</td>
<td>0.0004</td>
<td>0.493</td>
<td>0.333 0.730</td>
</tr>
</tbody>
</table>

Figure 4.5-24 Exploratory analyses – Overall Survival according to age-adjusted IPI (MITT)

![Graph showing overall survival probability over time for different age-adjusted IPI categories.](image)

Logrank p<0.0001

<table>
<thead>
<tr>
<th>OS (months)</th>
<th>No. of Subjects</th>
<th>Event</th>
<th>Censored</th>
<th>Median Survival (95% CL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age adjusted IPI 0-1</td>
<td>165</td>
<td>27% (44)</td>
<td>73% (121)</td>
<td>NA (62.92 NA)</td>
</tr>
<tr>
<td>Age adjusted IPI 2-3</td>
<td>72</td>
<td>51% (37)</td>
<td>49% (35)</td>
<td>39.20 (20.67 NA)</td>
</tr>
</tbody>
</table>

Table 4.5-81 Exploratory analyses – Duration of Overall Survival according to age-adjusted IPI (MITT)

<table>
<thead>
<tr>
<th>Age-adjusted IPI</th>
<th>N</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>165</td>
<td>-</td>
<td>63</td>
<td>-</td>
<td>1</td>
<td>76</td>
</tr>
<tr>
<td>2-3</td>
<td>72</td>
<td>39</td>
<td>21</td>
<td>-</td>
<td>2</td>
<td>71</td>
</tr>
</tbody>
</table>
Table 4.5-82 Exploratory analyses – Kaplan-Meier estimates for Overall Survival according to age-adjusted IPI (MITT)

<table>
<thead>
<tr>
<th>Age-adjusted IPI</th>
<th>Time Point (years)</th>
<th>Survival (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>12</td>
<td>90.1</td>
<td>84.4</td>
<td>93.8</td>
<td>146</td>
</tr>
<tr>
<td>0-1</td>
<td>24</td>
<td>80.8</td>
<td>73.6</td>
<td>86.2</td>
<td>106</td>
</tr>
<tr>
<td>0-1</td>
<td>36</td>
<td>76.0</td>
<td>68.2</td>
<td>82.1</td>
<td>83</td>
</tr>
<tr>
<td>0-1</td>
<td>48</td>
<td>72.0</td>
<td>63.5</td>
<td>78.8</td>
<td>50</td>
</tr>
<tr>
<td>0-1</td>
<td>60</td>
<td>63.8</td>
<td>51.8</td>
<td>73.6</td>
<td>22</td>
</tr>
<tr>
<td>0-1</td>
<td>72</td>
<td>59.9</td>
<td>45.9</td>
<td>71.3</td>
<td>6</td>
</tr>
<tr>
<td>2-3</td>
<td>12</td>
<td>71.7</td>
<td>59.7</td>
<td>80.7</td>
<td>49</td>
</tr>
<tr>
<td>2-3</td>
<td>24</td>
<td>58.4</td>
<td>46.0</td>
<td>69.0</td>
<td>37</td>
</tr>
<tr>
<td>2-3</td>
<td>36</td>
<td>51.2</td>
<td>38.6</td>
<td>62.5</td>
<td>21</td>
</tr>
<tr>
<td>2-3</td>
<td>48</td>
<td>45.1</td>
<td>31.4</td>
<td>57.8</td>
<td>13</td>
</tr>
<tr>
<td>2-3</td>
<td>60</td>
<td>36.4</td>
<td>21.6</td>
<td>51.4</td>
<td>8</td>
</tr>
<tr>
<td>2-3</td>
<td>72</td>
<td>36.4</td>
<td>21.6</td>
<td>51.4</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 4.5-83 Exploratory analyses – Hazard ratio of no age-adjusted IPI for Overall Survival (MITT)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>p-value</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age adjusted IPI 0-1</td>
<td><.0001</td>
<td>0.413</td>
<td>0.266 0.640</td>
</tr>
</tbody>
</table>

4.5.3.3. Multivariate Cox models

Table 4.5-84 Exploratory analyses – Multivariate Cox model for Event-Free Survival (MITT)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>p-value</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior treatment with Rituximab: No</td>
<td>0.1979</td>
<td>0.748</td>
<td>0.481 1.164</td>
</tr>
<tr>
<td>Failure from diagnosis < 12 months</td>
<td>0.4658</td>
<td>1.179</td>
<td>0.757 1.836</td>
</tr>
<tr>
<td>Age-adjusted IPI 2-3</td>
<td>0.0030</td>
<td>1.846</td>
<td>1.231 2.769</td>
</tr>
<tr>
<td>Response after complete induction: PR</td>
<td>0.2050</td>
<td>1.295</td>
<td>0.868 1.933</td>
</tr>
<tr>
<td>Arm of treatment: ARM A / R-ICE</td>
<td>0.0853</td>
<td>1.417</td>
<td>0.953 2.106</td>
</tr>
<tr>
<td>Arm of 2nd randomization: RITUXIMAB</td>
<td>0.9208</td>
<td>1.020</td>
<td>0.685 1.520</td>
</tr>
</tbody>
</table>

Table 4.5-85 Exploratory analyses – Multivariate Cox model for Progression-Free Survival (MITT)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>p-value</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior treatment with Rituximab: No</td>
<td>0.3509</td>
<td>0.808</td>
<td>0.516 1.265</td>
</tr>
<tr>
<td>Failure from diagnosis < 12 months</td>
<td>0.4536</td>
<td>1.188</td>
<td>0.757 1.863</td>
</tr>
<tr>
<td>Age-adjusted IPI 2-3</td>
<td>0.0007</td>
<td>2.028</td>
<td>1.348 3.052</td>
</tr>
<tr>
<td>Response after complete induction: PR</td>
<td>0.4286</td>
<td>1.180</td>
<td>0.784 1.776</td>
</tr>
<tr>
<td>Arm of treatment: ARM A / R-ICE</td>
<td>0.0676</td>
<td>1.457</td>
<td>0.973 2.181</td>
</tr>
<tr>
<td>Arm of 2nd randomization: RITUXIMAB</td>
<td>0.6104</td>
<td>1.111</td>
<td>0.741 1.666</td>
</tr>
</tbody>
</table>
Table 4.5-86 Exploratory analyses – Multivariate Cox model for Overall Survival (MITT)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>p-value</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior treatment with Rituximab: No</td>
<td>0.2874</td>
<td>0.760</td>
<td>0.459 1.260</td>
</tr>
<tr>
<td>Failure from diagnosis < 12 months</td>
<td>0.5665</td>
<td>1.159</td>
<td>0.700 1.917</td>
</tr>
<tr>
<td>Age-adjusted IPI 2-3</td>
<td>0.0004</td>
<td>2.252</td>
<td>1.433 3.539</td>
</tr>
<tr>
<td>Response after complete induction: PR</td>
<td>0.4638</td>
<td>1.186</td>
<td>0.752 1.871</td>
</tr>
<tr>
<td>Arm of treatment: ARM A / R-ICE</td>
<td>0.0716</td>
<td>1.511</td>
<td>0.964 2.368</td>
</tr>
<tr>
<td>Arm of 2nd randomization: RITUXIMAB</td>
<td>0.4822</td>
<td>1.175</td>
<td>0.749 1.842</td>
</tr>
</tbody>
</table>

4.5.4. Non study or new treatment out of progression

One patient (1%) in rituximab arm and 4 patients (3%) in observation arm presented a new treatment out of progression (corresponding to the 5 events due to change of therapy for Event-Free survival).

Table 4.5-87 Patients with non study or new treatment out of progression (MITT)

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>New treatment out of progression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>No</td>
<td>121</td>
<td>99</td>
</tr>
<tr>
<td>Total</td>
<td>122</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 4.5-88 Type of non study or new treatment out of progression (MITT)

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
<th>NOT APPLICABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Chemotherapy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Yes</td>
<td>1</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Radiotherapy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>No</td>
<td>1</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Immunotherapy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>Transplantation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>Other treatment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>100</td>
<td>4</td>
</tr>
</tbody>
</table>

Details of treatment are listed in section §6.6.2.
4.5.5. Progression/relapse

47 patients (39%) in rituximab arm and 46 patients (38%) in observation arm presented a first progression/relapse.

Table 4.5-89 Patients with progression/relapse (MITT)

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Progression/relapse n°1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>47</td>
<td>39</td>
</tr>
<tr>
<td>No</td>
<td>75</td>
<td>61</td>
</tr>
<tr>
<td>Progression/relapse n°2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>No</td>
<td>111</td>
<td>91</td>
</tr>
<tr>
<td>Progression/relapse n°3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>No</td>
<td>118</td>
<td>97</td>
</tr>
<tr>
<td>Progression/relapse n°4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>No</td>
<td>121</td>
<td>99</td>
</tr>
<tr>
<td>Progression/relapse n°5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>No</td>
<td>122</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>100</td>
<td>120</td>
</tr>
</tbody>
</table>

Table 4.5-90 Progression/relapse n°1 – Period (MITT)

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Period of Progression / Relapse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TREATMENT PERIOD</td>
<td>8</td>
<td>17</td>
</tr>
<tr>
<td>FOLLOW UP PERIOD</td>
<td>39</td>
<td>83</td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td>100</td>
</tr>
</tbody>
</table>
Table 4.5-91 Progression/relapse n°1 – Involvement (MITT)

<table>
<thead>
<tr>
<th></th>
<th>Arm of 2nd randomization</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RITUXIMAB</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>OBSERVATION</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Initial involvement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>31</td>
<td>66</td>
<td>25</td>
</tr>
<tr>
<td>No</td>
<td>16</td>
<td>34</td>
<td>21</td>
</tr>
<tr>
<td>New involvement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>28</td>
<td>60</td>
<td>22</td>
</tr>
<tr>
<td>No</td>
<td>19</td>
<td>40</td>
<td>24</td>
</tr>
<tr>
<td>Nodal involvement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>34</td>
<td>72</td>
<td>29</td>
</tr>
<tr>
<td>No</td>
<td>13</td>
<td>28</td>
<td>17</td>
</tr>
<tr>
<td>Extra-nodal involvement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>27</td>
<td>57</td>
<td>27</td>
</tr>
<tr>
<td>No</td>
<td>20</td>
<td>43</td>
<td>19</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>47</td>
<td>100</td>
</tr>
</tbody>
</table>

Details of extra-nodal involvement are listed in section §6.6.3.

Table 4.5-92 Progression/relapse n°1 – Individual factors of IPI (MITT)

<table>
<thead>
<tr>
<th></th>
<th>Arm of 2nd randomization</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RITUXIMAB</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>OBSERVATION</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>LDH > Upper Limit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Done</td>
<td>3</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Yes</td>
<td>24</td>
<td>51</td>
<td>21</td>
</tr>
<tr>
<td>No</td>
<td>20</td>
<td>43</td>
<td>22</td>
</tr>
<tr>
<td>Stage III - IV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Done</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Yes</td>
<td>29</td>
<td>62</td>
<td>29</td>
</tr>
<tr>
<td>No</td>
<td>16</td>
<td>34</td>
<td>15</td>
</tr>
<tr>
<td>PS >= 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Not Done</td>
<td>4</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>Yes</td>
<td>9</td>
<td>19</td>
<td>12</td>
</tr>
<tr>
<td>No</td>
<td>34</td>
<td>72</td>
<td>31</td>
</tr>
<tr>
<td>Extra-nodal sites >= 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Done</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Yes</td>
<td>14</td>
<td>30</td>
<td>12</td>
</tr>
<tr>
<td>No</td>
<td>32</td>
<td>68</td>
<td>33</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>47</td>
<td>100</td>
</tr>
</tbody>
</table>
Table 4.5-93 Progression/relapse n°1 – Progression/relapse treatment (MITT)

<table>
<thead>
<tr>
<th>Progression / Relapse treatment</th>
<th>Arm of 2nd randomization</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Missing</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Yes</td>
<td>44</td>
<td>94</td>
<td>44</td>
</tr>
<tr>
<td>No</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td>100</td>
<td>46</td>
</tr>
</tbody>
</table>

Table 4.5-94 Progression/relapse n°1 – Type of progression/relapse treatment (MITT)

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>Chemotherapy</th>
<th>Radiotherapy</th>
<th>Immunotherapy</th>
<th>Transplantation</th>
<th>Other treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RITUXIMAB</td>
<td>OBSERVATION</td>
<td>RITUXIMAB</td>
<td>OBSERVATION</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Chemotherapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Done</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Yes</td>
<td>35</td>
<td>80</td>
<td>32</td>
<td>73</td>
<td>12</td>
</tr>
<tr>
<td>No</td>
<td>9</td>
<td>20</td>
<td>11</td>
<td>25</td>
<td>32</td>
</tr>
<tr>
<td>Radiotherapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Done</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Yes</td>
<td>12</td>
<td>27</td>
<td>15</td>
<td>34</td>
<td>11</td>
</tr>
<tr>
<td>No</td>
<td>32</td>
<td>73</td>
<td>28</td>
<td>64</td>
<td>28</td>
</tr>
<tr>
<td>Immunotherapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Done</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Yes</td>
<td>10</td>
<td>23</td>
<td>12</td>
<td>27</td>
<td>11</td>
</tr>
<tr>
<td>No</td>
<td>34</td>
<td>77</td>
<td>31</td>
<td>70</td>
<td>33</td>
</tr>
<tr>
<td>Transplantation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Done</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Yes</td>
<td>11</td>
<td>25</td>
<td>4</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>No</td>
<td>33</td>
<td>75</td>
<td>39</td>
<td>89</td>
<td>28</td>
</tr>
<tr>
<td>Other treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Done</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Yes</td>
<td>8</td>
<td>18</td>
<td>5</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>No</td>
<td>36</td>
<td>82</td>
<td>38</td>
<td>86</td>
<td>36</td>
</tr>
<tr>
<td>Total</td>
<td>44</td>
<td>100</td>
<td>44</td>
<td>100</td>
<td>44</td>
</tr>
</tbody>
</table>

Details of treatment are listed in section §6.6.3.
<table>
<thead>
<tr>
<th>Response after new treatment</th>
<th>Arm of 2nd randomization</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RITUXIMAB</td>
<td>OBSERVATION</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>COMPLETE RESPONSE</td>
<td>9</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>UNCONFIRMED COMPLETE RESPONSE</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>PARTIAL RESPONSE</td>
<td>7</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>STABLE DISEASE</td>
<td>2</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>PROGRESSIVE DISEASE</td>
<td>21</td>
<td>48</td>
<td>13</td>
</tr>
<tr>
<td>NOT EVALUATED</td>
<td>4</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>44</td>
<td>100</td>
<td>44</td>
</tr>
</tbody>
</table>
5. SAFETY EVALUATION

5.1. Extent of exposure to trial medication

The number of maintenance visits received by each patient is summarized in the following table; in this summary, patients in the rituximab arm were considered to have received a cycle if they were given a dose of rituximab.

<table>
<thead>
<tr>
<th>Actual arm of maintenance</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Nb of maintenance visits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>78</td>
<td>67</td>
</tr>
<tr>
<td>Total</td>
<td>116</td>
<td>100</td>
</tr>
</tbody>
</table>

78 patients (67%) in the rituximab arm received the complete maintenance treatment (6 cycles). 30 patients (25%) in the observation arm had 6 visits during maintenance period. Nevertheless, considering last maintenance visit, 48 patients (40%) had the 6th visit (M11 post transplant):

<table>
<thead>
<tr>
<th>Actual arm of maintenance</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Last maintenance visit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cycle 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>116</td>
<td>100</td>
</tr>
<tr>
<td>Cycle 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>100</td>
<td>86</td>
</tr>
<tr>
<td>No</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>Cycle 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>91</td>
<td>78</td>
</tr>
<tr>
<td>No</td>
<td>25</td>
<td>22</td>
</tr>
<tr>
<td>Cycle 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>89</td>
<td>77</td>
</tr>
<tr>
<td>No</td>
<td>27</td>
<td>23</td>
</tr>
<tr>
<td>Cycle 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>80</td>
<td>69</td>
</tr>
<tr>
<td>No</td>
<td>36</td>
<td>31</td>
</tr>
<tr>
<td>Cycle 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>78</td>
<td>67</td>
</tr>
<tr>
<td>No</td>
<td>38</td>
<td>33</td>
</tr>
<tr>
<td>Actual arm of maintenance</td>
<td>RITUXIMAB</td>
<td>OBSERVATION</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>N</td>
<td>100</td>
<td>114</td>
</tr>
<tr>
<td>Mean</td>
<td>58.7</td>
<td>66.9</td>
</tr>
<tr>
<td>Std</td>
<td>8.27</td>
<td>28.21</td>
</tr>
<tr>
<td>Median</td>
<td>56.0</td>
<td>63.0</td>
</tr>
<tr>
<td>Min</td>
<td>14</td>
<td>23</td>
</tr>
<tr>
<td>Max</td>
<td>90</td>
<td>201</td>
</tr>
<tr>
<td>N</td>
<td>91</td>
<td>95</td>
</tr>
<tr>
<td>Mean</td>
<td>58.6</td>
<td>78.1</td>
</tr>
<tr>
<td>Std</td>
<td>10.29</td>
<td>31.37</td>
</tr>
<tr>
<td>Median</td>
<td>56.0</td>
<td>70.0</td>
</tr>
<tr>
<td>Min</td>
<td>40</td>
<td>33</td>
</tr>
<tr>
<td>Max</td>
<td>142</td>
<td>203</td>
</tr>
<tr>
<td>N</td>
<td>89</td>
<td>73</td>
</tr>
<tr>
<td>Mean</td>
<td>59.6</td>
<td>68.9</td>
</tr>
<tr>
<td>Std</td>
<td>8.87</td>
<td>23.98</td>
</tr>
<tr>
<td>Median</td>
<td>56.0</td>
<td>63.0</td>
</tr>
<tr>
<td>Min</td>
<td>52</td>
<td>20</td>
</tr>
<tr>
<td>Max</td>
<td>112</td>
<td>174</td>
</tr>
<tr>
<td>N</td>
<td>80</td>
<td>52</td>
</tr>
<tr>
<td>Mean</td>
<td>60.3</td>
<td>76.6</td>
</tr>
<tr>
<td>Std</td>
<td>11.39</td>
<td>32.66</td>
</tr>
<tr>
<td>Median</td>
<td>56.0</td>
<td>70.0</td>
</tr>
<tr>
<td>Min</td>
<td>35</td>
<td>28</td>
</tr>
<tr>
<td>Max</td>
<td>132</td>
<td>182</td>
</tr>
<tr>
<td>N</td>
<td>77</td>
<td>30</td>
</tr>
<tr>
<td>Mean</td>
<td>58.7</td>
<td>71.2</td>
</tr>
<tr>
<td>Std</td>
<td>5.47</td>
<td>31.24</td>
</tr>
<tr>
<td>Median</td>
<td>56.0</td>
<td>63.0</td>
</tr>
<tr>
<td>Min</td>
<td>49</td>
<td>22</td>
</tr>
<tr>
<td>Max</td>
<td>78</td>
<td>203</td>
</tr>
</tbody>
</table>
Table 5.1-4 Maintenance - Percentage of planned dose received by cycle for rituximab (MSAP)

<table>
<thead>
<tr>
<th>Dose received (% of planned dose)</th>
<th>Actual arm of maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>Rituximab</td>
<td></td>
</tr>
<tr>
<td>Cycle 1</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>116</td>
</tr>
<tr>
<td>Mean</td>
<td>98.6</td>
</tr>
<tr>
<td>Std</td>
<td>4.04</td>
</tr>
<tr>
<td>Median</td>
<td>99.5</td>
</tr>
<tr>
<td>Min</td>
<td>85</td>
</tr>
<tr>
<td>Max</td>
<td>107</td>
</tr>
<tr>
<td>Cycle 2</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>100</td>
</tr>
<tr>
<td>Mean</td>
<td>98.6</td>
</tr>
<tr>
<td>Std</td>
<td>4.33</td>
</tr>
<tr>
<td>Median</td>
<td>99.8</td>
</tr>
<tr>
<td>Min</td>
<td>85</td>
</tr>
<tr>
<td>Max</td>
<td>107</td>
</tr>
<tr>
<td>Cycle 3</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>91</td>
</tr>
<tr>
<td>Mean</td>
<td>98.8</td>
</tr>
<tr>
<td>Std</td>
<td>4.27</td>
</tr>
<tr>
<td>Median</td>
<td>99.8</td>
</tr>
<tr>
<td>Min</td>
<td>85</td>
</tr>
<tr>
<td>Max</td>
<td>107</td>
</tr>
<tr>
<td>Cycle 4</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>89</td>
</tr>
<tr>
<td>Mean</td>
<td>98.7</td>
</tr>
<tr>
<td>Std</td>
<td>4.36</td>
</tr>
<tr>
<td>Median</td>
<td>99.9</td>
</tr>
<tr>
<td>Min</td>
<td>85</td>
</tr>
<tr>
<td>Max</td>
<td>107</td>
</tr>
<tr>
<td>Cycle 5</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>80</td>
</tr>
<tr>
<td>Mean</td>
<td>98.6</td>
</tr>
<tr>
<td>Std</td>
<td>4.44</td>
</tr>
<tr>
<td>Median</td>
<td>99.6</td>
</tr>
<tr>
<td>Min</td>
<td>85</td>
</tr>
<tr>
<td>Max</td>
<td>107</td>
</tr>
<tr>
<td>Cycle 6</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>78</td>
</tr>
<tr>
<td>Mean</td>
<td>98.7</td>
</tr>
<tr>
<td>Std</td>
<td>4.50</td>
</tr>
<tr>
<td>Median</td>
<td>99.7</td>
</tr>
<tr>
<td>Min</td>
<td>85</td>
</tr>
<tr>
<td>Max</td>
<td>107</td>
</tr>
</tbody>
</table>

Same results are described in terms of frequency in section §6.7.1.
5.2. Adverse events

All adverse events occurring were graded with CTCAE v3.0.

5.2.1. Overview of toxicity profile

The following tables describe the toxicity profile of consolidation (BEAM+ASCT).

<table>
<thead>
<tr>
<th>Grade Infection</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade Infection</td>
<td>All Tox.</td>
<td>Grade</td>
</tr>
<tr>
<td>N</td>
<td>91</td>
<td>25</td>
</tr>
<tr>
<td>%</td>
<td>78</td>
<td>22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade Neurologic</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade Neurologic</td>
<td>All Tox.</td>
<td>Grade</td>
</tr>
<tr>
<td>N</td>
<td>3</td>
<td>113</td>
</tr>
<tr>
<td>%</td>
<td>3</td>
<td>97</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade Muscositis</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade Muscositis</td>
<td>All Tox.</td>
<td>Grade</td>
</tr>
<tr>
<td>N</td>
<td>80</td>
<td>36</td>
</tr>
<tr>
<td>%</td>
<td>69</td>
<td>31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade Hepatic</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade Hepatic</td>
<td>All Tox.</td>
<td>Grade</td>
</tr>
<tr>
<td>N</td>
<td>18</td>
<td>98</td>
</tr>
<tr>
<td>%</td>
<td>16</td>
<td>84</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade Gastrointestinal</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade Gastrointestinal</td>
<td>All Tox.</td>
<td>Grade</td>
</tr>
<tr>
<td>N</td>
<td>69</td>
<td>47</td>
</tr>
<tr>
<td>%</td>
<td>59</td>
<td>41</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade Renal</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade Renal</td>
<td>All Tox.</td>
<td>Grade</td>
</tr>
<tr>
<td>N</td>
<td>16</td>
<td>100</td>
</tr>
<tr>
<td>%</td>
<td>14</td>
<td>86</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade Cardiovascular</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade Cardiovascular</td>
<td>All Tox.</td>
<td>Grade</td>
</tr>
<tr>
<td>N</td>
<td>18</td>
<td>98</td>
</tr>
<tr>
<td>%</td>
<td>16</td>
<td>84</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other toxicity</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other toxicity</td>
<td>All Tox.</td>
<td>Grade</td>
</tr>
<tr>
<td>N</td>
<td>34</td>
<td>1</td>
</tr>
<tr>
<td>%</td>
<td>29</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 5.2-2 Patients with RBC and platelets transfusions during consolidation (MSAP)

<table>
<thead>
<tr>
<th>Actual arm of maintenance</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>At least one RBC transfusion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>20</td>
<td>17</td>
</tr>
<tr>
<td>Yes</td>
<td>96</td>
<td>83</td>
</tr>
<tr>
<td>At least one platelets transfusion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Yes</td>
<td>113</td>
<td>97</td>
</tr>
<tr>
<td>Total</td>
<td>116</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 5.2-3 Time intervals for hematological recovery after transplant (MSAP)

<table>
<thead>
<tr>
<th>Actual arm of maintenance</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean</td>
</tr>
<tr>
<td>Neutrophils > 1 Giga/l (days after transplant)</td>
<td></td>
<td>113</td>
</tr>
<tr>
<td>Neutrophils > 0.5 Giga/l (days after transplant)</td>
<td></td>
<td>114</td>
</tr>
<tr>
<td>Platelets > 20 Giga/l (days after transplant)</td>
<td></td>
<td>114</td>
</tr>
</tbody>
</table>
The toxicity profile during the maintenance phase (starting one month after transplant) is summarized by the worst grade reported per patient in the following tables:

Table 5.2-4 Incidence of toxicities by worst grade per patient during maintenance phase (MSAP)

<table>
<thead>
<tr>
<th>Grade of toxicity</th>
<th>RITUXIMAB</th>
<th>Actual arm of maintenance</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All Tox.</td>
<td>Grade</td>
<td>All Tox.</td>
</tr>
<tr>
<td></td>
<td>0 1 2 3 4 5 >=3 NE</td>
<td>Total</td>
<td>0 1 2 3 4 >=3 NE</td>
</tr>
<tr>
<td>Grade allergy</td>
<td>N 109 0 0 1 0 0 6 116</td>
<td>1 95 0 0 1 0 1 23</td>
<td>N 119</td>
</tr>
<tr>
<td></td>
<td>% 1 94 0 0 1 0 5 100</td>
<td>1 80 0 0 1 0 1 19</td>
<td>% 100</td>
</tr>
<tr>
<td>Grade auditory</td>
<td>N 102 2 4 2 0 0 2 6 116</td>
<td>0 96 0 0 0 0 0 23</td>
<td>N 119</td>
</tr>
<tr>
<td></td>
<td>% 7 88 2 3 2 0 2 5 100</td>
<td>0 81 0 0 0 0 0 19</td>
<td>% 100</td>
</tr>
<tr>
<td>Grade blood</td>
<td>N 79 18 13 25 0 48 6 116</td>
<td>56 41 14 16 9 17 26</td>
<td>N 119</td>
</tr>
<tr>
<td></td>
<td>% 68 27 16 11 22 0 41 5 100</td>
<td>47 34 12 13 8 14 22</td>
<td>N 100</td>
</tr>
<tr>
<td>Grade cardiovascular</td>
<td>N 105 3 2 0 0 0 6 116</td>
<td>5 92 1 3 0 1 1 22</td>
<td>N 119</td>
</tr>
<tr>
<td></td>
<td>% 4 91 3 2 0 0 0 5 100</td>
<td>4 77 1 3 0 1 1 18</td>
<td>% 100</td>
</tr>
<tr>
<td>Grade coagulation</td>
<td>N 103 3 0 3 0 0 3 7 116</td>
<td>1 94 1 0 0 0 0 24</td>
<td>N 119</td>
</tr>
<tr>
<td></td>
<td>% 5 89 3 0 3 0 3 6 100</td>
<td>1 79 1 0 0 0 0 20</td>
<td>% 100</td>
</tr>
<tr>
<td>Grade skin</td>
<td>N 89 6 0 0 0 0 0 5 116</td>
<td>20 77 12 6 2 0 2 22</td>
<td>N 119</td>
</tr>
<tr>
<td></td>
<td>% 18 77 13 5 0 0 0 5 100</td>
<td>17 65 10 5 2 0 2 18</td>
<td>% 100</td>
</tr>
<tr>
<td>Grade gastrointestinal</td>
<td>N 77 22 11 0 0 0 0 6 116</td>
<td>31 66 15 12 2 2 4</td>
<td>N 119</td>
</tr>
<tr>
<td></td>
<td>% 28 66 19 9 0 0 0 5 100</td>
<td>26 55 13 10 2 2 3</td>
<td>% 100</td>
</tr>
<tr>
<td>Grade hepatic</td>
<td>N 11 6 2 1 0 0 1 6 116</td>
<td>12 84 9 2 1 1 2</td>
<td>N 119</td>
</tr>
<tr>
<td></td>
<td>% 12 83 9 2 1 0 1 5 100</td>
<td>11 71 8 2 1 1 2</td>
<td>% 100</td>
</tr>
<tr>
<td>Grade infection</td>
<td>N 77 22 11 0 0 0 0 6 116</td>
<td>31 66 15 12 2 2 4</td>
<td>N 119</td>
</tr>
<tr>
<td></td>
<td>% 28 66 19 9 0 0 0 5 100</td>
<td>26 55 13 10 2 2 3</td>
<td>% 100</td>
</tr>
<tr>
<td>Grade viral infection</td>
<td>N 11 6 2 1 0 0 1 6 116</td>
<td>12 84 9 2 1 1 2</td>
<td>N 119</td>
</tr>
<tr>
<td></td>
<td>% 12 83 9 2 1 0 1 5 100</td>
<td>11 71 8 2 1 1 2</td>
<td>% 100</td>
</tr>
<tr>
<td>Grade metabolic</td>
<td>N 77 22 11 0 0 0 0 6 116</td>
<td>31 66 15 12 2 2 4</td>
<td>N 119</td>
</tr>
<tr>
<td></td>
<td>% 28 66 19 9 0 0 0 5 100</td>
<td>26 55 13 10 2 2 3</td>
<td>% 100</td>
</tr>
</tbody>
</table>
The toxicity profile is also summarized by grade and maintenance visit for each designation in section §6.7.2. In this summary, the denominator is the number of patients who received treatment at each cycle for rituximab arm or had a maintenance visit for observation arm.

Other toxicities are listed in section §6.7.2.
Table 5.2-5 Patients with neutrophils <1 G/L during M3-M12 post transplant (MSAP)

<table>
<thead>
<tr>
<th>Actual arm of maintenance</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>At least one neutrophils value <1 G/L during M3-M12 post transplant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>36</td>
<td>31</td>
</tr>
<tr>
<td>No</td>
<td>80</td>
<td>69</td>
</tr>
<tr>
<td>Total</td>
<td>116</td>
<td>100</td>
</tr>
</tbody>
</table>

36 patients (31%) in rituximab arm had a neutropenia of grade 3 or more during M3-M12 post transplant versus 30 patients (25%) in observation arm. Nevertheless, patients could have received a new treatment during this period.

If values after an additional treatment are excluded, results are the following ones:

Table 5.2-6 Patients with neutrophils <1 G/L during M3-M12 post transplant, excluding values after additional treatment (MSAP)

<table>
<thead>
<tr>
<th>Actual arm of maintenance</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>At least one neutrophils value <1 G/L during M3-M12 post transplant (excluding values after additional treatment)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>No</td>
<td>105</td>
<td>91</td>
</tr>
<tr>
<td>Total</td>
<td>116</td>
<td>100</td>
</tr>
</tbody>
</table>

11 patients (9%) in rituximab arm had a neutropenia of grade 3 or more during M3-M12 post transplant excluding values after additional treatment versus 7 patients (6%) in observation arm.

Table 5.2-7 Patients with RBC and platelets transfusions during maintenance (MSAP)

<table>
<thead>
<tr>
<th>Actual arm of maintenance</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>At least one RBC transfusion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Yes</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>103</td>
<td>89</td>
</tr>
<tr>
<td>At least one platelets transfusion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Yes</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>103</td>
<td>89</td>
</tr>
<tr>
<td>Total</td>
<td>116</td>
<td>100</td>
</tr>
</tbody>
</table>
5.2.2. Description of adverse events

Among maintenance safety population, regarding only AEs post 2nd randomization, a total of 162 AEs in rituximab arm and 99 in the observation arm were reported, concerning respectively 67 patients (58\%) and 58 patients (49\%).

In both arms, the most common System Organ Class was infections and infestations (respectively 76 and 37 AEs in rituximab and observation arm, 47\% and 37\% of AEs), then blood and lymphatic system disorders (36 and 19 AEs, 22\% and 19\% of AEs).

Table 5.2-8 Patients with at least one AE (MSAP)

<table>
<thead>
<tr>
<th>Actual arm of maintenance</th>
<th>RITUXIMAB</th>
<th>(%)</th>
<th>OBSERVATION</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient with at least one AE</td>
<td>Yes</td>
<td>67</td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>Patient with at least one AE within 100 days after ASCT</td>
<td>Yes</td>
<td>54</td>
<td>47</td>
<td>50</td>
</tr>
<tr>
<td>Patient with at least one AE more than 100 days after ASCT</td>
<td>Yes</td>
<td>35</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>116</td>
<td>100</td>
<td>119</td>
</tr>
</tbody>
</table>

Regarding AEs within 100 days after ASCT, a total of 87 SAEs in rituximab arm and 75 in observation arm were reported, concerning respectively 54 patients (47\%) and 50 patients (42\%).

Regarding AEs more than 100 days after ASCT, a total of 75 SAEs in rituximab arm and 24 in observation arm were reported, concerning respectively 35 patients (30\%) and 20 patients (17\%).

See details about AEs (overall, within 100 days after ASCT and more than 100 days after ASCT) in the following tables.

The following table summarizes the incidence of AEs by System Organ Class and Preferred Term, ordered by frequency.

Table 5.2-9 Summary of adverse events by frequency of SOC and PT (MSAP)

<table>
<thead>
<tr>
<th>Actual arm of maintenance</th>
<th>RITUXIMAB</th>
<th>(%)</th>
<th>OBSERVATION</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of AEs</td>
<td></td>
<td>162</td>
<td>100</td>
<td>99</td>
</tr>
<tr>
<td>System Organ Class</td>
<td>Actual arm of maintenance</td>
<td>RITUXIMAB</td>
<td></td>
<td>OBSERVATION</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------------</td>
<td>----------</td>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Total number of AEs</td>
<td>76</td>
<td>47</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INFECTION</td>
<td>10</td>
<td>6</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>HERPES ZOSTER</td>
<td>5</td>
<td>3</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>BRONCHITIS</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SEPSIS</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PNEUMONIA</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>LOWER RESPIRATORY TRACT INFECTION</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CATHETER RELATED INFECTION</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>NEUTROPENIC INFECTION</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>FOLLICULITIS</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>BRONCHOPNEUMONIA</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ESCHERICHIA URINARY TRACT INFECTION</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CENTRAL LINE INFECTION</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>NEUTROPENIC SEPSIS</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CATHETER SEPSIS</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CANDIDIASIS</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ORAL HERPES</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>URINARY TRACT INFECTION</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SEPTIC SHOCK</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SINUSITIS</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HAEMOPHILUS INFECTION</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CYTOMEGALOVIRUS INFECTION</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>RESPIRATORY TRACT INFECTION</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PSEUDOMONAS INFECTION</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BRONCHOPULMONARY ASPERGILLOSIS</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BRONCHITIS PNEUMOCOCCAL</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PERTUSSIS</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ESCHERICHIA SEPSIS</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GASTROENTERITIS</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>STAPHYLOCOCCAL SEPSIS</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CLOSTRIDIAL INFECTION</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>INFLUENZA</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>STAPHYLOCOCCAL INFECTION</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Condition</td>
<td>RITUXIMAB</td>
<td></td>
<td>OBSERVATION</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>--------</td>
<td>-------------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>DIARRHOEA INFECTIOUS</td>
<td>1</td>
<td>1 %</td>
<td>0</td>
<td>0 %</td>
</tr>
<tr>
<td>PNEUMONIA</td>
<td>0</td>
<td>0 %</td>
<td>1</td>
<td>1 %</td>
</tr>
<tr>
<td>PNEUMOCOCCAL</td>
<td>1</td>
<td>1 %</td>
<td>0</td>
<td>0 %</td>
</tr>
<tr>
<td>STREPTOCOCCAL SEPSIS</td>
<td>1</td>
<td>1 %</td>
<td>0</td>
<td>0 %</td>
</tr>
<tr>
<td>VARICELLA</td>
<td>0</td>
<td>0 %</td>
<td>1</td>
<td>1 %</td>
</tr>
<tr>
<td>ENTEROCOLITIS INFECTIOUS</td>
<td>0</td>
<td>0 %</td>
<td>1</td>
<td>1 %</td>
</tr>
<tr>
<td>PNEUMOCYSTIS JIROVECI</td>
<td>1</td>
<td>1 %</td>
<td>0</td>
<td>0 %</td>
</tr>
<tr>
<td>PNEUMOCYTIS JIROVECI PNEUMONIA</td>
<td>1</td>
<td>1 %</td>
<td>0</td>
<td>0 %</td>
</tr>
<tr>
<td>GASTROENTERITIS VIRAL</td>
<td>0</td>
<td>0 %</td>
<td>1</td>
<td>1 %</td>
</tr>
<tr>
<td>PNEUMONIA Fungal</td>
<td>1</td>
<td>1 %</td>
<td>0</td>
<td>0 %</td>
</tr>
<tr>
<td>BACTERAEMIA</td>
<td>0</td>
<td>0 %</td>
<td>1</td>
<td>1 %</td>
</tr>
<tr>
<td>PNEUMONIA BACTERIAL</td>
<td>1</td>
<td>1 %</td>
<td>0</td>
<td>0 %</td>
</tr>
<tr>
<td>VIRAL INFECTION</td>
<td>1</td>
<td>1 %</td>
<td>0</td>
<td>0 %</td>
</tr>
<tr>
<td>UPPER RESPIRATORY TRACT INFECTION</td>
<td>1</td>
<td>1 %</td>
<td>0</td>
<td>0 %</td>
</tr>
<tr>
<td>PNEUMONIA INFLUENZAL</td>
<td>0</td>
<td>0 %</td>
<td>1</td>
<td>1 %</td>
</tr>
<tr>
<td>BRONCHIECTASIS</td>
<td>1</td>
<td>1 %</td>
<td>0</td>
<td>0 %</td>
</tr>
<tr>
<td>LOCALISED INFECTION</td>
<td>1</td>
<td>1 %</td>
<td>0</td>
<td>0 %</td>
</tr>
<tr>
<td>Total number of AEs</td>
<td>36</td>
<td>22 %</td>
<td>19</td>
<td>19 %</td>
</tr>
</tbody>
</table>

BLOOD AND LYMPHATIC SYSTEM DISORDERS

Preferred Term

<table>
<thead>
<tr>
<th>Condition</th>
<th>RITUXIMAB</th>
<th></th>
<th>OBSERVATION</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>FEBRILE NEUTROPENIA</td>
<td>8</td>
<td>5 %</td>
<td>12</td>
<td>12 %</td>
</tr>
<tr>
<td>NEUTROPENIA</td>
<td>14</td>
<td>9 %</td>
<td>1</td>
<td>1 %</td>
</tr>
<tr>
<td>LEUKOPENIA</td>
<td>4</td>
<td>2 %</td>
<td>2</td>
<td>2 %</td>
</tr>
<tr>
<td>THROMBOCYTOPENIA</td>
<td>3</td>
<td>2 %</td>
<td>1</td>
<td>1 %</td>
</tr>
<tr>
<td>LYMPHOPENIA</td>
<td>3</td>
<td>2 %</td>
<td>0</td>
<td>0 %</td>
</tr>
<tr>
<td>HAEMATOTOXICITY</td>
<td>1</td>
<td>1 %</td>
<td>1</td>
<td>1 %</td>
</tr>
<tr>
<td>ANAEMIA</td>
<td>0</td>
<td>0 %</td>
<td>2</td>
<td>2 %</td>
</tr>
<tr>
<td>FEBRILE BONE MARROW APLASIA</td>
<td>2</td>
<td>1 %</td>
<td>0</td>
<td>0 %</td>
</tr>
<tr>
<td>THROMBOTIC THROMBOCYTOPENIC PURPURA</td>
<td>1</td>
<td>1 %</td>
<td>0</td>
<td>0 %</td>
</tr>
<tr>
<td>Actual arm of maintenance</td>
<td>RITUXIMAB (N)</td>
<td>RITUXIMAB (%)</td>
<td>OBSERVATION (N)</td>
<td>OBSERVATION (%)</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>GASTROINTESTINAL DISORDERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of AEs</td>
<td>14</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIARRHOEA</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>STOMATITIS</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>NAUSEA</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VOMITING</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>GASTROINTESTINAL DISORDER</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ABDOMINAL PAIN</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ILEUS</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>FAECALOMA</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DENTAL CARIES</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>GASTROINTESTINAL HAEMORRHAGE</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GASTROINTESTINAL INFLAMMATION</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>GINGIVAL PAIN</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total number of AEs</td>
<td>9</td>
<td>6</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUCOSAL INFLAMMATION</td>
<td>4</td>
<td>2</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>PYREXIA</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>ASTHENIA</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HYPERTHERMIA</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>INFLAMMATION</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CATHETER SITE HAEMORRHAGE</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total number of AEs</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRONCHOPNEUMOPATHY</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>LUNG DISORDER</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>INTERSTITIAL LUNG DISEASE</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LUNG INFECTION</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>COUGH</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total number of AEs</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOSS OF CONSCIOUSNESS</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CEREBRAL ISCHAEMIA</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>TRANSIENT ISCHAEMIC ATTACK</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LEUKOENCEPHALOPATHY</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PARESIS</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>HYPOAESTHESIA</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Category</td>
<td>Preferred Term</td>
<td>RITUXIMAB</td>
<td>OBSERVATION</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>-----------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>METABOLISM AND NUTRITION DISORDERS</td>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Total number of AEs</td>
<td></td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HYPOKALAEMIA</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ANOREXIA</td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>FOOD INTOLERANCE</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>HYPERMAGNESAEIMIA</td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>NEOPLASMS BENIGN, MALIGNANT AND UNSPECIFIED (INCL CYSTS AND POLYPS)</td>
<td></td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Total number of AEs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEPATIC NEOPLASM MALIGNANT</td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>MALIGNANT MELANOMA</td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ACUTE LEUKAEMIA</td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>TRANSITIONAL CELL CARCINOMA</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>MYELODYSPLASTIC SYNDROME</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>IMMUNE SYSTEM DISORDERS</td>
<td></td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Total number of AEs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HYPOGAMMAGLOBULINAEMIA</td>
<td></td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>INVESTIGATIONS</td>
<td></td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Total number of AEs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CYTOMEGALOVIRUS TEST POSITIVE</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>GAMMA-GLUTAMYLTRANSFERASE INCREASED</td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C-REACTIVE PROTEIN INCREASED</td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>LIVER FUNCTION TEST ABNORMAL</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>CARDIAC DISORDERS</td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Total number of AEs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MYOCARDIAL INFARCTION</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>MYOCARDITIS</td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ATRIAL FIBRILLATION</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>VASCULAR DISORDERS</td>
<td></td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total number of AEs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUGULAR VEIN THROMBOSIS</td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>HYPOTENSION</td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>THROMBOSIS</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
3 other malignancies in rituximab arm and 2 in observation arm were reported (corresponding to the SOC neoplasms benign, malignant and unspecified (incl cysts and polyps)).

Table 5.2-10 Summary of adverse events within 100 days after ASCT by frequency of SOC and PT (MSAP)
<table>
<thead>
<tr>
<th>System Organ Class</th>
<th>Actual arm of maintenance</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>INFECTIONS AND INFESTATIONS</td>
<td>Total number of AEs</td>
<td>31</td>
<td>36</td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INFECTION</td>
<td>6</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>SEPSIS</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CATHETER RELATED INFECTION</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>HERPES ZOSTER</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>NEUTROPENIC INFECTION</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>URINARY TRACT INFECTION</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>FOLLICULITIS</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>BRONCHOPNEUMONIA</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ESCHERICHIA URINARY TRACT INFECTION</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>CYTOMEGALOVIRUS INFECTION</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>NEUTROPENIC SEPSIS</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>CANDIDIASIS</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>CATHETER SEPSIS</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CENTRAL LINE INFECTION</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ESCHERICHIA SEPSIS</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>STAPHYLOCOCCAL SEPSIS</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>CLOSTRIDIAL INFECTION</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>STAPHYLOCOCCAL INFECTION</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>DIARRHOEA INFECTIOUS</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>STREPTOCOCCAL SEPSIS</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>VARICELLA</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>PNEUMONIA Fungal</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>BACTERAEMIA</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ORAL HERPES</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>PNEUMONIA</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>RESPIRATORY TRACT INFECTION</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>PNEUMONIA INFLUENZAL</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>LOWER RESPIRATORY TRACT INFECTION</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Disorder</td>
<td>Actual arm of maintenance</td>
<td>RITUXIMAB</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------------------------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>BLOOD AND LYMPHATIC SYSTEM DISORDERS</td>
<td></td>
<td>22</td>
<td>25</td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEBRILE NEUTROPENIA</td>
<td></td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>NEUTROPENIA</td>
<td></td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>THROMBOCYTOPENIA</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>LYMPHOPENIA</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>HAEMATOTOXICITY</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ANAEMIA</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FEBRILE BONE MARROW APLASIA</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>LEUKOPENIA</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>GASTROINTESTINAL DISORDERS</td>
<td></td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIARRHOEA</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>STOMATITIS</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>NAUSEA</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>VOMITING</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>GASTROINTESTINAL DISORDER</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ABDOMINAL PAIN</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ILEUS</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FAecalOMA</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>DENTAL CARIES</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gastrointestinal HAEMORRHAGE</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Gastrointestinal INFLAMMATION</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GENERAL DISORDERS AND ADMINISTRATION SITE CONDITIONS</td>
<td></td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUCOSAL INFLAMMATION</td>
<td></td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>PYREXIA</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ASTHENIA</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>HYPERTHERMIA</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>INFLAMMATION</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CATHETER SITE HAEMORRHAGE</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>RESPIRATORY, THORACIC AND MEDIASTINAL DISORDERS</td>
<td></td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRONCHOPNEUMOPATHY</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>LUNG DISORDER</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>INTERSTITITIAL LUNG DISEASE</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>LUNG INFILTRATION</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>COUGH</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Condition</td>
<td>Actual arm of maintenance</td>
<td>RITUXIMAB</td>
<td>OBSERVATION</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>METABOLISM AND NUTRITION DISORDERS</td>
<td>Total number of AEs</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Preferred Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HYPOKALAEMIA</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ANOREXIA</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>FOOD INTOLERANCE</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>HYPERMAGNESAEmia</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>INVESTIGATIONS</td>
<td>Total number of AEs</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Preferred Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CYTOMEGALOVIRUS TEST POSITIVE</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>GAMMA-GLUTAMYLTRANSFERASE INCREASED</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C-REACTIVE PROTEIN INCREASED</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>LIVER FUNCTION TEST ABNORMAL</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>INJURY, POISONING AND PROCEDURAL COMPLICATIONS</td>
<td>Total number of AEs</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Preferred Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRUG TOXICITY</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>THROMBOSIS IN DEVICE</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>SUBDURAL HAEMATOMA</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>EAR AND LABYRINTH DISORDERS</td>
<td>Total number of AEs</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Preferred Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEAFNESS</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>TINNITUS</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>CARDIAC DISORDERS</td>
<td>Total number of AEs</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Preferred Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MYOCARDIAL INFARCTION</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ATRIAL FIBRILLATION</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>HEPATOBIARY DISORDERS</td>
<td>Total number of AEs</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Preferred Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEPATITIS</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>LIVER DISORDER</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>VASCULAR DISORDERS</td>
<td>Total number of AEs</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Preferred Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HYPOTENSION</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>THROMBOSIS</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>RENAL AND URINARY DISORDERS</td>
<td>Total number of AEs</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Preferred Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RENAL FAILURE ACUTE</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>RENAL TUBULAR ACIDOSIS</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>NERVOUS SYSTEM DISORDERS</td>
<td>Total number of AEs</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Preferred Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARESIS</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Actual arm of maintenance</td>
<td>RITUXIMAB</td>
<td>OBSERVATION</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Total number of AEs</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONFUSIONAL STATE</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total number of AEs</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOCIAL STAY HOSPITALISATION</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 5.2-11 Summary of adverse events more than 100 days after ASCT by frequency of SOC and PT (MSAP)

<table>
<thead>
<tr>
<th>Actual arm of maintenance</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Total number of AEs more than 100 days after ASCT</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HERPES ZOSTER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRONCHITIS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INFECTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PNEUMONIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOWER RESPIRATORY TRACT INFECTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEPTIC SHOCK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SINUSITIS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAEMOPHILUS INFECTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSEUDOMONAS INFECTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORAL HERPES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRONCHOPULMONARY ASPERGILLOSIS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRONCHITIS PNEUMOCOCCAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRONCHOPNEUMONIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PERTUSSIS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GASTROENTERITIS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INFLUENZA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PNEUMONIA PNEUMOCOCCAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENTEROCOLITIS INFECTIOUS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PNEUMOCYSTIS JIROVECI PNEUMONIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GASTROENTERITIS VIRAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CENTRAL LINE INFECTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOLLICULITIS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESCHERICHIA URINARY TRACT INFECTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CATHETER SEPSIS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEUTROPENIC INFECTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PNEUMONIA BACTERIAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIRAL INFECTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UPPER RESPIRATORY TRACT INFECTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CANDIDIASIS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEUTROPENIC SEPSIS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESPIRATORY TRACT INFECTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRONCHIECTASIS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOCALISED INFECTION</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System Organ Class</th>
<th>Total number of AEs</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFECTIONS AND INFESTATIONS</td>
<td>45 60 13 54</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **RITUXIMAB**
 - N: 45
 - %: 60

- **OBSERVATION**
 - N: 13
 - %: 54
<p>	System and Disorder	RITUXIMAB			OBSERVATION		
BLOOD AND LYMPHATIC SYSTEM DISORDERS	N	%	N	%			
Total number of AEs	14	19	4	17			
Preferred Term							
NEUTROPENIA	7	9	1	4			
LEUKOPENIA	3	4	2	8			
FEBRILE NEUTROPENIA	1	1	1	4			
LYMPHOPENIA	1	1	0	0			
THROMBOTIC THROMBOCYTOPENIC PURPURA	1	1	0	0			
THROMBOCYTOPENIA	1	1	0	0			
NERVOUS SYSTEM DISORDERS							
Total number of AEs	3	4	2	8			
Preferred Term							
LOSS OF CONSCIOUSNESS	0	0	1	4			
CEREBRAL ISCHAEMIA	0	0	1	4			
TRANSIENT ISCHAEMIC ATTACK	1	1	0	0			
LEUKOENCEPHALOPATHY	1	1	0	0			
HYPOAESTHESIA	1	1	0	0			
NEOPLASMS BENIGN, MALIGNANT AND UNSPECIFIED (INCL CYSTS AND POLYPS)							
Total number of AEs	3	4	2	8			
Preferred Term							
HEPATIC NEOPLASM MALIGNANT	1	1	0	0			
MALIGNANT MELANOMA	1	1	0	0			
ACUTE LEUKAEMIA	1	1	0	0			
TRANSITIONAL CELL CARCINOMA	0	0	1	4			
MYELODYSPLASTIC SYNDROME	0	0	1	4			
IMMUNE SYSTEM DISORDERS							
Total number of AEs	3	4	1	4			
Preferred Term							
HYPOGAMMAGLOBULINAEMIA	3	4	1	4			
GENERAL DISORDERS AND ADMINISTRATION SITE CONDITIONS							
Total number of AEs	2	3	1	4			
Preferred Term							
PYREXIA	2	3	0	0			
MUCOSAL INFLAMMATION	0	0	1	4			
GASTROINTESTINAL DISORDERS							
Total number of AEs	1	1	1	4			
Preferred Term							
VOMITING	0	0	1	4			
GINGIVAL PAIN	1	1	0	0			
VASCULAR DISORDERS							
Total number of AEs	1	1	0	0			
Preferred Term							
JUGULAR VEIN THROMBOSIS	1	1	0	0			
RENAL AND URINARY DISORDERS							
Total number of AEs	1	1	0	0			
Preferred Term							
RENAL FAILURE	1	1	0	0	</p>		
<table>
<thead>
<tr>
<th>Actual arm of maintenance</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>CARDIAC DISORDERS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of AEs</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MYOCARDITIS</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>MUSCULOSKELETAL AND CONNECTIVE TISSUE DISORDERS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of AEs</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RHABDOMYOLYSIS</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 5.2-12 Characteristics of adverse events (MSAP)

<table>
<thead>
<tr>
<th></th>
<th>Actual arm of maintenance</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RITUXIMAB</td>
<td>OBSERVATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Non hematological toxicity grade</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NORMAL</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MILD</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MODERATE</td>
<td>54</td>
<td>33</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>SEVERE</td>
<td>66</td>
<td>41</td>
<td>61</td>
<td>62</td>
</tr>
<tr>
<td>LIFE THREATENING</td>
<td>9</td>
<td>6</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>DEATH</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UNKNOWN</td>
<td>7</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Missing</td>
<td>18</td>
<td>11</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Hematological toxicity grade</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NORMAL</td>
<td>13</td>
<td>8</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>MILD</td>
<td>16</td>
<td>10</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>MODERATE</td>
<td>7</td>
<td>4</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>SEVERE</td>
<td>32</td>
<td>20</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>LIFE THREATENING</td>
<td>49</td>
<td>30</td>
<td>46</td>
<td>46</td>
</tr>
<tr>
<td>UNKNOWN</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Missing</td>
<td>38</td>
<td>23</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Relation with study drugs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>81</td>
<td>50</td>
<td>66</td>
<td>67</td>
</tr>
<tr>
<td>Yes</td>
<td>79</td>
<td>49</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Missing</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Action taken with study drug</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>140</td>
<td>86</td>
<td>97</td>
<td>98</td>
</tr>
<tr>
<td>Yes</td>
<td>21</td>
<td>13</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Antibiotherapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>60</td>
<td>37</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>Yes</td>
<td>94</td>
<td>58</td>
<td>53</td>
<td>54</td>
</tr>
<tr>
<td>Not Done</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Missing</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>AE outcome</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECOVERED</td>
<td>138</td>
<td>85</td>
<td>91</td>
<td>92</td>
</tr>
<tr>
<td>RECOVERED WITH SEQUELAE</td>
<td>8</td>
<td>5</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>ONGOING</td>
<td>8</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>FATAL</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>162</td>
<td>100</td>
<td>99</td>
<td>100</td>
</tr>
</tbody>
</table>
Table 5.2-13 Action taken with study drugs due to AEs (MSAP)

<table>
<thead>
<tr>
<th>Specify action taken with study drug</th>
<th>Actual arm of maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>PERMANENT TREATMENT DISCONTINUATION</td>
<td>3</td>
</tr>
<tr>
<td>TEMPORARY TREATMENT DISCONTINUATION</td>
<td>17</td>
</tr>
<tr>
<td>DOSE REGIMEN ADAPTATION</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>21</td>
</tr>
</tbody>
</table>

Table 5.2-14 Characteristics of adverse events within 100 days after ASCT (MSAP)

<table>
<thead>
<tr>
<th>AE within 100 days after ASCT</th>
<th>Actual arm of maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Non hematological toxicity grade</td>
<td></td>
</tr>
<tr>
<td>NORMAL</td>
<td>1</td>
</tr>
<tr>
<td>MILD</td>
<td>2</td>
</tr>
<tr>
<td>MODERATE</td>
<td>20</td>
</tr>
<tr>
<td>SEVERE</td>
<td>46</td>
</tr>
<tr>
<td>LIFE THREATENING</td>
<td>4</td>
</tr>
<tr>
<td>DEATH</td>
<td>1</td>
</tr>
<tr>
<td>UNKNOWN</td>
<td>4</td>
</tr>
<tr>
<td>Missing</td>
<td>9</td>
</tr>
<tr>
<td>Hematological toxicity grade</td>
<td></td>
</tr>
<tr>
<td>NORMAL</td>
<td>3</td>
</tr>
<tr>
<td>MILD</td>
<td>5</td>
</tr>
<tr>
<td>MODERATE</td>
<td>4</td>
</tr>
<tr>
<td>SEVERE</td>
<td>13</td>
</tr>
<tr>
<td>LIFE THREATENING</td>
<td>39</td>
</tr>
<tr>
<td>UNKNOWN</td>
<td>2</td>
</tr>
<tr>
<td>Missing</td>
<td>21</td>
</tr>
<tr>
<td>Relation with study drugs</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>47</td>
</tr>
<tr>
<td>Yes</td>
<td>39</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
</tr>
<tr>
<td>Action taken with study drug</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>82</td>
</tr>
<tr>
<td>Yes</td>
<td>5</td>
</tr>
<tr>
<td>Antibiotherapy</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>27</td>
</tr>
<tr>
<td>Yes</td>
<td>55</td>
</tr>
</tbody>
</table>
Table 5.2-15 Action taken with study drugs due to AEs within 100 days after ASCT (MSAP)

<table>
<thead>
<tr>
<th>AE within 100 days after ASCT</th>
<th>Actual arm of maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Missing</td>
<td>5</td>
</tr>
<tr>
<td>AE outcome</td>
<td></td>
</tr>
<tr>
<td>RECOVERED</td>
<td>78</td>
</tr>
<tr>
<td>RECOVERED WITH SEQUELAE</td>
<td>3</td>
</tr>
<tr>
<td>ONGOING</td>
<td>4</td>
</tr>
<tr>
<td>FATAL</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>87</td>
</tr>
</tbody>
</table>

Table 5.2-16 Characteristics of adverse events more than 100 days after ASCT (MSAP)

<table>
<thead>
<tr>
<th>AE more than 100 days after ASCT</th>
<th>Actual arm of maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Non hematological toxicity grade</td>
<td></td>
</tr>
<tr>
<td>MILD</td>
<td>2</td>
</tr>
<tr>
<td>MODERATE</td>
<td>34</td>
</tr>
<tr>
<td>SEVERE</td>
<td>20</td>
</tr>
<tr>
<td>LIFE THREATENING</td>
<td>5</td>
</tr>
<tr>
<td>DEATH</td>
<td>2</td>
</tr>
<tr>
<td>UNKNOWN</td>
<td>3</td>
</tr>
<tr>
<td>Missing</td>
<td>9</td>
</tr>
<tr>
<td>Hematological toxicity grade</td>
<td></td>
</tr>
<tr>
<td>NORMAL</td>
<td>10</td>
</tr>
<tr>
<td>MILD</td>
<td>11</td>
</tr>
<tr>
<td>MODERATE</td>
<td>3</td>
</tr>
<tr>
<td>SEVERE</td>
<td>19</td>
</tr>
<tr>
<td>LIFE THREATENING</td>
<td>10</td>
</tr>
<tr>
<td>UNKNOWN</td>
<td>5</td>
</tr>
<tr>
<td>Missing</td>
<td>17</td>
</tr>
<tr>
<td>AE more than 100 days after ASCT</td>
<td>Actual arm of maintenance</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td></td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Relation with study drugs</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>34</td>
</tr>
<tr>
<td>Yes</td>
<td>40</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
</tr>
<tr>
<td>Action taken with study drug</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>58</td>
</tr>
<tr>
<td>Yes</td>
<td>16</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
</tr>
<tr>
<td>Antibiotherapy</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>33</td>
</tr>
<tr>
<td>Yes</td>
<td>39</td>
</tr>
<tr>
<td>Not Done</td>
<td>1</td>
</tr>
<tr>
<td>Missing</td>
<td>2</td>
</tr>
<tr>
<td>AE outcome</td>
<td></td>
</tr>
<tr>
<td>RECOVERED</td>
<td>60</td>
</tr>
<tr>
<td>RECOVERED WITH SEQUELAE</td>
<td>5</td>
</tr>
<tr>
<td>ONGOING</td>
<td>4</td>
</tr>
<tr>
<td>FATAL</td>
<td>5</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>75</td>
</tr>
</tbody>
</table>

Table 5.2-17 Action taken with study drugs due to AEs more than 100 days after ASCT (MSAP)

<table>
<thead>
<tr>
<th>AE more than 100 days after ASCT</th>
<th>Actual arm of maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>Specify action taken with study drug</td>
<td>N</td>
</tr>
<tr>
<td>PERMANENT TREATMENT DISCONTINUATION</td>
<td>2</td>
</tr>
<tr>
<td>TEMPORARY TREATMENT DISCONTINUATION</td>
<td>13</td>
</tr>
<tr>
<td>DOSE REGIMEN ADAPTATION</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>
5.2.3. Corrective treatments

Among patients with at least one AE, 57 patients (85%) received a corrective treatment in rituximab arm versus 50 patients (86%) in the observation arm.

Table 5.2-18 Patients with corrective treatment (MSAP)

<table>
<thead>
<tr>
<th>Actual arm of maintenance</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Patient with a corrective treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>Yes</td>
<td>57</td>
<td>50</td>
</tr>
<tr>
<td>Total</td>
<td>67</td>
<td>58</td>
</tr>
</tbody>
</table>

137 AEs in rituximab arm (85%) were associated with a corrective treatment versus 83 AEs (84%) in observation arm.

Table 5.2-19 Corrective treatments for AE (MSAP)

<table>
<thead>
<tr>
<th>Actual arm of maintenance</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>AE with a corrective treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>137</td>
<td>83</td>
</tr>
<tr>
<td>No</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>162</td>
<td>99</td>
</tr>
</tbody>
</table>
5.3. Deaths and other serious adverse events

5.3.1. Serious adverse events

5.3.1.1. Description of serious adverse events

Among maintenance safety population, regarding only SAEs post 2nd randomization, a total of 43 SAEs in rituximab arm and 22 in observation arm were reported, concerning respectively 24 patients (21\%) and 16 patients (13\%).

In both arms, the most common System Organ Class was infections and infestations (respectively 25 and 6 SAEs in rituximab and observation arms, 58\% and 27\% of SAEs).

All serious adverse events during maintenance period are listed (one listing for SAEs within 100 days after ASCT and one for AEs more than 100 days after ASCT) in section §6.7.3.

5 SAEs were declared to Pharmacovigilance department concerning 2 patients not evaluable due to CRF not recovered. They are listed in section §6.7.3.

<table>
<thead>
<tr>
<th>Table 5.3-1 Patients with SAE (MSAP)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Actual arm of maintenance</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Patient with at least one SAE</td>
</tr>
<tr>
<td>Yes</td>
</tr>
<tr>
<td>24</td>
</tr>
<tr>
<td>No</td>
</tr>
<tr>
<td>92</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>116</td>
</tr>
<tr>
<td>Patient with at least one SAE within 100 days after ASCT</td>
</tr>
<tr>
<td>Yes</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>No</td>
</tr>
<tr>
<td>102</td>
</tr>
<tr>
<td>Patient with at least one SAE more than 100 days after ASCT</td>
</tr>
<tr>
<td>Yes</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>No</td>
</tr>
<tr>
<td>102</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>116</td>
</tr>
</tbody>
</table>

Regarding SAEs within 100 days after ASCT, a total of 20 SAEs in rituximab arm and 17 in observation arm were reported, concerning respectively 14 patients (12\%) and 15 patients (13\%).

Regarding SAEs more than 100 days after ASCT, a total of 23 SAEs in rituximab arm and 5 in observation arm were reported, concerning respectively 14 patients (12\%) and 15 patients (4\%).
Listing 5.3-1 Serious adverse events with fatal outcome (MSAP)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Actual arm of induction</th>
<th>Actual arm of maintenance</th>
<th>Transplantation date</th>
<th>Sex</th>
<th>Age (years)</th>
<th>Adverse event description</th>
<th>Date of AE become serious</th>
<th>Non hematological toxicity grade</th>
<th>Hematological toxicity grade</th>
<th>Relation with study drugs</th>
<th>Action taken with study drug</th>
<th>AE outcome</th>
<th>Duration of AE serious (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500310431608</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>13/04/2004</td>
<td>MALE</td>
<td>64</td>
<td>SECONDARY MALIGNANCY : HEPATIC ADENOCARCINOMA</td>
<td>24/04/2007</td>
<td>LIFE THREATENING</td>
<td>NORMAL</td>
<td>No</td>
<td>No</td>
<td>FATAL</td>
<td>361</td>
</tr>
<tr>
<td>5003601401002</td>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>06/07/2004</td>
<td>MALE</td>
<td>56</td>
<td>ACUTE NON-LYMPHOCYTIC LEUKEMIA = AML</td>
<td>15/06/2006</td>
<td>UNKNOWN</td>
<td>UNKNOWN</td>
<td>Yes</td>
<td>-</td>
<td>FATAL</td>
<td>24</td>
</tr>
<tr>
<td>5003601401004</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>15/12/2006</td>
<td>FEMALE</td>
<td>62</td>
<td>FEVER AND MENTAL DISTURBANCES. VARICELLA LESIONS IN THE SKIN. VARICELLA ZOSTER VIRUS SEEN IN BLISTERS.</td>
<td>26/06/2007</td>
<td>DEATH</td>
<td>NORMAL</td>
<td>Yes</td>
<td>Yes</td>
<td>FATAL</td>
<td>61</td>
</tr>
<tr>
<td>500361401602</td>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>01/11/2004</td>
<td>MALE</td>
<td>41</td>
<td>MYOCARDITIS</td>
<td>06/08/2006</td>
<td>LIFE THREATENING</td>
<td>UNKNOWN</td>
<td>Yes</td>
<td>No</td>
<td>FATAL</td>
<td>0</td>
</tr>
<tr>
<td>5003604901603</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>18/06/2008</td>
<td>FEMALE</td>
<td>62</td>
<td>BRONCHOPNEUMONIA, EXTENSIVE DIFFUSE ALVEOLAR DAMAGE</td>
<td>04/09/2008</td>
<td>DEATH</td>
<td>-</td>
<td>Yes</td>
<td>No</td>
<td>FATAL</td>
<td>9</td>
</tr>
<tr>
<td>5003616301615</td>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>21/12/2005</td>
<td>MALE</td>
<td>63</td>
<td>CHRONIC COUGH, DRY NON PRODUCTIVE ASSOCIATED WITH FEBRILE ILLNESS FOR 2 WEEKS. DIAGNOSED WITH PNEUMONIA 14082006</td>
<td>15/08/2006</td>
<td>DEATH</td>
<td>MILD</td>
<td>Yes</td>
<td>No</td>
<td>FATAL</td>
<td>17</td>
</tr>
<tr>
<td>5003101071643</td>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>27/02/2008</td>
<td>FEMALE</td>
<td>58</td>
<td>SEPTICEMIA STAPHYLOCOCCUS EPIDERMIDIS PNEUMOPATHY</td>
<td>07/05/2008</td>
<td>LIFE THREATENING</td>
<td>SEVERE</td>
<td>Yes</td>
<td>No</td>
<td>FATAL</td>
<td>8</td>
</tr>
<tr>
<td>5003606301207</td>
<td>ARM A / R-ICE</td>
<td>OBSERVATION</td>
<td>23/11/2004</td>
<td>MALE</td>
<td>37</td>
<td>HIGH GRADE UROTHELIAL CARCINOMA</td>
<td>20/03/2008</td>
<td>LIFE THREATENING</td>
<td>-</td>
<td>Yes</td>
<td>No</td>
<td>FATAL</td>
<td>568</td>
</tr>
<tr>
<td>5003606301604</td>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>21/09/2004</td>
<td>MALE</td>
<td>61</td>
<td>MYELODYSPLASTIC SYNDROME</td>
<td>05/02/2008</td>
<td>-</td>
<td>MODERATE</td>
<td>Yes</td>
<td>-</td>
<td>FATAL</td>
<td>503</td>
</tr>
</tbody>
</table>

N = 9
See details about SAEs (overall, within 100 days after ASCT and more than 100 days after ASCT) in the following tables.

Table 5.3-2 Summary of serious adverse events by frequency of SOC and PT (MSAP)

<table>
<thead>
<tr>
<th>System Organ Class</th>
<th>Preferred Term</th>
<th>Actual arm of maintenance</th>
<th>RITUXIMAB N</th>
<th>RITUXIMAB %</th>
<th>OBSERVATION N</th>
<th>OBSERVATION %</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFECTIONS AND INFESTATIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of SAEs</td>
<td></td>
<td></td>
<td>43</td>
<td>100</td>
<td>22</td>
<td>100</td>
</tr>
<tr>
<td>Total number of SAEs</td>
<td></td>
<td></td>
<td>25</td>
<td>58</td>
<td>6</td>
<td>27</td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td>PNEUMONIA</td>
<td>3</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LOWER RESPIRATORY TRACT INFECTION</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BRONCHOPNEUMONIA</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEPSIS</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HERPES ZOSTER</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PSEUDOMONAS INFECTION</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEPTIC SHOCK</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BRONCHOPULMONARY ASPERGILLOSIS</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BRONCHITIS PNEUMOCOCCAL</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STAPHYLOCOCCAL SEPSIS</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CLOSTRIDIAL INFECTION</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HAEMOPHILUS INFECTION</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PNEUMONIA PNEUMOCOCCAL</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STREPTOCOCCAL SEPSIS</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VARICELLA</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PNEUMOCYSTIS JIROVECI PNEUMONIA</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CATHETER RELATED INFECTION</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BACTERAEMIA</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CATHETER SEPSIS</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CYTOMEGALOVIRUS INFECTION</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PNEUMONIA BACTERIAL INFECTION</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEUTROPENIC SEPSIS</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RESPIRATORY TRACT INFECTION</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GASTROINTESTINAL DISORDERS</td>
<td></td>
<td></td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>Total number of SAEs</td>
<td></td>
<td></td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td>DIARRHOEA</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FAECALOMA</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DENTAL CARIES</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GASTROINTESTINAL HAEMORRHAGE</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>System Disorder</td>
<td>N</td>
<td>%</td>
<td>Preferred Term</td>
<td>N</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>---</td>
<td>----------------</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Blood and Lymphatic System Disorders</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEPATIC NEOPLASM MALIGNANT</td>
<td>1</td>
<td>2</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>MALIGNANT MELANOMA</td>
<td>1</td>
<td>2</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ACUTE LEUKAEMIA</td>
<td>1</td>
<td>2</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>TRANSITIONAL CELL CARCINOMA</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MYELODYSPLASTIC SYNDROME</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of SAEs</td>
<td>3</td>
<td>7</td>
<td></td>
<td>2</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEUTROPENIA</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANAEMIA</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THROMBOCYTOPENIA</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of SAEs</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nervous System Disorders</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOSS OF CONSCIOUSNESS</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEUKOENCEPHALOPATHY</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARESIS</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HYPOAESTHESIA</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of SAEs</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTERSTITIAL LUNG DISEASE</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LUNG DISORDER</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LUNG INFILTRATION</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of SAEs</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiac Disorders</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MYOCARDIAL INFARCTION</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MYOCARDITIS</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of SAEs</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RENAL FAILURE ACUTE</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RENAL TUBULAR ACIDOSIS</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of SAEs</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEAFNESS</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of SAEs</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEPATITIS</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of SAEs</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HYPOTENSION</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5.3-3 Summary of serious adverse events within 100 days after ASCT by frequency of SOC and PT (MSAP)

<table>
<thead>
<tr>
<th>System Organ Class</th>
<th>Total number of SAEs</th>
<th>Preferred Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFECTIONS AND INFESTATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of SAEs</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEPSIS</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>STAPHYLOCOCCAL SEPSIS</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>CLOSTRIDIAL INFECTION</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>STREPTOCOCCAL SEPSIS</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>VARICELLA</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CATHETER RELATED INFECTION</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>BACTERAEMIA</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>CATHETER SEPSIS</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>CYTOMEGALOVIRUS INFECTION</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>BRONCHOPNEUMONIA</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>PNEUMONIA</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>INFECTION</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>LOWER RESPIRATORY TRACT INFECTION</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Condition</td>
<td>Actual arm of maintenance</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>--</td>
<td>---------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>GASTROINTESTINAL DISORDERS</td>
<td>Total number of SAEs</td>
<td>3</td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIARRHOEA</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>FAECALOMA</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>DENTAL CARIES</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>GASTROINTESTINAL HAEMORRHAGE</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>BLOOD AND LYMPHATIC SYSTEM DISORDERS</td>
<td>Total number of SAEs</td>
<td>3</td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEUTROPENIA</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>ANAEMIA</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>THROMBOCYTOPENIA</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>RESPIRATORY, THORACIC AND MEDIASTINAL DISORDERS</td>
<td>Total number of SAEs</td>
<td>2</td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTERSTITIAL LUNG DISEASE</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>LUNG DISORDER</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>LUNG INFILTRATION</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>RENAL AND URINARY DISORDERS</td>
<td>Total number of SAEs</td>
<td>1</td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RENAL FAILURE ACUTE</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>RENAL TUBULAR ACIDOSIS</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>EAR AND LABYRINTH DISORDERS</td>
<td>Total number of SAEs</td>
<td>0</td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEAFNESS</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>CARDIAC DISORDERS</td>
<td>Total number of SAEs</td>
<td>0</td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MYOCARDIAL INFARCTION</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>HEPATOBILIARY DISORDERS</td>
<td>Total number of SAEs</td>
<td>0</td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEPATITIS</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>VASCULAR DISORDERS</td>
<td>Total number of SAEs</td>
<td>1</td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HYPOTENSION</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>NERVOUS SYSTEM DISORDERS</td>
<td>Total number of SAEs</td>
<td>0</td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARESIS</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>INJURY, POISONING AND PROCEDURAL COMPLICATIONS</td>
<td>Total number of SAEs</td>
<td>0</td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUBDURAL HAEMATOMA</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Actual arm of maintenance</td>
<td>RITUXIMAB</td>
<td>OBSERVATION</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>GENERAL DISORDERS AND ADMINISTRATION SITE CONDITIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of SAEs</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CATHETER SITE HAEMORRHAGE</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Total number of SAEs</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOCIAL STAY HOSPITALISATION</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Actual arm of maintenance</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>TOTAL NUMBER OF SAEs MORE THAN 100 DAYS AFTER ASCT</td>
<td>23</td>
<td>100</td>
</tr>
<tr>
<td>System Organ Class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INFECTIONS AND INFESTATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of SAEs</td>
<td>16</td>
<td>70</td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HERPES ZOSTER</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>PNEUMONIA</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>LOWER RESPIRATORY TRACT INFECTION</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>PSEUDOMONAS INFECTION</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>SEPTIC SHOCK</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BRONCHITIS PNEUMOCOCCAL</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BRONCHOPNEUMONIA</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>HAEMOPHILUS INFECTION</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>PNEUMONIA PNEUMOCOCCAL</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PNEUMOCYSTIS JIROVECI PNEUMONIA</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>PNEUMONIA BACTERIAL</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>NEUTROPENIC SEPSIS</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>RESPIRATORY TRACT INFECTION</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>NEOPLASMS BENIGN, MALIGNANT AND UNSPECIFIED (INCL CYSTS AND POLYPS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of SAEs</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEPATIC NEOPLASM MALIGNANT</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>MALIGNANT MELANOMA</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>ACUTE LEUKAEMIA</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>TRANSITIONAL CELL CARCINOMA</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MYELODYSPLASTIC SYNDROME</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Actual arm of maintenance</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>NERVOUS SYSTEM DISORDERS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of SAEs</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOSS OF CONSCIOUSNESS</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LEUKOENCEPHALOPATHY</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>HYPOAESTHESIA</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>CARDIAC DISORDERS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of SAEs</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MYOCARDITIS</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>MUSCULOSKELETAL AND CONNECTIVE TISSUE DISORDERS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of SAEs</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RHABDOMYOLYSIS</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>BLOOD AND LYMPHATIC SYSTEM DISORDERS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of SAEs</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Preferred Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEUTROPENIA</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 5.3-5 Characteristics of SAEs (MSAP)

<table>
<thead>
<tr>
<th></th>
<th>Actual arm of maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Non hematological toxicity grade</td>
<td></td>
</tr>
<tr>
<td>MILD</td>
<td>3</td>
</tr>
<tr>
<td>MODERATE</td>
<td>5</td>
</tr>
<tr>
<td>SEVERE</td>
<td>20</td>
</tr>
<tr>
<td>LIFE THREATENING</td>
<td>8</td>
</tr>
<tr>
<td>DEATH</td>
<td>3</td>
</tr>
<tr>
<td>UNKNOWN</td>
<td>2</td>
</tr>
<tr>
<td>Missing</td>
<td>2</td>
</tr>
<tr>
<td>Hematological toxicity grade</td>
<td></td>
</tr>
<tr>
<td>NORMAL</td>
<td>6</td>
</tr>
<tr>
<td>MILD</td>
<td>7</td>
</tr>
<tr>
<td>MODERATE</td>
<td>3</td>
</tr>
<tr>
<td>SEVERE</td>
<td>7</td>
</tr>
<tr>
<td>LIFE THREATENING</td>
<td>8</td>
</tr>
<tr>
<td>UNKNOWN</td>
<td>3</td>
</tr>
<tr>
<td>Missing</td>
<td>9</td>
</tr>
<tr>
<td>Relation with study drugs</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>18</td>
</tr>
<tr>
<td>Yes</td>
<td>24</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
</tr>
<tr>
<td>Action taken with study drug</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>30</td>
</tr>
<tr>
<td>Yes</td>
<td>12</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
</tr>
<tr>
<td>Antibiotherapy</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>13</td>
</tr>
<tr>
<td>Yes</td>
<td>27</td>
</tr>
<tr>
<td>Missing</td>
<td>3</td>
</tr>
<tr>
<td>AE outcome</td>
<td></td>
</tr>
<tr>
<td>RECOVERED</td>
<td>32</td>
</tr>
<tr>
<td>RECOVERED WITH SEQUELAE</td>
<td>4</td>
</tr>
<tr>
<td>ONGOING</td>
<td>1</td>
</tr>
<tr>
<td>FATAL</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>43</td>
</tr>
</tbody>
</table>
Table 5.3-6 Action taken with study drugs due to SAE (MSAP)

<table>
<thead>
<tr>
<th>Specify action taken with study drug</th>
<th>RITUXIMAB</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERMANENT TREATMENT DISCONTINUATION</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>TEMPORARY TREATMENT DISCONTINUATION</td>
<td>10</td>
<td>83</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 5.3-7 Characteristics of SAEs within 100 days after ASCT (MSAP)

<table>
<thead>
<tr>
<th>SAE within 100 days after ASCT</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non hematological toxicity grade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MILD</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>MODERATE</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>SEVERE</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>LIFE THREATENING</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>DEATH</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>UNKNOWN</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Missing</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>20</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hematological toxicity grade</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORMAL</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>MILD</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>MODERATE</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>SEVERE</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>LIFE THREATENING</td>
<td>6</td>
<td>30</td>
</tr>
<tr>
<td>Missing</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>Total</td>
<td>20</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relation with study drugs</th>
<th>RITUXIMAB</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>12</td>
<td>60</td>
</tr>
<tr>
<td>Yes</td>
<td>8</td>
<td>40</td>
</tr>
<tr>
<td>Total</td>
<td>20</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Action taken with study drug</th>
<th>RITUXIMAB</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>16</td>
<td>80</td>
</tr>
<tr>
<td>Yes</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td>20</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antibiotherapy</th>
<th>RITUXIMAB</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>7</td>
<td>35</td>
</tr>
<tr>
<td>Yes</td>
<td>12</td>
<td>60</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>20</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AE outcome</th>
<th>RITUXIMAB</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>RECOVERED</td>
<td>16</td>
<td>80</td>
</tr>
<tr>
<td>RECOVERED WITH SEQUELAE</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>ONGOING</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>FATAL</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>20</td>
<td>100</td>
</tr>
</tbody>
</table>
Table 5.3-8 Action taken with study drugs due to SAE within 100 days after ASCT (MSAP)

<table>
<thead>
<tr>
<th>SAE within 100 days after ASCT</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Specify action taken with study drug</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PERMANENT TREATMENT DISCONTINUATION</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>TEMPORARY TREATMENT DISCONTINUATION</td>
<td>3</td>
<td>75</td>
</tr>
<tr>
<td>Total</td>
<td>4</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 5.3-9 Characteristics of SAEs more than 100 days after ASCT (MSAP)

<table>
<thead>
<tr>
<th>SAE more than 100 days after ASCT</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Non hematological toxicity grade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MILD</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>MODERATE</td>
<td>4</td>
<td>17</td>
</tr>
<tr>
<td>SEVERE</td>
<td>10</td>
<td>43</td>
</tr>
<tr>
<td>LIFE THREATENING</td>
<td>5</td>
<td>22</td>
</tr>
<tr>
<td>DEATH</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>UNKNOWN</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hematological toxicity grade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NORMAL</td>
<td>5</td>
<td>22</td>
</tr>
<tr>
<td>MILD</td>
<td>4</td>
<td>17</td>
</tr>
<tr>
<td>MODERATE</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SEVERE</td>
<td>5</td>
<td>22</td>
</tr>
<tr>
<td>LIFE THREATENING</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>UNKNOWN</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>Missing</td>
<td>4</td>
<td>17</td>
</tr>
<tr>
<td>Relation with study drugs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>6</td>
<td>26</td>
</tr>
<tr>
<td>Yes</td>
<td>16</td>
<td>70</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Action taken with study drug</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>14</td>
<td>61</td>
</tr>
<tr>
<td>Yes</td>
<td>8</td>
<td>35</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Antibiotherapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>6</td>
<td>26</td>
</tr>
<tr>
<td>Yes</td>
<td>15</td>
<td>65</td>
</tr>
<tr>
<td>Missing</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>AE outcome</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECOVERED</td>
<td>16</td>
<td>70</td>
</tr>
</tbody>
</table>
Table 5.3-10 Action taken with study drugs due to SAE more than 100 days after ASCT (MSAP)

<table>
<thead>
<tr>
<th>SAE more than 100 days after ASCT</th>
<th>Actual arm of maintenance</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>RECOVERED WITH SEQUELAE</td>
<td>2</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>FATAL</td>
<td>5</td>
<td>22</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>23</td>
<td>100</td>
<td>5</td>
</tr>
</tbody>
</table>

5.3.1.2. Corrective treatments

Table 5.3-11 Patients with corrective treatment (MSAP)

<table>
<thead>
<tr>
<th>Patient with a corrective treatment</th>
<th>Actual arm of maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>No</td>
<td>2</td>
</tr>
<tr>
<td>Yes</td>
<td>22</td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
</tr>
</tbody>
</table>

Table 5.3-12 Corrective treatments for AE (MSAP)

<table>
<thead>
<tr>
<th>AE with a corrective treatment</th>
<th>Actual arm of maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>No</td>
<td>2</td>
</tr>
<tr>
<td>Yes</td>
<td>11</td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
</tr>
</tbody>
</table>
5.3.2. Deaths

3 patients who were randomized in observation arm but had no maintenance follow-up assessment, and thus were excluded from maintenance safety population, died due to lymphoma, within one year post transplant for 2 of them. Among maintenance safety population, 43 deaths (37% of patients) in the rituximab arm and 38 deaths (32%) in the observation arm occurred at time of analysis, mainly due to lymphoma (respectively 70% and 79% of deaths).

Table 5.3-13 Summary of deaths (MSAP)

<table>
<thead>
<tr>
<th>Actual arm of maintenance</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deaths</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>43</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>37%</td>
<td>32%</td>
</tr>
<tr>
<td>No</td>
<td>73</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>63%</td>
<td>68%</td>
</tr>
<tr>
<td>Total</td>
<td>116</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Table 5.3-14 Cause of death (MSAP)

<table>
<thead>
<tr>
<th>Reason for death</th>
<th>Actual arm of maintenance</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>LYMPHOMA</td>
<td>30</td>
<td>70%</td>
<td>30</td>
</tr>
<tr>
<td>TOXICITY OF STUDY TREATMENT</td>
<td>3</td>
<td>7%</td>
<td>1</td>
</tr>
<tr>
<td>CONCURRENT ILLNESS</td>
<td>2</td>
<td>5%</td>
<td>0</td>
</tr>
<tr>
<td>OTHER CANCER</td>
<td>2</td>
<td>5%</td>
<td>2</td>
</tr>
<tr>
<td>TOXICITY OF ADDITIONAL TREATMENT</td>
<td>3</td>
<td>7%</td>
<td>3</td>
</tr>
<tr>
<td>OTHER REASON</td>
<td>2</td>
<td>5%</td>
<td>2</td>
</tr>
<tr>
<td>UNKNOWN</td>
<td>1</td>
<td>2%</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>43</td>
<td>100%</td>
<td>38</td>
</tr>
</tbody>
</table>

See details of deaths in the following lists:
Listing 5.3-2 Deaths (MSAP)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Actual arm of maintenance</th>
<th>Date of 2nd randomization</th>
<th>Transplantation date</th>
<th>Sex</th>
<th>Age (years)</th>
<th>Date of death</th>
<th>Reason for death</th>
<th>Specify reason of death</th>
<th>Response at death</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003101031001</td>
<td>RITUXIMAB</td>
<td>21/10/2003</td>
<td>22/10/2003</td>
<td>MALE</td>
<td>65</td>
<td>06/05/2004</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003101051050</td>
<td>RITUXIMAB</td>
<td>16/10/2006</td>
<td>11/10/2006</td>
<td>MALE</td>
<td>62</td>
<td>19/02/2007</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003101071408</td>
<td>RITUXIMAB</td>
<td>25/04/2006</td>
<td>03/04/2006</td>
<td>FEMALE</td>
<td>57</td>
<td>03/10/2007</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003101071417</td>
<td>RITUXIMAB</td>
<td>17/07/2007</td>
<td>06/07/2007</td>
<td>FEMALE</td>
<td>56</td>
<td>03/10/2008</td>
<td>LYMPHOMA</td>
<td></td>
<td>NOT EVALUATED</td>
</tr>
<tr>
<td>5003101131409</td>
<td>RITUXIMAB</td>
<td>16/06/2006</td>
<td>14/06/2006</td>
<td>MALE</td>
<td>55</td>
<td>09/06/2007</td>
<td>UNKNOWN</td>
<td></td>
<td>NOT EVALUATED</td>
</tr>
<tr>
<td>5003101251035</td>
<td>RITUXIMAB</td>
<td>16/11/2005</td>
<td>14/11/2005</td>
<td>MALE</td>
<td>55</td>
<td>10/05/2007</td>
<td>LYMPHOMA</td>
<td></td>
<td>NOT EVALUATED</td>
</tr>
<tr>
<td>5003101281033</td>
<td>RITUXIMAB</td>
<td>15/11/2005</td>
<td>04/10/2005</td>
<td>MALE</td>
<td>61</td>
<td>16/02/2006</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003101431608</td>
<td>RITUXIMAB</td>
<td>23/04/2004</td>
<td>13/04/2004</td>
<td>MALE</td>
<td>64</td>
<td>19/04/2008</td>
<td>OTHER CANCER</td>
<td></td>
<td>UNCONFIRMED COMPLETE RESPONSE</td>
</tr>
<tr>
<td>5003101431622</td>
<td>RITUXIMAB</td>
<td>13/07/2005</td>
<td>18/07/2005</td>
<td>MALE</td>
<td>49</td>
<td>18/10/2008</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003101491042</td>
<td>RITUXIMAB</td>
<td>09/05/2006</td>
<td>18/05/2006</td>
<td>MALE</td>
<td>46</td>
<td>05/02/2007</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003102491619</td>
<td>RITUXIMAB</td>
<td>27/12/2004</td>
<td>03/01/2005</td>
<td>MALE</td>
<td>60</td>
<td>04/11/2009</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003601401002</td>
<td>RITUXIMAB</td>
<td>22/07/2004</td>
<td>06/07/2004</td>
<td>MALE</td>
<td>56</td>
<td>09/07/2006</td>
<td>CONCURRENT ILLNESS</td>
<td>ACUTE NON LYMPHOCYTIC LEUKEMIA</td>
<td>UNCONFIRMED COMPLETE RESPONSE</td>
</tr>
<tr>
<td>5003601401004</td>
<td>RITUXIMAB</td>
<td>19/12/2006</td>
<td>15/12/2006</td>
<td>FEMALE</td>
<td>62</td>
<td>26/08/2007</td>
<td>TOXICITY OF STUDY TREATMENT</td>
<td></td>
<td>COMPLETE RESPONSE</td>
</tr>
<tr>
<td>5003601401402</td>
<td>RITUXIMAB</td>
<td>04/05/2005</td>
<td>10/05/2005</td>
<td>MALE</td>
<td>63</td>
<td>14/11/2005</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003601401602</td>
<td>RITUXIMAB</td>
<td>27/10/2004</td>
<td>01/11/2004</td>
<td>MALE</td>
<td>41</td>
<td>06/08/2006</td>
<td>OTHER REASON</td>
<td>PERIMYOCARDITE</td>
<td>COMPLETE RESPONSE</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Actual arm of maintenance</td>
<td>Date of 2nd randomization</td>
<td>Transplantation date</td>
<td>Sex</td>
<td>Age (years)</td>
<td>Date of death</td>
<td>Reason for death</td>
<td>Specify reason of death</td>
<td>Response at death</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>----------------------</td>
<td>-----</td>
<td>-------------</td>
<td>---------------</td>
<td>------------------</td>
<td>------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>5003602801403</td>
<td>RITUXIMAB</td>
<td>31/05/2007</td>
<td>20/06/2007</td>
<td>MALE</td>
<td>64</td>
<td>29/05/2009</td>
<td>TOXICITY OF ADDITIONNAL TREATMENT</td>
<td>BILATERAL PNEUMONIA, SEPTIC SHOCK</td>
<td>PARTIAL RESPONSE</td>
</tr>
<tr>
<td>5003603201628</td>
<td>RITUXIMAB</td>
<td>17/08/2007</td>
<td>22/08/2007</td>
<td>MALE</td>
<td>48</td>
<td>20/01/2009</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003603801203</td>
<td>RITUXIMAB</td>
<td>14/03/2005</td>
<td>01/03/2005</td>
<td>FEMALE</td>
<td>53</td>
<td>25/10/2005</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003603801406</td>
<td>RITUXIMAB</td>
<td>15/05/2008</td>
<td>13/05/2008</td>
<td>MALE</td>
<td>31</td>
<td>01/03/2009</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003604801006</td>
<td>RITUXIMAB</td>
<td>09/03/2006</td>
<td>13/02/2006</td>
<td>MALE</td>
<td>53</td>
<td>10/11/2006</td>
<td>LYMPHOMA</td>
<td></td>
<td>NOT EVALUATED</td>
</tr>
<tr>
<td>5003604801205</td>
<td>RITUXIMAB</td>
<td>11/07/2006</td>
<td>21/06/2006</td>
<td>MALE</td>
<td>34</td>
<td>19/01/2008</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003604901004</td>
<td>RITUXIMAB</td>
<td>09/03/2006</td>
<td>25/05/2006</td>
<td>FEMALE</td>
<td>52</td>
<td>30/07/2007</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003604901005</td>
<td>RITUXIMAB</td>
<td>09/05/2006</td>
<td>24/04/2006</td>
<td>FEMALE</td>
<td>62</td>
<td>11/01/2007</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003604901603</td>
<td>RITUXIMAB</td>
<td>19/06/2008</td>
<td>18/06/2008</td>
<td>FEMALE</td>
<td>62</td>
<td>13/09/2008</td>
<td>TOXICITY OF STUDY TREATMENT</td>
<td>POST-MORTEM PATHOLOGICAL ANALYSIS WAS PERFORMED TODAY (14/09/2008)</td>
<td>COMPLETE RESPONSE</td>
</tr>
<tr>
<td>5003605301610</td>
<td>RITUXIMAB</td>
<td>02/05/2006</td>
<td>23/02/2005</td>
<td>MALE</td>
<td>60</td>
<td>14/07/2007</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003606201605</td>
<td>RITUXIMAB</td>
<td>29/10/2004</td>
<td>08/10/2004</td>
<td>MALE</td>
<td>42</td>
<td>17/10/2006</td>
<td>TOXICITY OF ADDITIONNAL TREATMENT</td>
<td>SEPTIC MULTIPLE ORGAN FAILURE AFTER AUTO. TX 07/06 AND UNREL. ALLO TX 08/06 / EXTENSIVE GVHD SKIN + GUT - INTERSTITIAL PNEUMONIA HEMORRHAGIC CYSTITIS</td>
<td>NOT EVALUATED</td>
</tr>
<tr>
<td>5003607501401</td>
<td>RITUXIMAB</td>
<td>30/10/2006</td>
<td>18/10/2006</td>
<td>MALE</td>
<td>54</td>
<td>25/08/2007</td>
<td>LYMPHOMA</td>
<td>BRONCHOPNEUMONIA</td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003607701007</td>
<td>RITUXIMAB</td>
<td>09/03/2006</td>
<td>14/03/2006</td>
<td>MALE</td>
<td>56</td>
<td>01/06/2006</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003610201206</td>
<td>RITUXIMAB</td>
<td>16/06/2005</td>
<td>24/06/2005</td>
<td>MALE</td>
<td>40</td>
<td>12/03/2007</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003610201611</td>
<td>RITUXIMAB</td>
<td>22/06/2005</td>
<td>28/06/2005</td>
<td>FEMALE</td>
<td>61</td>
<td>13/02/2007</td>
<td>OTHER REASON</td>
<td>ORGANIC BRAIN SYNDROME</td>
<td>COMPLETE RESPONSE</td>
</tr>
</tbody>
</table>

Note: CMV-PNEUMONIA, RENAL FAILURE, MULTIPLE ORGAN FAILURE AFTER AUTOLOGOUS TRANSPLANT ON 19/03/2007.
<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Actual arm of maintenance</th>
<th>Date of 2nd randomization</th>
<th>Transplantation date</th>
<th>Sex</th>
<th>Age (years)</th>
<th>Date of death</th>
<th>Reason for death</th>
<th>Specify reason of death</th>
<th>Response at death</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003610501402</td>
<td>RITUXIMAB</td>
<td>28/12/2006</td>
<td>20/12/2006</td>
<td>MALE</td>
<td>58</td>
<td>13/02/2009</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003610701014</td>
<td>RITUXIMAB</td>
<td>07/01/2008</td>
<td>14/01/2008</td>
<td>MALE</td>
<td>57</td>
<td>01/06/2010</td>
<td>OTHER CANCER</td>
<td>HODGKIN LYMPHOMA</td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003612301623</td>
<td>RITUXIMAB</td>
<td>16/04/2007</td>
<td>30/03/2007</td>
<td>MALE</td>
<td>56</td>
<td>23/04/2008</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003615501014</td>
<td>RITUXIMAB</td>
<td>14/08/2007</td>
<td>09/08/2007</td>
<td>MALE</td>
<td>53</td>
<td>04/05/2009</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003616301615</td>
<td>RITUXIMAB</td>
<td>22/12/2005</td>
<td>21/12/2005</td>
<td>MALE</td>
<td>63</td>
<td>01/09/2006</td>
<td>TOXICITY OF STUDY TREATMENT</td>
<td>PNEUMONIA</td>
<td>COMPLETE RESPONSE</td>
</tr>
<tr>
<td>5003616501003</td>
<td>RITUXIMAB</td>
<td>20/12/2006</td>
<td>05/12/2006</td>
<td>MALE</td>
<td>30</td>
<td>21/08/2008</td>
<td>CONCURRENT ILLNESS</td>
<td>PNEUMONIA, DEVIC’S DISEASE</td>
<td>NOT EVALUATED</td>
</tr>
<tr>
<td>5003617201043</td>
<td>RITUXIMAB</td>
<td>16/04/2007</td>
<td>19/04/2007</td>
<td>MALE</td>
<td>42</td>
<td>28/06/2008</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003630201040</td>
<td>RITUXIMAB</td>
<td>09/03/2007</td>
<td>13/02/2007</td>
<td>MALE</td>
<td>65</td>
<td>21/12/2007</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003101021038</td>
<td>OBSERVATION</td>
<td>02/02/2006</td>
<td>09/01/2006</td>
<td>MALE</td>
<td>52</td>
<td>30/05/2007</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003101021605</td>
<td>OBSERVATION</td>
<td>04/02/2004</td>
<td>03/02/2004</td>
<td>MALE</td>
<td>58</td>
<td>20/06/2007</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003101071643</td>
<td>OBSERVATION</td>
<td>20/03/2008</td>
<td>27/02/2008</td>
<td>FEMALE</td>
<td>58</td>
<td>15/05/2008</td>
<td>TOXICITY OF STUDY TREATMENT</td>
<td>SEPTICEMIA STAPHYLCOCCUS EPIDERMIDIS PNEUMOPATHY</td>
<td>COMPLETE RESPONSE</td>
</tr>
<tr>
<td>5003101141624</td>
<td>OBSERVATION</td>
<td>26/10/2005</td>
<td>10/10/2005</td>
<td>FEMALE</td>
<td>64</td>
<td>18/04/2010</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003101161407</td>
<td>OBSERVATION</td>
<td>17/03/2006</td>
<td>28/02/2006</td>
<td>MALE</td>
<td>60</td>
<td>20/06/2008</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>50031010621026</td>
<td>OBSERVATION</td>
<td>14/09/2005</td>
<td>06/09/2005</td>
<td>MALE</td>
<td>64</td>
<td>09/02/2009</td>
<td>OTHER REASON</td>
<td>MESENTERIC INFARCTUS</td>
<td>COMPLETE RESPONSE</td>
</tr>
<tr>
<td>50031010621069</td>
<td>OBSERVATION</td>
<td>19/05/2004</td>
<td>10/05/2004</td>
<td>FEMALE</td>
<td>64</td>
<td>26/03/2007</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>5003102411069</td>
<td>OBSERVATION</td>
<td>24/10/2007</td>
<td>04/10/2007</td>
<td>MALE</td>
<td>63</td>
<td>16/10/2008</td>
<td>LYMPHOMA</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Actual arm of maintenance</td>
<td>Date of 2nd randomization</td>
<td>Transplantation date</td>
<td>Sex</td>
<td>Age (years)</td>
<td>Date of death</td>
<td>Reason for death</td>
<td>Specify reason of death</td>
<td>Response at death</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>----------------------</td>
<td>-----</td>
<td>------------</td>
<td>---------------</td>
<td>-------------------</td>
<td>----------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>5003102541052</td>
<td>OBSERVATION</td>
<td>12/10/2006</td>
<td>05/11/2006</td>
<td>MALE</td>
<td>29</td>
<td>07/05/2007</td>
<td>Lymphoma</td>
<td></td>
<td>Progressive Disease</td>
</tr>
<tr>
<td>5003601401063</td>
<td>OBSERVATION</td>
<td>12/01/2006</td>
<td>05/01/2006</td>
<td>MALE</td>
<td>59</td>
<td>26/08/2008</td>
<td>Lymphoma</td>
<td></td>
<td>Progressive Disease</td>
</tr>
<tr>
<td>5003601601003</td>
<td>OBSERVATION</td>
<td>08/06/2007</td>
<td>29/05/2007</td>
<td>MALE</td>
<td>27</td>
<td>23/04/2008</td>
<td>Lymphoma</td>
<td></td>
<td>Progressive Disease</td>
</tr>
<tr>
<td>5003601601005</td>
<td>OBSERVATION</td>
<td>16/04/2008</td>
<td>08/04/2008</td>
<td>FEMALE</td>
<td>53</td>
<td>15/10/2008</td>
<td>Lymphoma</td>
<td></td>
<td>Progressive Disease</td>
</tr>
<tr>
<td>5003602801011</td>
<td>OBSERVATION</td>
<td>22/12/2006</td>
<td>06/12/2006</td>
<td>MALE</td>
<td>48</td>
<td>09/08/2007</td>
<td>Toxicity of additional treatment</td>
<td>Septic shock after salvage chemotherapy</td>
<td>Progressive Disease</td>
</tr>
<tr>
<td>5003602901061</td>
<td>OBSERVATION</td>
<td>27/12/2004</td>
<td>21/03/2005</td>
<td>MALE</td>
<td>63</td>
<td>04/09/2006</td>
<td>Lymphoma</td>
<td></td>
<td>Progressive Disease</td>
</tr>
<tr>
<td>5003603201038</td>
<td>OBSERVATION</td>
<td>17/01/2007</td>
<td>29/12/2006</td>
<td>FEMALE</td>
<td>50</td>
<td>20/09/2007</td>
<td>Lymphoma</td>
<td></td>
<td>Progressive Disease</td>
</tr>
<tr>
<td>5003603201213</td>
<td>OBSERVATION</td>
<td>29/05/2007</td>
<td>23/05/2007</td>
<td>MALE</td>
<td>54</td>
<td>28/03/2008</td>
<td>Lymphoma</td>
<td></td>
<td>Progressive Disease</td>
</tr>
<tr>
<td>5003603701006</td>
<td>OBSERVATION</td>
<td>30/01/2006</td>
<td>09/01/2006</td>
<td>MALE</td>
<td>54</td>
<td>12/05/2006</td>
<td>Lymphoma</td>
<td></td>
<td>Progressive Disease</td>
</tr>
<tr>
<td>5003603801002</td>
<td>OBSERVATION</td>
<td>22/12/2004</td>
<td>09/12/2004</td>
<td>FEMALE</td>
<td>49</td>
<td>21/03/2010</td>
<td>Lymphoma</td>
<td>Died after 1 cycle of salvage chemo for generalised relapse. Immediate reason for death: septic shock</td>
<td>Not evaluated</td>
</tr>
<tr>
<td>5003603801009</td>
<td>OBSERVATION</td>
<td>07/09/2006</td>
<td>05/09/2006</td>
<td>MALE</td>
<td>49</td>
<td>31/03/2007</td>
<td>Lymphoma</td>
<td></td>
<td>Progressive Disease</td>
</tr>
<tr>
<td>5003603801602</td>
<td>OBSERVATION</td>
<td>01/02/2005</td>
<td>18/01/2005</td>
<td>MALE</td>
<td>54</td>
<td>14/08/2007</td>
<td>Toxicity of additional treatment</td>
<td>Gvhd + infection post allogeneic PBCT from sibling donor</td>
<td>Complete response</td>
</tr>
<tr>
<td>5003603801608</td>
<td>OBSERVATION</td>
<td>03/07/2008</td>
<td>01/07/2008</td>
<td>MALE</td>
<td>26</td>
<td>03/06/2009</td>
<td>Lymphoma</td>
<td></td>
<td>Progressive Disease</td>
</tr>
<tr>
<td>5003607201016</td>
<td>OBSERVATION</td>
<td>11/08/2005</td>
<td>01/08/2005</td>
<td>FEMALE</td>
<td>54</td>
<td>07/03/2006</td>
<td>Lymphoma</td>
<td></td>
<td>Progressive Disease</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Actual arm of maintenance</td>
<td>Date of 2nd randomization</td>
<td>Transplantation date</td>
<td>Sex</td>
<td>Age (years)</td>
<td>Date of death</td>
<td>Reason for death</td>
<td>Specify reason of death</td>
<td>Response at death</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>----------------------</td>
<td>-----</td>
<td>-------------</td>
<td>---------------</td>
<td>------------------</td>
<td>------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>5003607501403</td>
<td>OBSERVATION</td>
<td>07/02/2007</td>
<td>02/02/2007</td>
<td>MALE</td>
<td>56</td>
<td>23/10/2007</td>
<td>LYMHPOMA</td>
<td></td>
<td>NOT EVALUATED</td>
</tr>
<tr>
<td>5003608701008</td>
<td>OBSERVATION</td>
<td>19/05/2006</td>
<td>01/05/2006</td>
<td>MALE</td>
<td>57</td>
<td>14/10/2006</td>
<td>LYMHPOMA</td>
<td></td>
<td>PROGRESSIVE</td>
</tr>
<tr>
<td>5003610301613</td>
<td>OBSERVATION</td>
<td>23/05/2005</td>
<td>31/05/2005</td>
<td>MALE</td>
<td>53</td>
<td>29/07/2006</td>
<td>LYMHPOMA</td>
<td></td>
<td>PROGRESSIVE</td>
</tr>
<tr>
<td>5003610501031</td>
<td>OBSERVATION</td>
<td>08/07/2008</td>
<td>11/06/2008</td>
<td>MALE</td>
<td>54</td>
<td>01/09/2008</td>
<td>LYMHPOMA</td>
<td></td>
<td>PROGRESSIVE</td>
</tr>
<tr>
<td>5003617201021</td>
<td>OBSERVATION</td>
<td>14/02/2006</td>
<td>01/02/2006</td>
<td>FEMALE</td>
<td>50</td>
<td>22/12/2007</td>
<td>OTHER REASON</td>
<td>RESPIRATORY INSUFFICIENCY</td>
<td>COMPLETE</td>
</tr>
<tr>
<td>5003617301619</td>
<td>OBSERVATION</td>
<td>27/04/2006</td>
<td>05/05/2006</td>
<td>FEMALE</td>
<td>19</td>
<td>24/05/2008</td>
<td>TOXICITY OF ADDITIONNAL TREATMENT</td>
<td>MULTI-ORGAN FAILURE SECONDARY TO GRAFT VERSUS HOST DISEASE FOLLOWING ALLOGENEIC BONE MARROW TRANSPLANT</td>
<td>COMPLETE</td>
</tr>
<tr>
<td>5003618301005</td>
<td>OBSERVATION</td>
<td>19/05/2006</td>
<td>03/05/2006</td>
<td>MALE</td>
<td>27</td>
<td>07/12/2006</td>
<td>LYMHPOMA</td>
<td></td>
<td>PROGRESSIVE</td>
</tr>
<tr>
<td>5003618501008</td>
<td>OBSERVATION</td>
<td>18/05/2007</td>
<td>01/05/2007</td>
<td>MALE</td>
<td>65</td>
<td>30/12/2009</td>
<td>LYMHPOMA</td>
<td>ACUTE GASTROINTESTINAL TRACT HAEMORRHAGE</td>
<td>PARTIAL</td>
</tr>
<tr>
<td>5003618501025</td>
<td>OBSERVATION</td>
<td>29/04/2008</td>
<td>10/04/2008</td>
<td>MALE</td>
<td>59</td>
<td>08/01/2009</td>
<td>LYMHPOMA</td>
<td>CAUSE OF DEATH DUE TO LYMHPOMA FOUND ON POST-MORTEM</td>
<td>PROGRESSIVE</td>
</tr>
<tr>
<td>5003621201020</td>
<td>OBSERVATION</td>
<td>07/12/2005</td>
<td>17/11/2005</td>
<td>FEMALE</td>
<td>59</td>
<td>14/07/2006</td>
<td>LYMHPOMA</td>
<td></td>
<td>PROGRESSIVE</td>
</tr>
</tbody>
</table>

N = 81
5.4. Clinical laboratory evaluation

The following tables show statistics summary of parameters registered only at baseline.

Table 5.4-1 Summary of laboratory tests at relapse diagnosis (MSAP)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Actual arm of maintenance</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>1.197</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Std</td>
<td>0.6675</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Median</td>
<td>1.035</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max</td>
<td>3.21</td>
</tr>
<tr>
<td>Lymphocytes (G/L)</td>
<td></td>
<td>N</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Std</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Median</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max</td>
<td>2</td>
</tr>
<tr>
<td>Lymphoma cells (G/L)</td>
<td></td>
<td>N</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>28.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Std</td>
<td>14.94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Median</td>
<td>25.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max</td>
<td>89</td>
</tr>
<tr>
<td>ASAT (UI/L)</td>
<td></td>
<td>N</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>30.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Std</td>
<td>24.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Median</td>
<td>23.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max</td>
<td>141</td>
</tr>
<tr>
<td>ALAT (UI/L)</td>
<td></td>
<td>N</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>2.867</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Std</td>
<td>7.1761</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Median</td>
<td>1.900</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max</td>
<td>67.00</td>
</tr>
<tr>
<td>beta 2 microglobulin (mg/l)</td>
<td></td>
<td>N</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>2.867</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Std</td>
<td>7.1761</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Median</td>
<td>1.900</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max</td>
<td>67.00</td>
</tr>
<tr>
<td>Aaline phosphatase (UI/L)</td>
<td></td>
<td>N</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>98.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Std</td>
<td>57.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Median</td>
<td>86.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max</td>
<td>394</td>
</tr>
<tr>
<td>Test</td>
<td>Actual arm of maintenance</td>
<td>RITUXIMAB</td>
<td>OBSERVATION</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------------------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Total bilirubin (µmol/l)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>114</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>10.252</td>
<td>9.271</td>
<td></td>
</tr>
<tr>
<td>Std</td>
<td>6.4216</td>
<td>5.8981</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>8.250</td>
<td>8.000</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>2.00</td>
<td>1.71</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>44.00</td>
<td>49.00</td>
<td></td>
</tr>
<tr>
<td>Creatinin (µmol/l)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>116</td>
<td>119</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>78.6</td>
<td>79.7</td>
<td></td>
</tr>
<tr>
<td>Std</td>
<td>16.99</td>
<td>18.40</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>77.0</td>
<td>79.5</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>46</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>155</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>Calcium (mmol/l)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>109</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>2.384</td>
<td>2.425</td>
<td></td>
</tr>
<tr>
<td>Std</td>
<td>0.3475</td>
<td>0.6910</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>2.350</td>
<td>2.360</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>1.94</td>
<td>2.02</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>4.80</td>
<td>9.50</td>
<td></td>
</tr>
<tr>
<td>Sodium (mmol/l)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>114</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>140.5</td>
<td>139.7</td>
<td></td>
</tr>
<tr>
<td>Std</td>
<td>2.87</td>
<td>3.04</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>141.0</td>
<td>140.0</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>133</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>150</td>
<td>147</td>
<td></td>
</tr>
<tr>
<td>Potassium (mmol/l)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>4.179</td>
<td>4.194</td>
<td></td>
</tr>
<tr>
<td>Std</td>
<td>0.4091</td>
<td>0.4261</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>4.100</td>
<td>4.100</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>3.30</td>
<td>3.20</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>5.60</td>
<td>5.80</td>
<td></td>
</tr>
</tbody>
</table>
Table 5.4-2 Serum electrophoresis values at relapse diagnosis (induction safety population)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total protein (G/L)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>102</td>
<td>110</td>
</tr>
<tr>
<td>Mean</td>
<td>69.39</td>
<td>70.50</td>
</tr>
<tr>
<td>Std</td>
<td>7.310</td>
<td>7.516</td>
</tr>
<tr>
<td>Median</td>
<td>69.00</td>
<td>70.00</td>
</tr>
<tr>
<td>Min</td>
<td>52.0</td>
<td>49.0</td>
</tr>
<tr>
<td>Max</td>
<td>88</td>
<td>90</td>
</tr>
<tr>
<td>Albumin (G/L)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>107</td>
<td>109</td>
</tr>
<tr>
<td>Mean</td>
<td>41.71</td>
<td>41.42</td>
</tr>
<tr>
<td>Std</td>
<td>5.774</td>
<td>6.454</td>
</tr>
<tr>
<td>Median</td>
<td>42.00</td>
<td>41.70</td>
</tr>
<tr>
<td>Min</td>
<td>27.3</td>
<td>25.0</td>
</tr>
<tr>
<td>Max</td>
<td>62</td>
<td>65</td>
</tr>
<tr>
<td>Monoclonal component value (G/L)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Mean</td>
<td>4.80</td>
<td>6.19</td>
</tr>
<tr>
<td>Std</td>
<td>1.709</td>
<td>3.861</td>
</tr>
<tr>
<td>Median</td>
<td>5.00</td>
<td>6.30</td>
</tr>
<tr>
<td>Min</td>
<td>3.0</td>
<td>2.3</td>
</tr>
<tr>
<td>Max</td>
<td>6</td>
<td>10</td>
</tr>
</tbody>
</table>

For each parameter registered at different time over the course of the study, the mean, standard deviation, median, range and changes from baseline are described in section §6.7.4.

5.5. Vitals signs, physical finding and other observations related to safety

Vital signs are described in section §6.7.5.

For clinical examination, a frequency table summarizes the results at each visit.
6. TABLES, LISTINGS AND FIGURES NOT INCLUDED IN THE REPORT

6.1. Withdrawals
Listing 6.1-1 Withdrawals (MITT)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of treatment</th>
<th>First Randomization Date</th>
<th>Arm of 2nd randomization</th>
<th>Date of 2nd randomization</th>
<th>Date of withdrawal</th>
<th>Treatment period at withdrawal</th>
<th>Reason for premature withdrawal</th>
<th>Other reason for premature withdrawal</th>
<th>Response at withdrawal</th>
<th>Transplantation date</th>
<th>Nb of induction cycles received</th>
<th>Nb of maintenance visits</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003101021631</td>
<td>ARM A / R-ICE</td>
<td>07/02/2006</td>
<td>RITUXIMAB</td>
<td>01/06/2006</td>
<td>09/05/2007</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSION</td>
<td>PROGRESSIVE DISEASE</td>
<td>22/05/2006</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>5003101031001</td>
<td>ARM A / R-ICE</td>
<td>24/07/2003</td>
<td>RITUXIMAB</td>
<td>21/10/2003</td>
<td>18/11/2003</td>
<td>FOLLOW UP PERIOD</td>
<td>TRANSPORTATION FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td>PROGRESSIVE DISEASE</td>
<td>22/10/2003</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003101491042</td>
<td>ARM A / R-ICE</td>
<td>14/02/2006</td>
<td>RITUXIMAB</td>
<td>09/05/2006</td>
<td>31/07/2006</td>
<td>FOLLOW UP PERIOD</td>
<td>TRANSPORTATION FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td>PROGRESSIVE DISEASE</td>
<td>18/05/2006</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003102341061</td>
<td>ARM A / R-ICE</td>
<td>31/01/2007</td>
<td>RITUXIMAB</td>
<td>04/05/2007</td>
<td>03/12/2007</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>POST TRANSPORTATION RELAPSE</td>
<td>PROGRESSIVE DISEASE</td>
<td>02/05/2007</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5003601301015</td>
<td>ARM B / R-DHAP</td>
<td>21/11/2007</td>
<td>RITUXIMAB</td>
<td>08/02/2008</td>
<td>18/03/2008</td>
<td>FOLLOW UP PERIOD</td>
<td>PATIENT VOLUNTARY WITHDRAWAL</td>
<td>PARTIAL RESPONSE</td>
<td>PROGRESSIVE DISEASE</td>
<td>14/02/2008</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003601401402</td>
<td>ARM B / R-DHAP</td>
<td>17/02/2005</td>
<td>RITUXIMAB</td>
<td>04/05/2005</td>
<td>16/09/2005</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSIVE DISEASE</td>
<td>PROGRESSIVE DISEASE</td>
<td>10/05/2005</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003603201628</td>
<td>ARM A / R-ICE</td>
<td>18/05/2007</td>
<td>RITUXIMAB</td>
<td>17/08/2007</td>
<td>20/03/2008</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSIVE DISEASE</td>
<td>PROGRESSIVE DISEASE</td>
<td>22/08/2007</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5003603801203</td>
<td>ARM A / R-ICE</td>
<td>01/12/2004</td>
<td>RITUXIMAB</td>
<td>14/03/2005</td>
<td>02/05/2005</td>
<td>FOLLOW UP PERIOD</td>
<td>TRANSPORTATION FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td>PROGRESSIVE DISEASE</td>
<td>01/03/2005</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Arm of treatment</td>
<td>First Randomization Date</td>
<td>Arm of 2nd randomization</td>
<td>Date of 2nd randomization</td>
<td>Date of withdrawal</td>
<td>Treatment period at withdrawal</td>
<td>Reason for premature withdrawal</td>
<td>Other reason for premature withdrawal</td>
<td>Response at withdrawal</td>
<td>Transplantation date</td>
<td>Nb of induction cycles received</td>
<td>Nb of maintenance visits</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>-------------------</td>
<td>-------------------------------</td>
<td>-----------------------------------</td>
<td>-----------------------------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>-------------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>5003603801406</td>
<td>ARM A / R-ICE</td>
<td>15/02/2008</td>
<td>RITUXIMAB</td>
<td>15/05/2008</td>
<td>05/08/2008</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PR ; START OF NEW TREATMENT</td>
<td>PARTIAL RESPONSE</td>
<td>13/05/2008</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003604701002</td>
<td>ARM B / R-DHAP</td>
<td>25/02/2005</td>
<td>RITUXIMAB</td>
<td>19/05/2005</td>
<td>26/10/2005</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSION UNDER MAINTENANCE THERAPIE</td>
<td>PROGRESSIVE DISEASE</td>
<td>17/05/2005</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5003604801006</td>
<td>ARM B / R-DHAP</td>
<td>18/10/2005</td>
<td>RITUXIMAB</td>
<td>09/03/2006</td>
<td>16/05/2006</td>
<td>FOLLOW UP PERIOD</td>
<td>TRANSPANTATION FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td>13/02/2006</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003604901004</td>
<td>ARM B / R-DHAP</td>
<td>22/11/2005</td>
<td>RITUXIMAB</td>
<td>09/03/2006</td>
<td>21/12/2006</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>RELAPSE</td>
<td>PROGRESSIVE DISEASE</td>
<td>25/05/2006</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003604901005</td>
<td>ARM A / R-ICE</td>
<td>05/01/2006</td>
<td>RITUXIMAB</td>
<td>09/05/2006</td>
<td>27/07/2006</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>BONE MARROW INVOLVEMENT</td>
<td>PROGRESSIVE DISEASE</td>
<td>24/04/2006</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003604901602</td>
<td>ARM B / R-DHAP</td>
<td>02/02/2005</td>
<td>RITUXIMAB</td>
<td>02/05/2005</td>
<td>28/06/2005</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>LOST TO FOLLOW-UP AFTER BMT</td>
<td>NOT EVALUATED</td>
<td>16/06/2005</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003604901603</td>
<td>ARM B / R-DHAP</td>
<td>03/03/2008</td>
<td>RITUXIMAB</td>
<td>19/06/2008</td>
<td>13/09/2008</td>
<td>FOLLOW UP PERIOD</td>
<td>DEATH</td>
<td></td>
<td>COMPLETE RESPONSE</td>
<td>18/06/2008</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003605301610</td>
<td>ARM A / R-ICE</td>
<td>18/11/2004</td>
<td>RITUXIMAB</td>
<td>02/05/2005</td>
<td>08/12/2005</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSION- NEW LESION VERCIAL LYMPH NODE</td>
<td>PROGRESSIVE DISEASE</td>
<td>23/02/2005</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5003607071007</td>
<td>ARM A / R-ICE</td>
<td>19/07/2006</td>
<td>RITUXIMAB</td>
<td>30/10/2006</td>
<td>06/06/2007</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSIVE DISEASE</td>
<td>PROGRESSIVE DISEASE</td>
<td>18/10/2006</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5003608301605</td>
<td>ARM A / R-ICE</td>
<td>03/06/2004</td>
<td>RITUXIMAB</td>
<td>25/08/2004</td>
<td>13/09/2004</td>
<td>FOLLOW UP PERIOD</td>
<td>PATIENT VOLONTARY WITHDRAWAL</td>
<td></td>
<td>COMPLETE RESPONSE</td>
<td>25/08/2004</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003610701014</td>
<td>ARM B / R-DHAP</td>
<td>24/09/2007</td>
<td>RITUXIMAB</td>
<td>07/01/2008</td>
<td>14/04/2008</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PD</td>
<td>COMPLETE RESPONSE</td>
<td>14/01/2008</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Arm of treatment</td>
<td>First Randomization Date</td>
<td>Arm of 2nd randomization</td>
<td>Date of 2nd randomization</td>
<td>Date of withdrawal</td>
<td>Treatment period at withdrawal</td>
<td>Reason for premature withdrawal</td>
<td>Other reason for premature withdrawal</td>
<td>Response at withdrawal</td>
<td>Transplantation date</td>
<td>Nb of induction cycles received</td>
<td>Nb of maintenance visits</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>-------------------</td>
<td>-------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>----------------------</td>
<td>-----------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>5003612301623</td>
<td>ARM B / R-DHAP</td>
<td>13/12/2006</td>
<td>RITUXIMAB</td>
<td>16/04/2007</td>
<td>31/07/2007</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSIVE DISEASE</td>
<td>PROGRESSIVE DISEASE</td>
<td>30/03/2007</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003615501014</td>
<td>ARM A / R-ICE</td>
<td>02/05/2007</td>
<td>RITUXIMAB</td>
<td>14/08/2007</td>
<td>04/02/2008</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSIVE DISEASE</td>
<td>PROGRESSIVE DISEASE</td>
<td>09/08/2007</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003617201021</td>
<td>ARM B / R-DHAP</td>
<td>17/10/2005</td>
<td>RITUXIMAB</td>
<td>14/02/2006</td>
<td>17/03/2006</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>ACTIVE HEPATITIS C INFECTION AFTER AHERESIS, BAD CONDITION AFTER TRANSPLANTATION / DECISION NOT TO TREAT PATIENT WITH RITUXIMAB FURTHER AS RANDOMIZED IN STUDY</td>
<td>UNCONFIRMED COMPLETE RESPONSE</td>
<td>01/02/2006</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>5003626501605</td>
<td>ARM B / R-DHAP</td>
<td>14/09/2007</td>
<td>RITUXIMAB</td>
<td>19/12/2007</td>
<td>28/04/2008</td>
<td>FOLLOW UP PERIOD</td>
<td>TREATMENT TOXICITY</td>
<td>PARTIAL RESPONSE</td>
<td></td>
<td>09/01/2008</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003630201040</td>
<td>ARM B / R-DHAP</td>
<td>06/11/2006</td>
<td>RITUXIMAB</td>
<td>09/03/2007</td>
<td>22/05/2007</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSION</td>
<td>PROGRESSIVE DISEASE</td>
<td>13/02/2007</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003101021038</td>
<td>ARM B / R-DHAP</td>
<td>06/10/2005</td>
<td>OBSERVATION</td>
<td>02/02/2006</td>
<td>05/12/2006</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSION</td>
<td>PROGRESSIVE DISEASE</td>
<td>09/01/2006</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>5003101021605</td>
<td>ARM A / R-ICE</td>
<td>04/11/2003</td>
<td>OBSERVATION</td>
<td>04/02/2004</td>
<td>29/04/2004</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSIVE DISEASE</td>
<td>PROGRESSIVE DISEASE</td>
<td>03/02/2004</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5003101071643</td>
<td>ARM B / R-DHAP</td>
<td>29/10/2007</td>
<td>OBSERVATION</td>
<td>20/03/2008</td>
<td>15/05/2008</td>
<td>FOLLOW UP PERIOD</td>
<td>DEATH</td>
<td>DEATH WITHOUT PROGRESSION</td>
<td></td>
<td>27/02/2008</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003101131072</td>
<td>ARM A / R-ICE</td>
<td>27/09/2007</td>
<td>OBSERVATION</td>
<td>26/12/2007</td>
<td>18/01/2008</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PATIENT RETURN IN ROUMANIA</td>
<td>UNCONFIRMED COMPLETE RESPONSE</td>
<td>24/12/2007</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003101601610</td>
<td>ARM B / R-DHAP</td>
<td>16/02/2004</td>
<td>OBSERVATION</td>
<td>17/05/2004</td>
<td>11/08/2004</td>
<td>FOLLOW UP PERIOD</td>
<td>TRANSPANTATION FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td>PROGRESSIVE DISEASE</td>
<td>24/05/2004</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003101621026</td>
<td>ARM A / R-ICE</td>
<td>31/05/2005</td>
<td>OBSERVATION</td>
<td>14/09/2005</td>
<td>22/03/2006</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSIVE DISEASE</td>
<td>PROGRESSIVE DISEASE</td>
<td>06/09/2005</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5003102361203</td>
<td>ARM B / R-DHAP</td>
<td>21/11/2003</td>
<td>OBSERVATION</td>
<td>19/02/2004</td>
<td>13/03/2004</td>
<td>FOLLOW UP PERIOD</td>
<td>PATIENT VOLONTARY WITHDRAWAL</td>
<td>NOT EVALUATED</td>
<td></td>
<td>18/02/2004</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5003102411069</td>
<td>ARM B / R-DHAP</td>
<td>05/07/2007</td>
<td>OBSERVATION</td>
<td>24/10/2007</td>
<td>21/01/2008</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSIVE DISEASE</td>
<td>PROGRESSIVE DISEASE</td>
<td>04/10/2007</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Arm of treatment</td>
<td>First Randomization Date</td>
<td>Arm of 2nd randomization</td>
<td>Date of 2nd randomization</td>
<td>Date of withdrawal</td>
<td>Treatment period at withdrawal</td>
<td>Reason for premature withdrawal</td>
<td>Other reason for premature withdrawal</td>
<td>Response at withdrawal</td>
<td>Transplantation date</td>
<td>Nb of induction cycles received</td>
<td>Nb of maintenance visits</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>--------------------------</td>
<td>-------------------------</td>
<td>--------------------------</td>
<td>-------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>---------------------</td>
<td>-------------------------</td>
<td>-------------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>5003102541052</td>
<td>ARM A / R-ICE</td>
<td>26/07/2006</td>
<td>OBSERVATION</td>
<td>12/10/2006</td>
<td>04/01/2007</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSION</td>
<td>PROGRESSIVE DISEASE</td>
<td>05/11/2006</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003601601003</td>
<td>ARM A / R-ICE</td>
<td>07/03/2007</td>
<td>OBSERVATION</td>
<td>08/06/2007</td>
<td>31/08/2007</td>
<td>FOLLOW UP PERIOD</td>
<td>TRANSPLANTATION FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td>29/05/2007</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>5003601601005</td>
<td>ARM A / R-ICE</td>
<td>15/01/2008</td>
<td>OBSERVATION</td>
<td>16/04/2008</td>
<td>03/07/2008</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSION OF DISEASE</td>
<td>PROGRESSIVE DISEASE</td>
<td>08/04/2008</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003601601602</td>
<td>ARM B / R-DHAP</td>
<td>05/12/2007</td>
<td>OBSERVATION</td>
<td>13/03/2008</td>
<td>23/05/2008</td>
<td>FOLLOW UP PERIOD</td>
<td>TRANSPLANTATION FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td>27/02/2008</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003603701006</td>
<td>ARM A / R-ICE</td>
<td>14/10/2005</td>
<td>OBSERVATION</td>
<td>30/01/2006</td>
<td>13/03/2006</td>
<td>FOLLOW UP PERIOD</td>
<td>TRANSPLANTATION FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td>09/01/2006</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003603801608</td>
<td>ARM A / R-ICE</td>
<td>09/04/2008</td>
<td>OBSERVATION</td>
<td>03/07/2008</td>
<td>24/10/2008</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>EARLY RELAPSE AFTER TRANSPLANTATION</td>
<td>PROGRESSIVE DISEASE</td>
<td>01/07/2008</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003604901007</td>
<td>ARM B / R-DHAP</td>
<td>15/01/2008</td>
<td>OBSERVATION</td>
<td>18/06/2008</td>
<td>05/10/2008</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>ABOUT 2 MONTHS FOLLOWING TRANSPLANT, THE PATIENT UNDERWENT PET-CT EVALUATION. ALTHOUGH THERE WAS NO MAJOR ANATOMICAL CHANGE IN CT, THE MEDIASTINAL NODES WERE FDG AVID WITH SIGNIFICANT UPTAKE DUE TO PET-CT RESULTS, THE TREATING PHYSICIAN SUSPECTED THAT * PARTIAL RESPONSE</td>
<td>19/05/2008</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5003606701003</td>
<td>ARM A / R-ICE</td>
<td>10/03/2005</td>
<td>OBSERVATION</td>
<td>07/06/2005</td>
<td>13/01/2006</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSIVE DISEASE</td>
<td>PROGRESSIVE DISEASE</td>
<td>08/06/2005</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>5003607201016</td>
<td>ARM A / R-ICE</td>
<td>09/05/2005</td>
<td>OBSERVATION</td>
<td>11/08/2005</td>
<td>16/12/2005</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSIVE DISEASE</td>
<td>PROGRESSIVE DISEASE</td>
<td>01/08/2005</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Arm of treatment</td>
<td>First Randomization Date</td>
<td>Arm of 2nd randomization Date</td>
<td>Date of 2nd randomization</td>
<td>Date of withdrawal</td>
<td>Treatment period at withdrawal</td>
<td>Reason for premature withdrawal</td>
<td>Other reason for premature withdrawal</td>
<td>Response at withdrawal</td>
<td>Transplantation date</td>
<td>Nb of induction cycles received</td>
<td>Nb of maintenance visits</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>--------------------------</td>
<td>------------------------------</td>
<td>--------------------------</td>
<td>-------------------</td>
<td>-------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>-----------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>5003607501403</td>
<td>ARM A / R-ICE</td>
<td>16/10/2006</td>
<td>OBSERVATION</td>
<td>07/02/2007</td>
<td>11/07/2007</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>RELAPSE DISEASE</td>
<td>PROGRESSIVE DISEASE</td>
<td>02/02/2007</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5003608701008</td>
<td>ARM B / R-DHAP</td>
<td>09/02/2006</td>
<td>OBSERVATION</td>
<td>19/05/2006</td>
<td>13/06/2006</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSED AFTER STABLE DISEASE</td>
<td>PROGRESSIVE DISEASE</td>
<td>01/05/2006</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5003610301209</td>
<td>ARM B / R-DHAP</td>
<td>17/03/2005</td>
<td>OBSERVATION</td>
<td>21/06/2005</td>
<td>14/03/2006</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PATIENT WITHDRAWN BY INVESTIGATOR AS IS NON COMPLIANT WITH ATTENDING FOR REVIEW</td>
<td>UNCONFIRMED COMPLETE RESPONSE</td>
<td>27/06/2005</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003610301613</td>
<td>ARM B / R-DHAP</td>
<td>01/03/2005</td>
<td>OBSERVATION</td>
<td>23/05/2005</td>
<td>07/09/2005</td>
<td>FOLLOW UP PERIOD</td>
<td>TRANSPLANTATION FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td>31/05/2005</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5003610501031</td>
<td>ARM A / R-ICE</td>
<td>20/03/2008</td>
<td>OBSERVATION</td>
<td>08/07/2008</td>
<td>28/07/2008</td>
<td>FOLLOW UP PERIOD</td>
<td>TRANSPLANTATION FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td>11/06/2008</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003610701403</td>
<td>ARM B / R-DHAP</td>
<td>06/12/2007</td>
<td>OBSERVATION</td>
<td>28/03/2008</td>
<td>06/10/2008</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>RECCURENT IN FU-PHASE 6 MONTHS AFTER TRANSPLANT</td>
<td>PROGRESSIVE DISEASE</td>
<td>03/03/2008</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5003614301407</td>
<td>ARM B / R-DHAP</td>
<td>06/03/2008</td>
<td>OBSERVATION</td>
<td>21/07/2008</td>
<td>18/09/2008</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSIVE DISEASE</td>
<td>PROGRESSIVE DISEASE</td>
<td>20/06/2008</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003618301005</td>
<td>ARM B / R-DHAP</td>
<td>01/02/2006</td>
<td>OBSERVATION</td>
<td>19/05/2006</td>
<td>23/06/2006</td>
<td>FOLLOW UP PERIOD</td>
<td>TRANSPLANTATION FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td>03/05/2006</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5003618501025</td>
<td>ARM B / R-DHAP</td>
<td>05/12/2007</td>
<td>OBSERVATION</td>
<td>29/04/2008</td>
<td>08/01/2009</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSION DURING MAINTENANCE</td>
<td>PROGRESSIVE DISEASE</td>
<td>10/04/2008</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5003619301621</td>
<td>ARM A / R-ICE</td>
<td>01/12/2006</td>
<td>OBSERVATION</td>
<td>19/03/2007</td>
<td>11/10/2007</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSION</td>
<td>PROGRESSIVE DISEASE</td>
<td>08/03/2007</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003623501408</td>
<td>ARM B / R-DHAP</td>
<td>18/10/2007</td>
<td>OBSERVATION</td>
<td>25/01/2008</td>
<td>28/04/2008</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>COMMENCING RADIOTHERAPY, CONSIDERED A NEW TREATMENT, PATIENT IS IN PARTIAL RESPONSE</td>
<td>PARTIAL RESPONSE</td>
<td>18/01/2008</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

N = 83
6.2. Initial treatment

Listing 6.2-1 Initial treatment - Patients with other chemotherapy (MITT)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of 2nd randomization</th>
<th>Number of cycles of chemotherapy</th>
<th>Chemotherapy regimen</th>
<th>Specify other Chemotherapy regimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003603801601</td>
<td>RITUXIMAB</td>
<td>4</td>
<td>OTHER</td>
<td>B ALL GERMAN : PEDIATRIC PROTOCOL NHL-BFM95</td>
</tr>
<tr>
<td>5003603801608</td>
<td>OBSERVATION</td>
<td>6</td>
<td>OTHER</td>
<td>NHL-BFM 95 PROTOCOL FOR RISK GROUP 3</td>
</tr>
<tr>
<td>5003607201016</td>
<td>OBSERVATION</td>
<td>6</td>
<td>OTHER</td>
<td>B ALL GERMAN : HOELZER PROTO (BLOCK A1, B1, C1, A2, B2, C2) + INTRATHECAL MTX + ARAC + DEXAMETHASONE</td>
</tr>
<tr>
<td>5003617201209</td>
<td>OBSERVATION</td>
<td>8</td>
<td>OTHER</td>
<td>BEACOPP ESC.</td>
</tr>
</tbody>
</table>

\[N = 4\]

Listing 6.2-2 Initial treatment – Doses of radiotherapy (MITT)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of 2nd randomization</th>
<th>Radiotherapy</th>
<th>Specify dose of radiotherapy (Gy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003101061617</td>
<td>RITUXIMAB</td>
<td>LOCAL</td>
<td>40</td>
</tr>
<tr>
<td>5003101131058</td>
<td>RITUXIMAB</td>
<td>LOCAL</td>
<td>30</td>
</tr>
<tr>
<td>5003101251035</td>
<td>RITUXIMAB</td>
<td>LOCAL</td>
<td>40</td>
</tr>
<tr>
<td>5003101281033</td>
<td>RITUXIMAB</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003101481614</td>
<td>RITUXIMAB</td>
<td>LOCAL</td>
<td>40</td>
</tr>
<tr>
<td>5003102341641</td>
<td>RITUXIMAB</td>
<td>LOCAL</td>
<td>40</td>
</tr>
<tr>
<td>5003102491619</td>
<td>RITUXIMAB</td>
<td>LOCAL</td>
<td>30</td>
</tr>
<tr>
<td>5003102541640</td>
<td>RITUXIMAB</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003601301015</td>
<td>RITUXIMAB</td>
<td>LOCAL</td>
<td>30</td>
</tr>
<tr>
<td>5003601401604</td>
<td>RITUXIMAB</td>
<td>LOCAL</td>
<td>40</td>
</tr>
<tr>
<td>5003601601601</td>
<td>RITUXIMAB</td>
<td>LOCAL</td>
<td>30</td>
</tr>
<tr>
<td>5003601801017</td>
<td>RITUXIMAB</td>
<td>LOCAL</td>
<td>16</td>
</tr>
<tr>
<td>5003601881401</td>
<td>RITUXIMAB</td>
<td>-</td>
<td>48</td>
</tr>
<tr>
<td>5003601881601</td>
<td>RITUXIMAB</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003602201601</td>
<td>RITUXIMAB</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003602801605</td>
<td>RITUXIMAB</td>
<td>LOCAL</td>
<td>40</td>
</tr>
<tr>
<td>5003603201608</td>
<td>RITUXIMAB</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003603801203</td>
<td>RITUXIMAB</td>
<td>LOCAL</td>
<td>6</td>
</tr>
<tr>
<td>5003603801406</td>
<td>RITUXIMAB</td>
<td>LOCAL</td>
<td>40</td>
</tr>
<tr>
<td>5003603801601</td>
<td>RITUXIMAB</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003604301602</td>
<td>RITUXIMAB</td>
<td>LOCAL</td>
<td>40</td>
</tr>
<tr>
<td>5003604801205</td>
<td>RITUXIMAB</td>
<td>LOCAL</td>
<td>40</td>
</tr>
<tr>
<td>5003604901602</td>
<td>RITUXIMAB</td>
<td>LOCAL</td>
<td>4</td>
</tr>
<tr>
<td>5003606201605</td>
<td>RITUXIMAB</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003606301204</td>
<td>RITUXIMAB</td>
<td>LOCAL</td>
<td>30</td>
</tr>
<tr>
<td>5003607501401</td>
<td>RITUXIMAB</td>
<td>LOCAL</td>
<td>30</td>
</tr>
<tr>
<td>5003607701007</td>
<td>RITUXIMAB</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003607701405</td>
<td>RITUXIMAB</td>
<td>LOCAL</td>
<td>39.6</td>
</tr>
<tr>
<td>5003608301605</td>
<td>RITUXIMAB</td>
<td>OTHER</td>
<td>40</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Arm of 2nd randomization</td>
<td>Radiotherapy</td>
<td>Specify dose of radiotherapy (Gy)</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------------------</td>
<td>--------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>5003612301623</td>
<td>RITUXIMAB</td>
<td>LOCAL</td>
<td>40</td>
</tr>
<tr>
<td>500361301403</td>
<td>RITUXIMAB</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003617301616</td>
<td>RITUXIMAB</td>
<td>LOCAL</td>
<td>30</td>
</tr>
<tr>
<td>5003628201618</td>
<td>RITUXIMAB</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003630201040</td>
<td>RITUXIMAB</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003101071013</td>
<td>OBSERVATION</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003101071643</td>
<td>OBSERVATION</td>
<td>LOCAL</td>
<td>50</td>
</tr>
<tr>
<td>5003101141624</td>
<td>OBSERVATION</td>
<td>LOCAL</td>
<td>27</td>
</tr>
<tr>
<td>5003101251009</td>
<td>OBSERVATION</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003101251021</td>
<td>OBSERVATION</td>
<td>LOCAL</td>
<td>40</td>
</tr>
<tr>
<td>5003101391646</td>
<td>OBSERVATION</td>
<td>LOCAL</td>
<td>40</td>
</tr>
<tr>
<td>5003101431627</td>
<td>OBSERVATION</td>
<td>LOCAL</td>
<td>40</td>
</tr>
<tr>
<td>5003101621609</td>
<td>OBSERVATION</td>
<td>LOCAL</td>
<td>40</td>
</tr>
<tr>
<td>5003101621615</td>
<td>OBSERVATION</td>
<td>LOCAL</td>
<td>40</td>
</tr>
<tr>
<td>5003102541052</td>
<td>OBSERVATION</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003102541636</td>
<td>OBSERVATION</td>
<td>LOCAL</td>
<td>7.6</td>
</tr>
<tr>
<td>5003601201604</td>
<td>OBSERVATION</td>
<td>LOCAL</td>
<td>40</td>
</tr>
<tr>
<td>5003601401601</td>
<td>OBSERVATION</td>
<td>LOCAL</td>
<td>44</td>
</tr>
<tr>
<td>5003601601005</td>
<td>OBSERVATION</td>
<td>LOCAL</td>
<td>45</td>
</tr>
<tr>
<td>5003601801607</td>
<td>OBSERVATION</td>
<td>LOCAL</td>
<td>40</td>
</tr>
<tr>
<td>5003602901402</td>
<td>OBSERVATION</td>
<td>LOCAL</td>
<td>45</td>
</tr>
<tr>
<td>5003603201213</td>
<td>OBSERVATION</td>
<td>LOCAL</td>
<td>40</td>
</tr>
<tr>
<td>5003603701001</td>
<td>OBSERVATION</td>
<td>LOCAL</td>
<td>30.6</td>
</tr>
<tr>
<td>5003603801002</td>
<td>OBSERVATION</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003604301013</td>
<td>OBSERVATION</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003604701011</td>
<td>OBSERVATION</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003604801004</td>
<td>OBSERVATION</td>
<td>LOCAL</td>
<td>40</td>
</tr>
<tr>
<td>5003606201029</td>
<td>OBSERVATION</td>
<td>LOCAL</td>
<td>38</td>
</tr>
<tr>
<td>5003606301604</td>
<td>OBSERVATION</td>
<td>LOCAL</td>
<td>30</td>
</tr>
<tr>
<td>5003606501601</td>
<td>OBSERVATION</td>
<td>LOCAL</td>
<td>39.6</td>
</tr>
<tr>
<td>5003607201016</td>
<td>OBSERVATION</td>
<td>LOCAL</td>
<td>59</td>
</tr>
<tr>
<td>5003607201623</td>
<td>OBSERVATION</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003608701008</td>
<td>OBSERVATION</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003610201615</td>
<td>OBSERVATION</td>
<td>LOCAL</td>
<td>39.6</td>
</tr>
<tr>
<td>5003617201209</td>
<td>OBSERVATION</td>
<td>LOCAL</td>
<td>30</td>
</tr>
<tr>
<td>5003617201629</td>
<td>OBSERVATION</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003626501607</td>
<td>OBSERVATION</td>
<td>LOCAL</td>
<td>40</td>
</tr>
<tr>
<td>5003632201606</td>
<td>OBSERVATION</td>
<td>LOCAL</td>
<td>36</td>
</tr>
<tr>
<td>5003632201614</td>
<td>OBSERVATION</td>
<td>LOCAL</td>
<td>40</td>
</tr>
</tbody>
</table>

N = 68
6.3. Progression/relapse diagnosis

Table 6.3-1 Nodal involvement (MITT)

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Cervical right</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>82</td>
<td>67</td>
<td>96</td>
</tr>
<tr>
<td>Involved</td>
<td>36</td>
<td>30</td>
<td>21</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Cervical left</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>73</td>
<td>60</td>
<td>92</td>
</tr>
<tr>
<td>Involved</td>
<td>45</td>
<td>37</td>
<td>25</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Supraclavicular right</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>106</td>
<td>87</td>
<td>105</td>
</tr>
<tr>
<td>Involved</td>
<td>14</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Supraclavicular left</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>100</td>
<td>82</td>
<td>107</td>
</tr>
<tr>
<td>Involved</td>
<td>20</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Axillary right</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>103</td>
<td>84</td>
<td>101</td>
</tr>
<tr>
<td>Involved</td>
<td>18</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Axillary left</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>89</td>
<td>73</td>
<td>102</td>
</tr>
<tr>
<td>Involved</td>
<td>31</td>
<td>25</td>
<td>17</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Inguinal right</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>98</td>
<td>80</td>
<td>105</td>
</tr>
<tr>
<td>Involved</td>
<td>23</td>
<td>19</td>
<td>13</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Inguinal left</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>106</td>
<td>87</td>
<td>98</td>
</tr>
<tr>
<td>Involved</td>
<td>16</td>
<td>13</td>
<td>20</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Node Type</td>
<td>Arm of 2nd randomization</td>
<td>RITUXIMAB N</td>
<td>RITUXIMAB %</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mediastinal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td></td>
<td>79</td>
<td>65</td>
</tr>
<tr>
<td>Involved</td>
<td></td>
<td>40</td>
<td>33</td>
</tr>
<tr>
<td>Not evaluated</td>
<td></td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pulmonary hilar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td></td>
<td>101</td>
<td>83</td>
</tr>
<tr>
<td>Involved</td>
<td></td>
<td>18</td>
<td>15</td>
</tr>
<tr>
<td>Not evaluated</td>
<td></td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Para-aortic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td></td>
<td>73</td>
<td>60</td>
</tr>
<tr>
<td>Involved</td>
<td></td>
<td>47</td>
<td>39</td>
</tr>
<tr>
<td>Not evaluated</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mesenteric</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td></td>
<td>81</td>
<td>66</td>
</tr>
<tr>
<td>Involved</td>
<td></td>
<td>39</td>
<td>32</td>
</tr>
<tr>
<td>Not evaluated</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Iliac right</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td></td>
<td>101</td>
<td>83</td>
</tr>
<tr>
<td>Involved</td>
<td></td>
<td>19</td>
<td>16</td>
</tr>
<tr>
<td>Not evaluated</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Iliac left</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td></td>
<td>97</td>
<td>80</td>
</tr>
<tr>
<td>Involved</td>
<td></td>
<td>23</td>
<td>19</td>
</tr>
<tr>
<td>Not evaluated</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Splenic Hilar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td></td>
<td>106</td>
<td>87</td>
</tr>
<tr>
<td>Involved</td>
<td></td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>Not evaluated</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other nodal involvement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td></td>
<td>109</td>
<td>89</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>122</td>
<td>100</td>
</tr>
</tbody>
</table>
Listing 6.3-1 Other nodal involvement localizations (MITT)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of 2nd randomization</th>
<th>Other nodal involvement</th>
<th>Other nodal involvement - localization</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003101031401</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>LEFT POPLITEAL NODE</td>
</tr>
<tr>
<td>5003101051050</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>RIGHT MAMMAR NODE</td>
</tr>
<tr>
<td>5003101051405</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>LEFT EPITROCHLEEN NODE</td>
</tr>
<tr>
<td>5003101431622</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>SUBCAPSULAR HEPATIC LESION</td>
</tr>
<tr>
<td>5003103161206</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>EPIGASTRIC LODGE</td>
</tr>
<tr>
<td>5003601601601</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>CELIAC</td>
</tr>
<tr>
<td>5003603201628</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>RETROCRURAL BOTH SIDES</td>
</tr>
<tr>
<td>5003604901603</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>OMENTUM</td>
</tr>
<tr>
<td>5003607701007</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>HEPATIC</td>
</tr>
<tr>
<td>5003614501032</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>COELIAC AXIS</td>
</tr>
<tr>
<td>5003617201021</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>SUBCUTANEOUS LYMPH NODES</td>
</tr>
<tr>
<td>5003101051648</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>INTERBRONCHIAL</td>
</tr>
<tr>
<td>5003101161407</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>RIGHT-LATERO AND RETRO CAVA</td>
</tr>
<tr>
<td>5003604301013</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>LEFT LOWER LEG</td>
</tr>
<tr>
<td>5003606501409</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>SUBCUTANEOUS LYMPH NODES BEHIND MASTOID</td>
</tr>
<tr>
<td>5003610501031</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>OMENTUM</td>
</tr>
<tr>
<td>5003621501412</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>RIGHT INTERNAL MAMMARY</td>
</tr>
<tr>
<td>5003623501408</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>SPLENOMEGALY</td>
</tr>
<tr>
<td>5003626501607</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>PORLA LYMPH NODE</td>
</tr>
</tbody>
</table>

N = 19
Table 6.3-2 Extra-nodal involvement (MITT)

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Liver</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>113</td>
<td>93</td>
<td>106</td>
<td>88</td>
</tr>
<tr>
<td>Involved</td>
<td>8</td>
<td>7</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ascites</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>119</td>
<td>98</td>
<td>115</td>
<td>96</td>
</tr>
<tr>
<td>Involved</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pleural effusion</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>115</td>
<td>94</td>
<td>110</td>
<td>92</td>
</tr>
<tr>
<td>Involved</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lung</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>110</td>
<td>90</td>
<td>98</td>
<td>82</td>
</tr>
<tr>
<td>Involved</td>
<td>11</td>
<td>9</td>
<td>20</td>
<td>17</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spleen</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>98</td>
<td>80</td>
<td>102</td>
<td>85</td>
</tr>
<tr>
<td>Involved</td>
<td>22</td>
<td>18</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pericardium</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>117</td>
<td>96</td>
<td>116</td>
<td>97</td>
</tr>
<tr>
<td>Involved</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Breast</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>115</td>
<td>94</td>
<td>112</td>
<td>93</td>
</tr>
<tr>
<td>Involved</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gonadal</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>114</td>
<td>93</td>
<td>107</td>
<td>89</td>
</tr>
<tr>
<td>Involved</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>All</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>219</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Involved</td>
<td>19</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not evaluated</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arm of 2nd randomization</td>
<td>RITUXIMAB</td>
<td>OBSERVATION</td>
<td>All</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------------------</td>
<td>-----------</td>
<td>-------------</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Kidney</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>116</td>
<td>95</td>
<td>109</td>
<td>91</td>
</tr>
<tr>
<td>Involved</td>
<td>5</td>
<td>4</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Adrenal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>117</td>
<td>96</td>
<td>114</td>
<td>95</td>
</tr>
<tr>
<td>Involved</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Thyroid</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>117</td>
<td>96</td>
<td>109</td>
<td>91</td>
</tr>
<tr>
<td>Involved</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>4</td>
<td>3</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Skin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>114</td>
<td>93</td>
<td>112</td>
<td>93</td>
</tr>
<tr>
<td>Involved</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Bone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>107</td>
<td>88</td>
<td>101</td>
<td>84</td>
</tr>
<tr>
<td>Involved</td>
<td>10</td>
<td>8</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Tonsil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>98</td>
<td>80</td>
<td>100</td>
<td>83</td>
</tr>
<tr>
<td>Involved</td>
<td>11</td>
<td>9</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>13</td>
<td>11</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>Cavum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>102</td>
<td>84</td>
<td>101</td>
<td>84</td>
</tr>
<tr>
<td>Involved</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>18</td>
<td>15</td>
<td>16</td>
<td>13</td>
</tr>
<tr>
<td>Parotid</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>103</td>
<td>84</td>
<td>103</td>
<td>86</td>
</tr>
<tr>
<td>Involved</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>17</td>
<td>14</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Arm of 2nd randomization</td>
<td></td>
<td></td>
<td>All</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------------</td>
<td>-----</td>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>RITUXIMAB</td>
<td>N</td>
<td>%</td>
<td>OBSERVATION</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Orbit</td>
<td>.</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Normal</td>
<td>103</td>
<td>84</td>
<td>98</td>
<td>82</td>
</tr>
<tr>
<td>Involved</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>19</td>
<td>16</td>
<td>18</td>
<td>15</td>
</tr>
<tr>
<td>Sinus</td>
<td>.</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Normal</td>
<td>99</td>
<td>81</td>
<td>99</td>
<td>83</td>
</tr>
<tr>
<td>Involved</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>21</td>
<td>17</td>
<td>18</td>
<td>15</td>
</tr>
<tr>
<td>Oesophagus</td>
<td>.</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Normal</td>
<td>99</td>
<td>81</td>
<td>99</td>
<td>83</td>
</tr>
<tr>
<td>Involved</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>23</td>
<td>19</td>
<td>18</td>
<td>15</td>
</tr>
<tr>
<td>Stomach</td>
<td>.</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Normal</td>
<td>94</td>
<td>77</td>
<td>93</td>
<td>78</td>
</tr>
<tr>
<td>Involved</td>
<td>5</td>
<td>4</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>23</td>
<td>19</td>
<td>18</td>
<td>15</td>
</tr>
<tr>
<td>Duodenum</td>
<td>.</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Normal</td>
<td>97</td>
<td>80</td>
<td>96</td>
<td>80</td>
</tr>
<tr>
<td>Involved</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>23</td>
<td>19</td>
<td>17</td>
<td>14</td>
</tr>
<tr>
<td>Colon</td>
<td>.</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Normal</td>
<td>94</td>
<td>77</td>
<td>99</td>
<td>83</td>
</tr>
<tr>
<td>Involved</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>24</td>
<td>20</td>
<td>18</td>
<td>15</td>
</tr>
<tr>
<td>Caecum</td>
<td>.</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Normal</td>
<td>96</td>
<td>79</td>
<td>96</td>
<td>80</td>
</tr>
<tr>
<td>Involved</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>24</td>
<td>20</td>
<td>19</td>
<td>16</td>
</tr>
<tr>
<td>Rectum</td>
<td>.</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Normal</td>
<td>98</td>
<td>80</td>
<td>99</td>
<td>83</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>24</td>
<td>20</td>
<td>19</td>
<td>16</td>
</tr>
</tbody>
</table>

GELARC
Listing 6.3-2 Other extra-nodal involvement localizations (MITT)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of 2nd randomization</th>
<th>Other extra nodal involvement</th>
<th>Other extra nodal involvement - localization</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003101031001</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>LEFT SHOULDER MUSCLE</td>
</tr>
<tr>
<td>5003101051050</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>PANCREAS</td>
</tr>
<tr>
<td>5003102491619</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>LARGE TUMORAL MASS (INCLUDING PROSTATE AND BLADDER)</td>
</tr>
<tr>
<td>5003601401402</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>5003601881401</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>ANTERIOR TIBIAL MUSCLE</td>
</tr>
<tr>
<td>5003603801008</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>NERVUS ULNARIS L. SINISTRI</td>
</tr>
<tr>
<td>5003603801404</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>INфиltrАTION OF MUSC. IliАCUS L. SIN</td>
</tr>
<tr>
<td>5003604301202</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>RIGHT FLANK MASS</td>
</tr>
<tr>
<td>5003604701602</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>PLEURA RIGHT</td>
</tr>
<tr>
<td>5003604901602</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>PANCREAS</td>
</tr>
<tr>
<td>5003605301610</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>5003610501402</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>LEFT INFRA TEMPERAL FOSSA SOFT TISSUE MASS</td>
</tr>
<tr>
<td>5003620501027</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>LEFT CHEST / ABDOMINAL WALL MASS</td>
</tr>
<tr>
<td>5003622201014</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>RIGHT UPPER LEG MEDIAL</td>
</tr>
<tr>
<td>5003101141624</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>PSOAS</td>
</tr>
<tr>
<td>5003101431627</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>RIGHT THIGH</td>
</tr>
<tr>
<td>5003101601610</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>Abdominal mass</td>
</tr>
<tr>
<td>5003601601003</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>5003601601602</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>LEFT UPPER QUADRANT SMALL BOWEL</td>
</tr>
<tr>
<td>5003601881602</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>MUSCLE</td>
</tr>
<tr>
<td>5003603701001</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>MUSCLE HUMERUS PROX LEFT 7.5 X 6 CM</td>
</tr>
<tr>
<td>5003603801009</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>SOFT TISSUE - RIGHT ARM</td>
</tr>
<tr>
<td>5003607201623</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>FOSSA INFRASPINATA</td>
</tr>
<tr>
<td>5003697501403</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>ANTERIOR ABDOMINAL WALL INVASION RIGHT RECTUS MUSCLE</td>
</tr>
<tr>
<td>5003631201619</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

N = 25
<table>
<thead>
<tr>
<th>Lesion Codification</th>
<th>Arm of 2nd randomization</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RITUXIMAB</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>OBSERVATION</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Para-aortic / Portal</td>
<td></td>
<td>36</td>
<td>12</td>
<td>41</td>
<td>15</td>
<td>77</td>
<td>13</td>
</tr>
<tr>
<td>Mediastinal / Paratracheal</td>
<td></td>
<td>37</td>
<td>12</td>
<td>35</td>
<td>13</td>
<td>72</td>
<td>13</td>
</tr>
<tr>
<td>Celiac / Mesenteric</td>
<td></td>
<td>28</td>
<td>9</td>
<td>30</td>
<td>11</td>
<td>58</td>
<td>10</td>
</tr>
<tr>
<td>Cervical / Post_cervical / Upper cervical / Pre_auricular : Left</td>
<td></td>
<td>27</td>
<td>9</td>
<td>20</td>
<td>7</td>
<td>47</td>
<td>8</td>
</tr>
<tr>
<td>Axillary : Left</td>
<td></td>
<td>22</td>
<td>7</td>
<td>13</td>
<td>5</td>
<td>35</td>
<td>6</td>
</tr>
<tr>
<td>Cervical / Post_cervical / Upper cervical / Pre_auricular : Right</td>
<td></td>
<td>18</td>
<td>6</td>
<td>15</td>
<td>6</td>
<td>33</td>
<td>6</td>
</tr>
<tr>
<td>Inguinal / Femoral / Retrocrural : Left</td>
<td></td>
<td>11</td>
<td>4</td>
<td>10</td>
<td>4</td>
<td>21</td>
<td>4</td>
</tr>
<tr>
<td>Axillary : Right</td>
<td></td>
<td>9</td>
<td>3</td>
<td>11</td>
<td>4</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>Inguinal / Femoral / Retrocrural : Right</td>
<td></td>
<td>14</td>
<td>5</td>
<td>6</td>
<td>2</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>External iliac / Iliac : Left</td>
<td></td>
<td>10</td>
<td>3</td>
<td>10</td>
<td>4</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>Spleen</td>
<td></td>
<td>11</td>
<td>4</td>
<td>8</td>
<td>3</td>
<td>19</td>
<td>3</td>
</tr>
<tr>
<td>Lung</td>
<td></td>
<td>3</td>
<td>1</td>
<td>12</td>
<td>4</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>External iliac / Iliac : Right</td>
<td></td>
<td>6</td>
<td>2</td>
<td>8</td>
<td>3</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>Liver</td>
<td></td>
<td>4</td>
<td>1</td>
<td>8</td>
<td>3</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>Soft Tissues</td>
<td></td>
<td>7</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>Skin</td>
<td></td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>Tonsil / Waldeyer’s ring</td>
<td></td>
<td>9</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>Pulmonary hilar</td>
<td></td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Kidney</td>
<td></td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Intraclavicular / Supraclavicular : Left</td>
<td></td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Bone</td>
<td></td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Intraclavicular / Supraclavicular : Right</td>
<td></td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Epitrochlear Right or Left / Other</td>
<td></td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Stomach</td>
<td></td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Splenic hilar</td>
<td></td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Adrenal</td>
<td></td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Breast</td>
<td></td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Gonadal</td>
<td></td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Cavum</td>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Parotid</td>
<td></td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Sinus</td>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Duodenum</td>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Colon</td>
<td></td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Caecum</td>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Ileum</td>
<td></td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Urinary Tract</td>
<td></td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Other extra-nodal involvement</td>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>
6.4. Evaluation after complete induction treatment

Table 6.4-1 Codification of sites used for response evaluation after induction treatment, sorted by most frequent (MITT)

<table>
<thead>
<tr>
<th>Lesion Codification</th>
<th>Arm of 2nd randomization</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RITUXIMAB</td>
<td>OBSERVATION</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Para-aortic / Portal</td>
<td>36</td>
<td>12%</td>
<td>43</td>
</tr>
<tr>
<td>Mediastinal / Paratracheal</td>
<td>37</td>
<td>12%</td>
<td>34</td>
</tr>
<tr>
<td>Celiac / Mesenteric</td>
<td>28</td>
<td>9%</td>
<td>28</td>
</tr>
<tr>
<td>Cervical / Post_cervical / Upper cervical / Pre_auricular : Left</td>
<td>27</td>
<td>9%</td>
<td>20</td>
</tr>
<tr>
<td>Axillary : Left</td>
<td>22</td>
<td>7%</td>
<td>13</td>
</tr>
<tr>
<td>Cervical / Post_cervical / Upper cervical / Pre_auricular : Right</td>
<td>18</td>
<td>6%</td>
<td>15</td>
</tr>
<tr>
<td>Inguinal / Femoral / Retrocrural : Left</td>
<td>11</td>
<td>4%</td>
<td>10</td>
</tr>
<tr>
<td>Axillary : Right</td>
<td>9</td>
<td>3%</td>
<td>11</td>
</tr>
<tr>
<td>Inguinal / Femoral / Retrocrural : Right</td>
<td>14</td>
<td>5%</td>
<td>6</td>
</tr>
<tr>
<td>External iliac / Iliac : Left</td>
<td>10</td>
<td>3%</td>
<td>10</td>
</tr>
<tr>
<td>Spleen</td>
<td>11</td>
<td>4%</td>
<td>8</td>
</tr>
<tr>
<td>Lung</td>
<td>3</td>
<td>1%</td>
<td>12</td>
</tr>
<tr>
<td>External iliac / Iliac : Right</td>
<td>6</td>
<td>2%</td>
<td>8</td>
</tr>
<tr>
<td>Soft Tissues</td>
<td>7</td>
<td>2%</td>
<td>5</td>
</tr>
<tr>
<td>Liver</td>
<td>4</td>
<td>1%</td>
<td>8</td>
</tr>
<tr>
<td>Skin</td>
<td>5</td>
<td>2%</td>
<td>6</td>
</tr>
<tr>
<td>Tonsil / Waldeyer's ring</td>
<td>9</td>
<td>3%</td>
<td>1</td>
</tr>
<tr>
<td>Kidney</td>
<td>5</td>
<td>2%</td>
<td>3</td>
</tr>
<tr>
<td>Pulmonary hilar</td>
<td>4</td>
<td>1%</td>
<td>4</td>
</tr>
<tr>
<td>Infraclavicular / Supraclavicular : Left</td>
<td>6</td>
<td>2%</td>
<td>1</td>
</tr>
<tr>
<td>Bone</td>
<td>3</td>
<td>1%</td>
<td>3</td>
</tr>
<tr>
<td>Stomach</td>
<td>1</td>
<td>0%</td>
<td>4</td>
</tr>
<tr>
<td>Epitrochlear Right or Left / Other</td>
<td>4</td>
<td>1%</td>
<td>1</td>
</tr>
<tr>
<td>Infraclavicular / Supraclavicular : Right</td>
<td>3</td>
<td>1%</td>
<td>2</td>
</tr>
<tr>
<td>Splenic hilar</td>
<td>4</td>
<td>1%</td>
<td>0</td>
</tr>
<tr>
<td>Adrenal</td>
<td>2</td>
<td>1%</td>
<td>2</td>
</tr>
<tr>
<td>Arm of 2nd randomization</td>
<td>RITUXIMAB</td>
<td>OBSERVATION</td>
<td>All</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------</td>
<td>-------------</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Breast</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Not coded</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Duodenum</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Gonadal</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Colon</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Caecum</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Ileum</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Sinus</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Other extra-nodal involvement</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Cavum</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Urinary Tract</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Parotid</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Thyroid</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pleura</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ascites</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Oesophagus</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>307</td>
<td>100</td>
<td>270</td>
</tr>
</tbody>
</table>
6.5. Follow-up

Listing 6.5- Patients with date of last contact earlier than September 1, 2009 (MITT)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of 2nd randomization</th>
<th>Date of last contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003601301015</td>
<td>RITUXIMAB</td>
<td>18/03/2008</td>
</tr>
<tr>
<td>5003604701602</td>
<td>RITUXIMAB</td>
<td>21/08/2008</td>
</tr>
<tr>
<td>5003604901602</td>
<td>RITUXIMAB</td>
<td>28/06/2005</td>
</tr>
<tr>
<td>5003606301204</td>
<td>RITUXIMAB</td>
<td>23/06/2008</td>
</tr>
<tr>
<td>5003608301605</td>
<td>RITUXIMAB</td>
<td>13/09/2004</td>
</tr>
<tr>
<td>5003613301611</td>
<td>RITUXIMAB</td>
<td>25/05/2006</td>
</tr>
<tr>
<td>5003628201044</td>
<td>RITUXIMAB</td>
<td>12/06/2009</td>
</tr>
<tr>
<td>5003628201618</td>
<td>RITUXIMAB</td>
<td>03/06/2009</td>
</tr>
<tr>
<td>5003101131072</td>
<td>OBSERVATION</td>
<td>18/01/2008</td>
</tr>
<tr>
<td>5003102341045</td>
<td>OBSERVATION</td>
<td>09/06/2009</td>
</tr>
<tr>
<td>5003604301013</td>
<td>OBSERVATION</td>
<td>17/06/2009</td>
</tr>
<tr>
<td>5003604701011</td>
<td>OBSERVATION</td>
<td>18/05/2009</td>
</tr>
<tr>
<td>5003606201620</td>
<td>OBSERVATION</td>
<td>11/07/2008</td>
</tr>
<tr>
<td>5003607201623</td>
<td>OBSERVATION</td>
<td>29/07/2009</td>
</tr>
<tr>
<td>5003610301209</td>
<td>OBSERVATION</td>
<td>14/03/2006</td>
</tr>
<tr>
<td>5003622201607</td>
<td>OBSERVATION</td>
<td>04/01/2007</td>
</tr>
<tr>
<td>5003628201402</td>
<td>OBSERVATION</td>
<td>22/04/2009</td>
</tr>
<tr>
<td>5003632201614</td>
<td>OBSERVATION</td>
<td>24/05/2007</td>
</tr>
</tbody>
</table>

N = 18
6.6 Efficacy results

6.6.1 Secondary criteria

Listing 6.6-1 Patients who died during maintenance period (MITT)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Date of 2nd randomization</th>
<th>Arm of 2nd randomization</th>
<th>Actual arm of maintenance</th>
<th>Transplantation date</th>
<th>Date of 2nd randomization</th>
<th>Date of withdrawal</th>
<th>Treatment period at withdrawal</th>
<th>Reason for premature withdrawal</th>
<th>Other reason for premature withdrawal</th>
<th>Response at withdrawal</th>
<th>Date of death</th>
<th>Reason for death</th>
<th>Response at death</th>
<th>Nb of maintenance visits</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003101031001</td>
<td>21/10/2003</td>
<td>RITUXIMAB</td>
<td>RITUXIMAB</td>
<td>22/10/2003</td>
<td>18/11/2003</td>
<td>FOLLOW UP PERIOD</td>
<td>TRANSPLANTATION FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td>06/05/2004</td>
<td>LYMPHOMA</td>
<td>PROGRESSIVE DISEASE</td>
<td>1</td>
</tr>
<tr>
<td>5003101051050</td>
<td>16/10/2006</td>
<td>RITUXIMAB</td>
<td>RITUXIMAB</td>
<td>11/10/2006</td>
<td>13/01/2007</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td>19/02/2007</td>
<td>LYMPHOMA</td>
<td>PROGRESSIVE DISEASE</td>
<td>2</td>
</tr>
<tr>
<td>5003101131409</td>
<td>16/06/2006</td>
<td>RITUXIMAB</td>
<td>RITUXIMAB</td>
<td>14/06/2006</td>
<td>23/11/2006</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td>09/06/2007</td>
<td>UNKNOWN</td>
<td>NOT EVALUATED</td>
<td>1</td>
</tr>
<tr>
<td>5003101281033</td>
<td>15/11/2005</td>
<td>RITUXIMAB</td>
<td>RITUXIMAB</td>
<td>04/10/2005</td>
<td>10/01/2006</td>
<td>FOLLOW UP PERIOD</td>
<td>TRANSPLANTATION FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td>16/02/2006</td>
<td>LYMPHOMA</td>
<td>PROGRESSIVE DISEASE</td>
<td>1</td>
</tr>
<tr>
<td>5003101491042</td>
<td>09/05/2006</td>
<td>RITUXIMAB</td>
<td>RITUXIMAB</td>
<td>18/05/2006</td>
<td>31/07/2006</td>
<td>FOLLOW UP PERIOD</td>
<td>TRANSPLANTATION FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td>05/02/2007</td>
<td>LYMPHOMA</td>
<td>PROGRESSIVE DISEASE</td>
<td>1</td>
</tr>
<tr>
<td>5003601401402</td>
<td>04/05/2005</td>
<td>RITUXIMAB</td>
<td>RITUXIMAB</td>
<td>10/05/2005</td>
<td>16/09/2005</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td>14/11/2005</td>
<td>LYMPHOMA</td>
<td>PROGRESSIVE DISEASE</td>
<td>2</td>
</tr>
<tr>
<td>5003603801203</td>
<td>14/03/2005</td>
<td>RITUXIMAB</td>
<td>RITUXIMAB</td>
<td>01/03/2005</td>
<td>02/05/2005</td>
<td>FOLLOW UP PERIOD</td>
<td>TRANSPLANTATION FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td>25/10/2005</td>
<td>LYMPHOMA</td>
<td>PROGRESSIVE DISEASE</td>
<td>1</td>
</tr>
<tr>
<td>5003603801406</td>
<td>15/05/2008</td>
<td>RITUXIMAB</td>
<td>RITUXIMAB</td>
<td>13/05/2008</td>
<td>05/08/2008</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td>01/03/2009</td>
<td>LYMPHOMA</td>
<td>PROGRESSIVE DISEASE</td>
<td>1</td>
</tr>
<tr>
<td>5003604801006</td>
<td>09/03/2006</td>
<td>RITUXIMAB</td>
<td>RITUXIMAB</td>
<td>13/02/2006</td>
<td>16/05/2006</td>
<td>FOLLOW UP PERIOD</td>
<td>TRANSPLANTATION FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td>10/11/2006</td>
<td>LYMPHOMA</td>
<td>NOT EVALUATED</td>
<td>1</td>
</tr>
<tr>
<td>5003604901005</td>
<td>09/05/2006</td>
<td>RITUXIMAB</td>
<td>RITUXIMAB</td>
<td>24/04/2006</td>
<td>27/07/2006</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td>11/01/2007</td>
<td>LYMPHOMA</td>
<td>PROGRESSIVE DISEASE</td>
<td>1</td>
</tr>
<tr>
<td>5003604901603</td>
<td>19/06/2008</td>
<td>RITUXIMAB</td>
<td>RITUXIMAB</td>
<td>18/06/2008</td>
<td>13/09/2008</td>
<td>FOLLOW UP PERIOD</td>
<td>DEATH</td>
<td>COMPLETE RESPONSE</td>
<td></td>
<td>TOXICITY OF PROTOCOL Treatment / OF STUDY TREATMENT</td>
<td>13/09/2008</td>
<td>COMPLETE RESPONSE</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5003607501401</td>
<td>30/10/2006</td>
<td>RITUXIMAB</td>
<td>RITUXIMAB</td>
<td>18/10/2006</td>
<td>06/06/2007</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td>25/08/2007</td>
<td>LYMPHOMA</td>
<td>PROGRESSIVE DISEASE</td>
<td>4</td>
</tr>
<tr>
<td>5003607701007</td>
<td>09/03/2006</td>
<td>RITUXIMAB</td>
<td>RITUXIMAB</td>
<td>14/03/2006</td>
<td>21/04/2006</td>
<td>FOLLOW UP PERIOD</td>
<td>TRANSPLANTATION FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td>01/06/2006</td>
<td>LYMPHOMA</td>
<td>PROGRESSIVE DISEASE</td>
<td>1</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Date of 2nd randomization</td>
<td>Arm of 2nd randomization</td>
<td>Actual arm of maintenance</td>
<td>Transplantation date</td>
<td>Date of withdrawal</td>
<td>Treatment period at withdrawal</td>
<td>Reason for premature withdrawal</td>
<td>Other reason for premature withdrawal</td>
<td>Response at withdrawal</td>
<td>Date of death</td>
<td>Reason for death</td>
<td>Response at death</td>
<td>Nb of maintenance visits</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
<td>--------------------------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>5003630201040</td>
<td>09/03/2007</td>
<td>RITUXIMAB</td>
<td>RITUXIMAB</td>
<td>13/02/2007</td>
<td>22/05/2007</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSION</td>
<td>PROGRESSIVE DISEASE</td>
<td>21/12/2007</td>
<td>LYMPHOMA</td>
<td>PROGRESSIVE DISEASE</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5003101071643</td>
<td>20/03/2008</td>
<td>OBSERVATION</td>
<td>OBSERVATION</td>
<td>27/02/2008</td>
<td>15/05/2008</td>
<td>FOLLOW UP PERIOD</td>
<td>DEATH</td>
<td></td>
<td>DEATH WITHOUT PROGRESSION</td>
<td>15/05/2008</td>
<td>TOXICITY OF PROTOCOL TREATMENT / OF STUDY TREATMENT</td>
<td>COMPLETE RESPONSE</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5003102541052</td>
<td>12/10/2006</td>
<td>OBSERVATION</td>
<td>OBSERVATION</td>
<td>05/11/2006</td>
<td>04/01/2007</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSION</td>
<td>PROGRESSIVE DISEASE</td>
<td>07/05/2007</td>
<td>LYMPHOMA</td>
<td>PROGRESSIVE DISEASE</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5003601601003</td>
<td>08/06/2007</td>
<td>OBSERVATION</td>
<td>OBSERVATION</td>
<td>29/05/2007</td>
<td>31/08/2007</td>
<td>FOLLOW UP PERIOD</td>
<td>TRANSPLANTATION FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td>23/04/2008</td>
<td>LYMPHOMA</td>
<td>PROGRESSIVE DISEASE</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5003601601005</td>
<td>16/04/2008</td>
<td>OBSERVATION</td>
<td>OBSERVATION</td>
<td>08/04/2008</td>
<td>03/07/2008</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSION OF DISEASE</td>
<td>PROGRESSIVE DISEASE</td>
<td>15/10/2008</td>
<td>LYMPHOMA</td>
<td>PROGRESSIVE DISEASE</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5003603201213</td>
<td>29/05/2007</td>
<td>OBSERVATION</td>
<td>OBSERVATION</td>
<td>23/05/2007</td>
<td>28/03/2008</td>
<td>FOLLOW UP PERIOD</td>
<td>DEATH</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td>28/03/2008</td>
<td>LYMPHOMA</td>
<td>PROGRESSIVE DISEASE</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5003603701006</td>
<td>30/01/2006</td>
<td>OBSERVATION</td>
<td>OBSERVATION</td>
<td>09/01/2006</td>
<td>13/03/2006</td>
<td>FOLLOW UP PERIOD</td>
<td>TRANSPLANTATION FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td>12/05/2006</td>
<td>LYMPHOMA</td>
<td>PROGRESSIVE DISEASE</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5003603801608</td>
<td>03/07/2008</td>
<td>OBSERVATION</td>
<td>OBSERVATION</td>
<td>01/07/2008</td>
<td>24/10/2008</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>EARLY RELAPSE AFTER TRANSPLANTATION</td>
<td>PROGRESSIVE DISEASE</td>
<td>03/06/2009</td>
<td>LYMPHOMA</td>
<td>PROGRESSIVE DISEASE</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5003607201016</td>
<td>11/08/2005</td>
<td>OBSERVATION</td>
<td>OBSERVATION</td>
<td>01/08/2005</td>
<td>16/12/2005</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSIVE DISEASE</td>
<td>PROGRESSIVE DISEASE</td>
<td>07/03/2006</td>
<td>LYMPHOMA</td>
<td>PROGRESSIVE DISEASE</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5003607501403</td>
<td>07/02/2007</td>
<td>OBSERVATION</td>
<td>OBSERVATION</td>
<td>02/02/2007</td>
<td>11/07/2007</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>RELAPSE DISEASE</td>
<td>PROGRESSIVE DISEASE</td>
<td>23/10/2007</td>
<td>LYMPHOMA</td>
<td>NOT EVALUATED</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5003608701008</td>
<td>19/05/2006</td>
<td>OBSERVATION</td>
<td>OBSERVATION</td>
<td>01/05/2006</td>
<td>13/06/2006</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSED AFTER STABLE DISEASE</td>
<td>PROGRESSIVE DISEASE</td>
<td>14/10/2006</td>
<td>LYMPHOMA</td>
<td>PROGRESSIVE DISEASE</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5003610501031</td>
<td>08/07/2008</td>
<td>OBSERVATION</td>
<td>OBSERVATION</td>
<td>11/06/2008</td>
<td>28/07/2008</td>
<td>FOLLOW UP PERIOD</td>
<td>TRANSPLANTATION FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td>01/09/2008</td>
<td>LYMPHOMA</td>
<td>PROGRESSIVE DISEASE</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5003618301005</td>
<td>19/05/2006</td>
<td>OBSERVATION</td>
<td>OBSERVATION</td>
<td>03/05/2006</td>
<td>23/06/2006</td>
<td>FOLLOW UP PERIOD</td>
<td>TRANSPLANTATION FAILURE</td>
<td></td>
<td>PROGRESSIVE DISEASE</td>
<td>07/12/2006</td>
<td>LYMPHOMA</td>
<td>PROGRESSIVE DISEASE</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Date of 2nd randomization</td>
<td>Arm of 2nd randomization</td>
<td>Actual arm of maintenance</td>
<td>Transplantation date</td>
<td>Date of withdrawal</td>
<td>Treatment period at withdrawal</td>
<td>Reason for premature withdrawal</td>
<td>Other reason for premature withdrawal</td>
<td>Response at withdrawal</td>
<td>Date of death</td>
<td>Reason for death</td>
<td>Response at death</td>
<td>Nb of maintenance visits</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>-----------------------------</td>
<td>--------------------------------</td>
<td>------------------------------------</td>
<td>---------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>-----------------------</td>
<td>-------------------------</td>
<td></td>
</tr>
<tr>
<td>5003618501025</td>
<td>29/04/2008</td>
<td>OBSERVATION</td>
<td>OBSERVATION</td>
<td>10/04/2008</td>
<td>08/01/2009</td>
<td>FOLLOW UP PERIOD</td>
<td>OTHER</td>
<td>PROGRESSION DURING MAINTENANCE</td>
<td>PROGRESSIVE DISEASE</td>
<td>08/01/2009</td>
<td>LYMPHOMA</td>
<td>PROGRESSIVE DISEASE</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5003101601610</td>
<td>17/05/2004</td>
<td>OBSERVATION</td>
<td>NOT APPLICABLE</td>
<td>24/05/2004</td>
<td>11/08/2004</td>
<td>FOLLOW UP PERIOD</td>
<td>TRANSPLANTATION FAILURE</td>
<td>PROGRESSIVE DISEASE</td>
<td>12/08/2004</td>
<td>LYMPHOMA</td>
<td>PROGRESSIVE DISEASE</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5003631201619</td>
<td>14/06/2006</td>
<td>OBSERVATION</td>
<td>NOT APPLICABLE</td>
<td>29/05/2006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>14/10/2006</td>
<td>LYMPHOMA</td>
<td>PROGRESSIVE DISEASE</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N = 36
6.6.2. Non study or new treatment out of progression

Listing 6.6-2 New treatment out of progression - Chemotherapy (MITT)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of 2nd randomization</th>
<th>Chemotherapy</th>
<th>Date of chemotherapy</th>
<th>Specify chemotherapy</th>
<th>Nb of cycles of chemotherapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003603801406</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>12/08/2008</td>
<td>R-GFOX</td>
<td>4</td>
</tr>
</tbody>
</table>

N = 1

Listing 6.6-3 New treatment out of progression - Radiotherapy (MITT)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of 2nd randomization</th>
<th>Radiotherapy</th>
<th>Date of radiotherapy</th>
<th>Site of radiotherapy</th>
<th>Dose of radiotherapy (Gy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003102341045</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>09/09/2006</td>
<td>MEDIASTINAL</td>
<td>40</td>
</tr>
<tr>
<td>5003104621053</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>22/01/2007</td>
<td>MEDIASTINUM</td>
<td>40</td>
</tr>
<tr>
<td>5003604901007</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>05/10/2008</td>
<td>MEDIASTINUM</td>
<td>40</td>
</tr>
<tr>
<td>5003623501408</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>02/06/2008</td>
<td>LEFT GROIN</td>
<td>-</td>
</tr>
</tbody>
</table>

N = 4

6.6.3. Progression/relapse

Table 6.6-1 Progression/relapse n°1 – Extra-nodal involvement (MITT)

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Bone marrow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Done</td>
<td>10</td>
<td>37</td>
</tr>
<tr>
<td>Yes</td>
<td>5</td>
<td>19</td>
</tr>
<tr>
<td>No</td>
<td>12</td>
<td>44</td>
</tr>
<tr>
<td>Blood</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Done</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Yes</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>No</td>
<td>24</td>
<td>89</td>
</tr>
<tr>
<td>Bone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Done</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Yes</td>
<td>6</td>
<td>22</td>
</tr>
<tr>
<td>No</td>
<td>21</td>
<td>78</td>
</tr>
<tr>
<td>Skin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>No</td>
<td>23</td>
<td>85</td>
</tr>
<tr>
<td>Liver</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>7</td>
<td>26</td>
</tr>
<tr>
<td>No</td>
<td>20</td>
<td>74</td>
</tr>
<tr>
<td>Ascite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Done</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Yes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>No</td>
<td>25</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>Arm of 2nd randomization</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Pleural effusion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Done</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Yes</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>No</td>
<td>23</td>
<td>85</td>
</tr>
<tr>
<td>Lung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>7</td>
<td>26</td>
</tr>
<tr>
<td>No</td>
<td>20</td>
<td>74</td>
</tr>
<tr>
<td>Spleen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>No</td>
<td>24</td>
<td>89</td>
</tr>
<tr>
<td>Pericardium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>No</td>
<td>26</td>
<td>96</td>
</tr>
<tr>
<td>Breast</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Done</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Yes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>No</td>
<td>26</td>
<td>96</td>
</tr>
<tr>
<td>Gonadal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Done</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>Yes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>No</td>
<td>24</td>
<td>89</td>
</tr>
<tr>
<td>Kidney</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Done</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Yes</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>No</td>
<td>26</td>
<td>96</td>
</tr>
<tr>
<td>Adrenal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Done</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Yes</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>No</td>
<td>24</td>
<td>89</td>
</tr>
<tr>
<td>Thyroid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Done</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>No</td>
<td>24</td>
<td>89</td>
</tr>
<tr>
<td>ORL area</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Done</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>Yes</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>No</td>
<td>22</td>
<td>81</td>
</tr>
<tr>
<td>Digestive area</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Done</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>Yes</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>No</td>
<td>22</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Arm of 2nd randomization</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>RITUXIMAB</td>
<td>OBSERVATION</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>CNS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Done</td>
<td>7</td>
<td>26</td>
</tr>
<tr>
<td>Yes</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>No</td>
<td>18</td>
<td>67</td>
</tr>
<tr>
<td>Total</td>
<td>27</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 6.6-2 Progression/relapse n°1 – Nodal involvement (MITT)

<table>
<thead>
<tr>
<th></th>
<th>Arm of 2nd randomization</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RITUXIMAB</td>
<td>OBSERVATION</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Cervical right</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>7</td>
<td>21</td>
<td>11</td>
</tr>
<tr>
<td>Involved</td>
<td>2</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>2</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>68</td>
<td>17</td>
</tr>
<tr>
<td>Cervical left</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>6</td>
<td>18</td>
<td>10</td>
</tr>
<tr>
<td>Involved</td>
<td>3</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>2</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>68</td>
<td>17</td>
</tr>
<tr>
<td>Supraclavicular right</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>9</td>
<td>26</td>
<td>11</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>2</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>68</td>
<td>17</td>
</tr>
<tr>
<td>Supraclavicular left</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>8</td>
<td>24</td>
<td>10</td>
</tr>
<tr>
<td>Involved</td>
<td>2</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>68</td>
<td>17</td>
</tr>
<tr>
<td>Axillary right</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>9</td>
<td>26</td>
<td>10</td>
</tr>
<tr>
<td>Involved</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>2</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>68</td>
<td>17</td>
</tr>
<tr>
<td>Axillary left</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>8</td>
<td>24</td>
<td>7</td>
</tr>
<tr>
<td>Involved</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>2</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>68</td>
<td>17</td>
</tr>
</tbody>
</table>
Arm of 2nd randomization

<table>
<thead>
<tr>
<th>Tissue</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Inguinal right</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>8</td>
<td>24</td>
</tr>
<tr>
<td>Involved</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>23</td>
<td>68</td>
</tr>
<tr>
<td>Inguinal left</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>10</td>
<td>29</td>
</tr>
<tr>
<td>Involved</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>23</td>
<td>68</td>
</tr>
<tr>
<td>Mediastinal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>9</td>
<td>26</td>
</tr>
<tr>
<td>Involved</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>23</td>
<td>68</td>
</tr>
<tr>
<td>Pulmonary hilar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>9</td>
<td>26</td>
</tr>
<tr>
<td>Involved</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>23</td>
<td>68</td>
</tr>
<tr>
<td>Para-ortic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>Involved</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>23</td>
<td>68</td>
</tr>
<tr>
<td>Mesenteric</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>8</td>
<td>24</td>
</tr>
<tr>
<td>Involved</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>23</td>
<td>68</td>
</tr>
<tr>
<td>Iliac right</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>8</td>
<td>24</td>
</tr>
<tr>
<td>Involved</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>23</td>
<td>68</td>
</tr>
<tr>
<td>Iliac left</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>8</td>
<td>24</td>
</tr>
<tr>
<td>Involved</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Not evaluated</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>23</td>
<td>68</td>
</tr>
<tr>
<td>Splenic Hilar</td>
<td>Arm of 2nd randomization</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>Normal</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Involved</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Not evaluated</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>Other nodal involvement</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>34</td>
</tr>
</tbody>
</table>

Listing 6.6-4 Progression/relapse n°1 – Other nodal involvement (MITT)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of 2nd randomization</th>
<th>Other nodal involvement</th>
<th>Other nodal involvement - localization</th>
<th>Other nodal involvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003606201605</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>INTERAORTOCAVAL</td>
<td>Abnormal / Involved</td>
</tr>
<tr>
<td>5003101161407</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>RIGHT CRURAL</td>
<td>Abnormal / Involved</td>
</tr>
<tr>
<td>5003101621609</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>SUB CLAVICULAR LEFT</td>
<td>Abnormal / Involved</td>
</tr>
<tr>
<td>5003605701601</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>KIDNEY HILUS LEFT</td>
<td>Abnormal / Involved</td>
</tr>
<tr>
<td>5003617301619</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>SUBMANDIBULAR RIGHT</td>
<td>Abnormal / Involved</td>
</tr>
</tbody>
</table>

N = 5

Table 6.6-3 Progression/relapse n°1 – Details of extra-nodal involvement (MITT)

<table>
<thead>
<tr>
<th>Liver</th>
<th>Arm of 2nd randomization</th>
<th>RITUXIMAB</th>
<th>N</th>
<th>%</th>
<th>OBSERVATION</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal</td>
<td>6</td>
<td>22</td>
<td></td>
<td>8</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Involved</td>
<td>1</td>
<td>4</td>
<td></td>
<td>2</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not evaluated</td>
<td>1</td>
<td>4</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>70</td>
<td></td>
<td>17</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Ascites</td>
<td>Normal</td>
<td>7</td>
<td>26</td>
<td></td>
<td>10</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not evaluated</td>
<td>2</td>
<td>7</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>67</td>
<td></td>
<td>17</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Pleural effusion</td>
<td>Normal</td>
<td>7</td>
<td>26</td>
<td></td>
<td>10</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not evaluated</td>
<td>2</td>
<td>7</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>67</td>
<td></td>
<td>17</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Lung</td>
<td>Normal</td>
<td>7</td>
<td>26</td>
<td></td>
<td>5</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Structure</td>
<td>Arm of 2nd randomization</td>
<td>RITUXIMAB</td>
<td>OBSERVATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------------</td>
<td>-----------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Involved</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not evaluated</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>63</td>
<td>17</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spleen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>8</td>
<td>30</td>
<td>8</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Involved</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not evaluated</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>67</td>
<td>17</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pericardium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>7</td>
<td>26</td>
<td>9</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not evaluated</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>67</td>
<td>17</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breast</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>7</td>
<td>26</td>
<td>9</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not evaluated</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>67</td>
<td>17</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gonadal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>7</td>
<td>26</td>
<td>10</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not evaluated</td>
<td>2</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>67</td>
<td>17</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kidney</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>8</td>
<td>30</td>
<td>7</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Involved</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not evaluated</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>67</td>
<td>17</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adrenal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>8</td>
<td>30</td>
<td>9</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Involved</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not evaluated</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>67</td>
<td>17</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thyroid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>6</td>
<td>22</td>
<td>10</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not evaluated</td>
<td>3</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>67</td>
<td>17</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>6</td>
<td>22</td>
<td>9</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Involved</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not evaluated</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>67</td>
<td>17</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arm of 2nd randomization</td>
<td>RITUXIMAB</td>
<td>OBSERVATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>7</td>
<td>26</td>
<td>8</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Involved</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not evaluated</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>63</td>
<td>17</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tonsil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>5</td>
<td>19</td>
<td>8</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not evaluated</td>
<td>4</td>
<td>15</td>
<td>2</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>67</td>
<td>17</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cavum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>5</td>
<td>19</td>
<td>8</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not evaluated</td>
<td>4</td>
<td>15</td>
<td>2</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>67</td>
<td>17</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parotid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>5</td>
<td>19</td>
<td>8</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not evaluated</td>
<td>4</td>
<td>15</td>
<td>2</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>67</td>
<td>17</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orbit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>5</td>
<td>19</td>
<td>8</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not evaluated</td>
<td>4</td>
<td>15</td>
<td>2</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>67</td>
<td>17</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sinus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>4</td>
<td>15</td>
<td>8</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Involved</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not evaluated</td>
<td>4</td>
<td>15</td>
<td>2</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>67</td>
<td>17</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oesophagus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>6</td>
<td>22</td>
<td>10</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not evaluated</td>
<td>3</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>67</td>
<td>17</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stomach</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>6</td>
<td>22</td>
<td>10</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not evaluated</td>
<td>3</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>67</td>
<td>17</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duodenum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>6</td>
<td>22</td>
<td>10</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not evaluated</td>
<td>3</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>67</td>
<td>17</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>6</td>
<td>22</td>
<td>9</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arm of 2nd randomization</td>
<td>RITUXIMAB</td>
<td>OBSERVATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Involved</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not evaluated</td>
<td>3</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>67</td>
<td>17</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Caecum

Normal	6	22	9	33
Involved	0	0	1	4
Not evaluated	3	11	0	0
	18	67	17	63

Rectum

Normal	6	22	9	33
Involved	0	0	1	4
Not evaluated	3	11	0	0
	18	67	17	63

Other extra-nodal involvement

No	5	19	4	15
Yes	5	19	5	19
	17	63	18	67

TOTAL

| 27 | 100 | 27 | 100 |

Listing 6.6-5 Progression/relapse n°1 – Other extra-nodal involvement (MITT)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of 2nd randomization</th>
<th>Progression/relapse number</th>
<th>Other extra-nodal involvement - localization</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003101491042</td>
<td>RITUXIMAB</td>
<td>1</td>
<td>BLADDER</td>
</tr>
<tr>
<td>5003628201044</td>
<td>RITUXIMAB</td>
<td>1</td>
<td>STERNOCLEIDOMASTOID MUSCLE (INFILTRATION)</td>
</tr>
<tr>
<td>5003101641618</td>
<td>OBSERVATION</td>
<td>1</td>
<td>ENDOMETRIUM</td>
</tr>
</tbody>
</table>

N = 3
Table 6.6-4 Progression/relapse n°1 – Documentation (MITT)

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>RITUXIMAB N</th>
<th>%</th>
<th>OBSERVATION N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histological documentation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>21</td>
<td>45</td>
<td>27</td>
<td>59</td>
</tr>
<tr>
<td>No</td>
<td>26</td>
<td>55</td>
<td>19</td>
<td>41</td>
</tr>
<tr>
<td>Cytological documentation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Done</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Yes</td>
<td>8</td>
<td>17</td>
<td>16</td>
<td>35</td>
</tr>
<tr>
<td>No</td>
<td>37</td>
<td>79</td>
<td>28</td>
<td>61</td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td>100</td>
<td>46</td>
<td>100</td>
</tr>
</tbody>
</table>

Listing 6.6-6 Progression/relapse n°1 - Chemotherapy (MITT)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of 2nd randomization</th>
<th>Chemotherapy</th>
<th>Date of chemotherapy</th>
<th>Specify chemotherapy</th>
<th>Nb of cycles of chemotherapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003101021631</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>14/06/2007</td>
<td>R-GEMOX</td>
<td>8</td>
</tr>
<tr>
<td>5003101031001</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>11/03/2004</td>
<td>ONCOVIN + CELLTOP</td>
<td>-</td>
</tr>
<tr>
<td>5003101031401</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>14/04/2005</td>
<td>MIV</td>
<td>2</td>
</tr>
<tr>
<td>5003101051050</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>15/01/2007</td>
<td>CYCLOPHOSPHAMIDE + ETOPOSIDE</td>
<td>1</td>
</tr>
<tr>
<td>5003101071408</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>29/11/2006</td>
<td>GEMOX</td>
<td>4</td>
</tr>
<tr>
<td>5003101071417</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>09/08/2008</td>
<td>GEMOX</td>
<td>1</td>
</tr>
<tr>
<td>5003101251035</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>17/07/2006</td>
<td>IVAM + 3 ETOPOSIDE/CYCLOPHOSPHAMIDE</td>
<td>5</td>
</tr>
<tr>
<td>5003101281033</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>12/01/2006</td>
<td>DHAP</td>
<td>2</td>
</tr>
<tr>
<td>5003101431622</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>03/04/2008</td>
<td>COP (1 CYCLE) DHAP (3 CYCLES) CARBO DHAP (1 CYCLE) GEMOX (1 CYCLE)</td>
<td>6</td>
</tr>
<tr>
<td>5003101491042</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>04/08/2006</td>
<td>LOW DOSE CYCLOPHOSPHAMIDE, 18/09/06 : HOELZER BLOK A, 30/10/06 : HOELZER BLOK D, GEMCITABINE 15/01/07 AND 26/01/07</td>
<td>-</td>
</tr>
<tr>
<td>5003102341061</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>10/01/2008</td>
<td>CYTARABINE, ETOPOSIDE, MITOXANTRONE, IFOSFAMIDE, METHOTREXATE</td>
<td>3</td>
</tr>
<tr>
<td>5003102341641</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>12/11/2009</td>
<td>CHOP</td>
<td>3</td>
</tr>
<tr>
<td>5003102541640</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>11/09/2007</td>
<td>RACVBP</td>
<td>3</td>
</tr>
<tr>
<td>5003103161041</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>20/04/2007</td>
<td>ETOPOSIDE + IFOSFAMIDE</td>
<td>4</td>
</tr>
<tr>
<td>5003601401402</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>19/09/2005</td>
<td>CHOR / CYTOSAR</td>
<td>4</td>
</tr>
<tr>
<td>5003601881401</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>11/08/2007</td>
<td>DEXAMETHASONE / CYTARABINE / PLATINE</td>
<td>4</td>
</tr>
<tr>
<td>5003602201601</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>01/04/2006</td>
<td>DHAP DOSE REDUCED</td>
<td>2</td>
</tr>
<tr>
<td>5003602801403</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>24/03/2009</td>
<td>R-ESAP</td>
<td>1</td>
</tr>
<tr>
<td>5003602801605</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>24/09/2008</td>
<td>R-GDP</td>
<td>5</td>
</tr>
<tr>
<td>5003603201628</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>-</td>
<td>CHOP</td>
<td>5</td>
</tr>
<tr>
<td>5003603801203</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>17/08/2005</td>
<td>ESHAP</td>
<td>1</td>
</tr>
<tr>
<td>5003603801406</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>13/11/2008</td>
<td>P.O. ETOPOSIDE</td>
<td>3</td>
</tr>
<tr>
<td>5003604301602</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>17/08/2006</td>
<td>2 CYCLES OF FLUDARABINE + 6 CYCLES OF CEOP</td>
<td>8</td>
</tr>
<tr>
<td>5003604801006</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>07/06/2006</td>
<td>R-ICE</td>
<td>2</td>
</tr>
<tr>
<td>5003604801205</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>10/08/2006</td>
<td>R-DHAP</td>
<td>4</td>
</tr>
<tr>
<td>5003606201407</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>23/11/2006</td>
<td>GEMCITABINE / IRINOTECAN</td>
<td>2</td>
</tr>
<tr>
<td>5003606201605</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>05/01/2006</td>
<td>GEMCITABINE / OXALIPLATIN</td>
<td>5</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Arm of 2nd randomization</td>
<td>Chemotherapy</td>
<td>Date of chemotherapy</td>
<td>Specify chemotherapy</td>
<td>Nb of cycles of chemotherapy</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------------------</td>
<td>--------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>5003607501401</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>19/06/2007</td>
<td>GEMCITABINE + CISPLATIN DEXAMETHASONE</td>
<td>2</td>
</tr>
<tr>
<td>5003607701007</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>29/04/2006</td>
<td>DHAP</td>
<td>1</td>
</tr>
<tr>
<td>5003609301620</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>26/11/2007</td>
<td>R-ICE</td>
<td>6</td>
</tr>
<tr>
<td>5003610201206</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>21/06/2006</td>
<td>DHAP</td>
<td>2</td>
</tr>
<tr>
<td>5003617201021</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>30/05/2007</td>
<td>R-BENDAMUSTIN</td>
<td>5</td>
</tr>
<tr>
<td>5003617201043</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>24/09/2007</td>
<td>2 G VINCRI STIN FOLLOWED BY 6EM DEX OX</td>
<td>1</td>
</tr>
<tr>
<td>5003628201044</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>05/08/2008</td>
<td>R-ICE, R-CHOP, GEMCITABINE / VINORELBINE</td>
<td>3</td>
</tr>
<tr>
<td>5003630201040</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>16/06/2007</td>
<td>RITUXIMAB - GEMCITABINE - OXALIPLATIN</td>
<td>2</td>
</tr>
<tr>
<td>5003101021038</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>19/12/2006</td>
<td>GEMOX</td>
<td>4</td>
</tr>
<tr>
<td>5003101021605</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>25/05/2004</td>
<td>R-GEMOX</td>
<td>8</td>
</tr>
<tr>
<td>5003101141624</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>10/06/2009</td>
<td>ENDOXAN AND SOLUMEDROL FOLLOWING BY CHOP 1 CYCLE AND CVP</td>
<td>1</td>
</tr>
<tr>
<td>5003101161407</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>28/03/2007</td>
<td>DHAP (1 CYCLE) THEN DEXAMETHASONE + CYTARABINE + ETOPOSIDE (1 CYCLE) THEN CYCLOPHOSPHAMIDE + MITOXANTRONE + VINCRI STINE + DEXAMETHASONE</td>
<td>3</td>
</tr>
<tr>
<td>5003101621026</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>12/03/2007</td>
<td>RITUXIMAB - DEXAMETHASONE CISPLATINE CYTARABINE</td>
<td>6</td>
</tr>
<tr>
<td>5003101621609</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>13/11/2006</td>
<td>R CHOP</td>
<td>6</td>
</tr>
<tr>
<td>5003101621615</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>04/05/2005</td>
<td>DHAP</td>
<td>4</td>
</tr>
<tr>
<td>5003101621618</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>25/01/2007</td>
<td>GEMCITABINE - OXALIPLATIN</td>
<td>8</td>
</tr>
<tr>
<td>5003102411054</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>04/09/2007</td>
<td>RITUXIMAB + ETOPOSIDE + IFOSFAMIDE</td>
<td>2</td>
</tr>
<tr>
<td>5003102541052</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>10/01/2007</td>
<td>DHAP</td>
<td>1</td>
</tr>
<tr>
<td>5003601401006</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>05/03/2008</td>
<td>CYCLOPHOSPHAMIDE PER ORAL CONTINUOUS TREATMENT TOGETHER WITH METHOTREXATE 2 DAYS / WEEK</td>
<td>-</td>
</tr>
<tr>
<td>5003601401063</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>28/11/2007</td>
<td>DOXORUBICIN (LIPOSOMAL) + GEMCITABIN TO 3/4-08 + ISOFO SFAMIDE 100 MG PO DAILY DOSE</td>
<td>6</td>
</tr>
<tr>
<td>5003601601003</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>16/11/2007</td>
<td>PALLIATIVE CYCLOPHOSPHAMIDE</td>
<td>3</td>
</tr>
<tr>
<td>5003601601005</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>11/09/2008</td>
<td>ORAL CYCLOPHOSPHAMIDE / ETOPOSIDE X 7 DAYS</td>
<td>1</td>
</tr>
<tr>
<td>5003601601602</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>14/08/2008</td>
<td>GEMABATINE W/ RITUXIMAB + DACETUZUMAB (INVESTIGATIONAL)</td>
<td>5</td>
</tr>
<tr>
<td>5003602801011</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>15/07/2007</td>
<td>HIGH DOSE MTX + ARA-C</td>
<td>1</td>
</tr>
<tr>
<td>5003603201038</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>-</td>
<td>SEE COPY</td>
<td>-</td>
</tr>
<tr>
<td>5003603801002</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>05/03/2010</td>
<td>R-MINE</td>
<td>1</td>
</tr>
<tr>
<td>5003603801602</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>13/10/2006</td>
<td>R-FND</td>
<td>4</td>
</tr>
<tr>
<td>5003603801608</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>03/11/2008</td>
<td>R-MEGA CHOP</td>
<td>3</td>
</tr>
<tr>
<td>5003604201056</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>18/06/2009</td>
<td>B-ALL</td>
<td>-</td>
</tr>
<tr>
<td>5003606201609</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>-</td>
<td>ICE</td>
<td>3</td>
</tr>
<tr>
<td>5003607301603</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>27/06/2006</td>
<td>VINCRI STINE 2 MG EVERY 2 OR 3 WEEKS / DEXAMETHASONE 40 MG DAILY FOR FOUR DAYS EVERY THREE WEEKS</td>
<td>6</td>
</tr>
<tr>
<td>5003607501403</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>13/07/2007</td>
<td>GEMCITABINE CISPLATIN</td>
<td>3</td>
</tr>
<tr>
<td>5003610501031</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>30/07/2008</td>
<td>GEMCITABINE, VINORELBINE</td>
<td>1</td>
</tr>
<tr>
<td>5003610701403</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>20/11/2008</td>
<td>R-ICE</td>
<td>2</td>
</tr>
<tr>
<td>5003614301407</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>24/06/2009</td>
<td>ICE</td>
<td>6</td>
</tr>
<tr>
<td>5003617301619</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>09/05/2007</td>
<td>GEMCITABINE ; IFOSFAMIDE ; PREDNISOLONE</td>
<td>4</td>
</tr>
<tr>
<td>5003618301005</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>05/07/2006</td>
<td>GEMCITABINE VINORELBINE</td>
<td>2</td>
</tr>
<tr>
<td>5003619301621</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>24/10/2007</td>
<td>R-VGF</td>
<td>4</td>
</tr>
<tr>
<td>5003621201020</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>28/04/2006</td>
<td>DEXAMETHASONE / CYTARABINE / METHOTREXATE</td>
<td>2</td>
</tr>
<tr>
<td>5003631201619</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>13/09/2006</td>
<td>ICE C IFOSFAMIDE 50%</td>
<td>1</td>
</tr>
</tbody>
</table>

N = 67
Listing 6.6-7 Progression/relapse n°1 - Radiotherapy (MITT)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of 2nd randomization</th>
<th>Radiotherapy</th>
<th>Date of radiotherapy</th>
<th>Site of radiotherapy</th>
<th>Dose of radiotherapy (Gy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003101031001</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>16/01/2004</td>
<td>LEFT ARM</td>
<td>47</td>
</tr>
<tr>
<td>5003101031401</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>-</td>
<td>ENCEPHALON</td>
<td>45</td>
</tr>
<tr>
<td>5003603801203</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>16/05/2005</td>
<td>RIGHT INGUINA AND RIGHT ILIAC REGION</td>
<td>40</td>
</tr>
<tr>
<td>5003604801006</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>04/09/2006</td>
<td>-</td>
<td>44</td>
</tr>
<tr>
<td>5003604901004</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>29/04/2007</td>
<td>D8 AND APARASPINAL MASS</td>
<td>40</td>
</tr>
<tr>
<td>5003604901005</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>17/07/2006</td>
<td>ILIAC BONE</td>
<td>36</td>
</tr>
<tr>
<td>5003605301610</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>29/05/2006</td>
<td>LEFT NECK</td>
<td>30</td>
</tr>
<tr>
<td>5003609301620</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>05/06/2008</td>
<td>PARANASAL SINUSES</td>
<td>36</td>
</tr>
<tr>
<td>5003612301623</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>14/04/2008</td>
<td>BASE OF BRAIN</td>
<td>12</td>
</tr>
<tr>
<td>5003616501003</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>18/04/2008</td>
<td>ENTIRE SPINE C2-L3 INCLUSIVE</td>
<td>30</td>
</tr>
<tr>
<td>5003628201044</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>01/02/2009</td>
<td>CERVICAL MASS</td>
<td>-</td>
</tr>
<tr>
<td>5003631111040</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>-</td>
<td>RIGHT LEG</td>
<td>36</td>
</tr>
<tr>
<td>5003610241054</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>16/10/2007</td>
<td>LEFT ILIAC + LEFT INGUINAL</td>
<td>40</td>
</tr>
<tr>
<td>5003610241069</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>20/02/2008</td>
<td>CERVICO SUB CLAVICULAR GANGLION + WALDEYER RING</td>
<td>36</td>
</tr>
<tr>
<td>5003601601005</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>29/07/2008</td>
<td>LEFT PELVIC WALL</td>
<td>37</td>
</tr>
<tr>
<td>5003602901601</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>-</td>
<td>RIGHT ADRENAL</td>
<td>-</td>
</tr>
<tr>
<td>5003603201038</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>10/09/2007</td>
<td>TOTAL BODY</td>
<td>4</td>
</tr>
<tr>
<td>5003603701006</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>07/04/2006</td>
<td>THORAX WOUND</td>
<td>42</td>
</tr>
<tr>
<td>5003603801009</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>11/12/2006</td>
<td>RIGHT AXILLA AND RIGHT ARM</td>
<td>40</td>
</tr>
<tr>
<td>5003604301013</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>17/06/2009</td>
<td>RIGHT FOREARM</td>
<td>20</td>
</tr>
<tr>
<td>5003606701003</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>09/03/2006</td>
<td>MESENTERIC MASS</td>
<td>40</td>
</tr>
<tr>
<td>5003608701008</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>06/07/2006</td>
<td>AXILLA RIGHT</td>
<td>40</td>
</tr>
<tr>
<td>5003614301407</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>07/01/2010</td>
<td>PARA-AORTIC NODES</td>
<td>30</td>
</tr>
<tr>
<td>5003618301005</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>09/08/2006</td>
<td>RIGHT HEMIPELVIS</td>
<td>30</td>
</tr>
<tr>
<td>5003621201020</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>27/06/2006</td>
<td>TONSILLA RIGHT, ZONA LEG LEFT</td>
<td>8</td>
</tr>
<tr>
<td>5003621501412</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>09/11/2009</td>
<td>CHEST WALL</td>
<td>25</td>
</tr>
</tbody>
</table>

N = 27

Listing 6.6-8 Progression/relapse n°1 - Immunotherapy (MITT)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of 2nd randomization</th>
<th>Immunotherapy</th>
<th>Date of immunotherapy</th>
<th>Specify immunotherapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>50031010121631</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>14/06/2007</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>500310101771008</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>05/04/2007</td>
<td>IBRITUMOMAB TIUXETAN + RITUXIMAB</td>
</tr>
<tr>
<td>5003101251035</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>17/07/2006</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003101281033</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>12/01/2006</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003101431622</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>09/04/2008</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003102341641</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>12/11/2009</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003604801205</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>10/08/2006</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003609301620</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>26/11/2007</td>
<td>RITUXIMAB (IN CONJUNCTION WITH CHEMOTHERAPY)</td>
</tr>
<tr>
<td>5003615501014</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>12/03/2008</td>
<td>OFATUMOMAB</td>
</tr>
<tr>
<td>5003617201043</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>26/09/2007</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Arm of 2nd randomization</td>
<td>Immunotherapy</td>
<td>Date of immunotherapy</td>
<td>Specify immunotherapy</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------------</td>
<td>---------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>5003101021038</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>18/12/2006</td>
<td>RITUXIMAB (4 CYCLES)</td>
</tr>
<tr>
<td>5003101141624</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>10/06/2009</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003101161407</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>28/03/2007</td>
<td>RITUXIMAB THEN ANTI CD20</td>
</tr>
<tr>
<td>5003101621615</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>27/08/2005</td>
<td>RITUXIMAB 8 CURES</td>
</tr>
<tr>
<td>5003101641618</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>25/01/2007</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003601601602</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>14/08/2008</td>
<td>RITUXIMAB W/GEMCITABINE AND DACETUZUMAB (INVESTIGATIONAL)</td>
</tr>
<tr>
<td>5003602901601</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>17/01/2006</td>
<td>MABTHERA</td>
</tr>
<tr>
<td>5003603801602</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>13/10/2006</td>
<td>RITUXIMAB IN COMBINATION WITH FND</td>
</tr>
<tr>
<td>5003605701601</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>28/07/2006</td>
<td>RITUXIMAB (STOP: 04.08.2006)</td>
</tr>
<tr>
<td>5003606201609</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>-</td>
<td>RITUXIMAB EVERY 3 MONTHS</td>
</tr>
<tr>
<td>5003618301005</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>-</td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td>5003621201020</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>08/05/2006</td>
<td>MABTHERA 2 CYCLES</td>
</tr>
</tbody>
</table>

N = 22

Listing 6.6-9 Progression/relapse n°1 - Transplant (MITT)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of 2nd randomization</th>
<th>Transplantation</th>
<th>Date of transplantation</th>
<th>Conditioning Regimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003102341061</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>26/05/2008</td>
<td>FLUDARABINE, ENDOXAN, IRRADIATION</td>
</tr>
<tr>
<td>5003102341641</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>18/02/2010</td>
<td>IBRITUMOMAB TIUXETAN (ETUDE ZEVALLO)</td>
</tr>
<tr>
<td>5003102491619</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>06/09/2007</td>
<td>FLUDARABINE BUSULFAN AND ATG</td>
</tr>
<tr>
<td>5003102541640</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>21/04/2008</td>
<td>CPA, FLUDA, ATG, MPD, CYCLO</td>
</tr>
<tr>
<td>5003601881401</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>11/12/2007</td>
<td>FLUDARABINE / BUSULFAN / SAL</td>
</tr>
<tr>
<td>5003602801605</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>16/04/2009</td>
<td>FLUDARABIN, BUSULFAN, ANTITHYMOCYTE GLOBULIN</td>
</tr>
<tr>
<td>5003604701002</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>30/12/2005</td>
<td>POMP</td>
</tr>
<tr>
<td>5003604801205</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>22/12/2006</td>
<td>BU-CY</td>
</tr>
<tr>
<td>5003606201407</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>19/03/2007</td>
<td>HD MELPHALAN</td>
</tr>
<tr>
<td>5003617201021</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>13/11/2007</td>
<td>FLUDARABIN, BUSULFAN, CYCLOPHOSPHAMIDE, ATG</td>
</tr>
<tr>
<td>5003601601602</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>14/01/2009</td>
<td>CYCLOPHOSPHAMIDE, FLUDARABINE, METHOTREXATE</td>
</tr>
<tr>
<td>5003603201038</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>19/09/2007</td>
<td>MELPHALAN + FLUDARABIN</td>
</tr>
<tr>
<td>5003603801602</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>08/03/2007</td>
<td>TBI + ALEMTUZUMAB + CYCLOPHOSPHAMIDE</td>
</tr>
<tr>
<td>5003603801608</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>28/01/2009</td>
<td>FLAMSA + TBI</td>
</tr>
</tbody>
</table>

N = 15
Listing 6.6-10 Progression/relapse n°1 – Other treatments (MITT)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Arm of 2nd randomization</th>
<th>Other treatment</th>
<th>Date of other treatment</th>
<th>Specify other treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003101021631</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>07/02/2008</td>
<td>IBRITUMOMAB TIUXETAN</td>
</tr>
<tr>
<td>5003101031001</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>23/12/2003</td>
<td>CORTICOIDES</td>
</tr>
<tr>
<td>5003101251035</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>05/03/2007</td>
<td>MERCA TOPURINE METHOTREXATE</td>
</tr>
<tr>
<td>5003102541640</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>-</td>
<td>RADIOIMMUNOTHERAPY : IBRITUMOMAB TIUXETAN</td>
</tr>
<tr>
<td>5003103161041</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>10/05/2007</td>
<td>HUMAN IMMUNOGLOBULIN</td>
</tr>
<tr>
<td>5003604701002</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>08/06/2006</td>
<td>THORACOTOMY WITH RESECTION OF TUMOR - HISTOLOGY SHOWED NO VISIBLE LYMPHOMA ANYMORE</td>
</tr>
<tr>
<td>5003613701402</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>01/12/2010</td>
<td>MABTHERA</td>
</tr>
<tr>
<td>5003630201040</td>
<td>RITUXIMAB</td>
<td>Yes</td>
<td>20/08/2007</td>
<td>RITUXIMAB - BENDAMUSTIN</td>
</tr>
<tr>
<td>5003101351012</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>10/08/2006</td>
<td>CORTICOIDS</td>
</tr>
<tr>
<td>5003102411069</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>01/02/2008</td>
<td>CORTICOTHERAPY</td>
</tr>
<tr>
<td>5003605701601</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>28/07/2006</td>
<td>IBRITUMOMAB TIUXETAN (STOP : 04.08.2006)</td>
</tr>
<tr>
<td>5003610301613</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>18/10/2005</td>
<td>SPLENECTOMY</td>
</tr>
<tr>
<td>5003621201020</td>
<td>OBSERVATION</td>
<td>Yes</td>
<td>09/05/2006</td>
<td>MTX HIGH DOSE 2 CYCLES</td>
</tr>
</tbody>
</table>

N = 13
6.7. Safety evaluation

6.7.1. Extent of exposure to trial medication

Table 6.7-1 Maintenance – Frequency of percentage of planned dose received by cycle for Rituximab (MSAP)

<table>
<thead>
<tr>
<th>Rituximab : Dose received (% of planned dose)</th>
<th>Actual arm of maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RITUXIMAB</td>
</tr>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Cycle 1</td>
<td></td>
</tr>
<tr>
<td><75%</td>
<td>0</td>
</tr>
<tr>
<td>[75-90%]</td>
<td>5</td>
</tr>
<tr>
<td>[90-110%]</td>
<td>111</td>
</tr>
<tr>
<td>[110-125%]</td>
<td>0</td>
</tr>
<tr>
<td>>125%</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>116</td>
</tr>
<tr>
<td>Cycle 2</td>
<td></td>
</tr>
<tr>
<td><75%</td>
<td>0</td>
</tr>
<tr>
<td>[75-90%]</td>
<td>6</td>
</tr>
<tr>
<td>[90-110%]</td>
<td>94</td>
</tr>
<tr>
<td>[110-125%]</td>
<td>0</td>
</tr>
<tr>
<td>>125%</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
<tr>
<td>Cycle 3</td>
<td></td>
</tr>
<tr>
<td><75%</td>
<td>0</td>
</tr>
<tr>
<td>[75-90%]</td>
<td>5</td>
</tr>
<tr>
<td>[90-110%]</td>
<td>86</td>
</tr>
<tr>
<td>[110-125%]</td>
<td>0</td>
</tr>
<tr>
<td>>125%</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>91</td>
</tr>
<tr>
<td>Cycle 4</td>
<td></td>
</tr>
<tr>
<td><75%</td>
<td>0</td>
</tr>
<tr>
<td>[75-90%]</td>
<td>5</td>
</tr>
<tr>
<td>[90-110%]</td>
<td>84</td>
</tr>
<tr>
<td>[110-125%]</td>
<td>0</td>
</tr>
<tr>
<td>>125%</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>89</td>
</tr>
<tr>
<td>Cycle 5</td>
<td></td>
</tr>
<tr>
<td><75%</td>
<td>0</td>
</tr>
<tr>
<td>[75-90%]</td>
<td>5</td>
</tr>
<tr>
<td>[90-110%]</td>
<td>75</td>
</tr>
<tr>
<td>[110-125%]</td>
<td>0</td>
</tr>
<tr>
<td>>125%</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>80</td>
</tr>
<tr>
<td>Cycle 6</td>
<td></td>
</tr>
<tr>
<td><75%</td>
<td>0</td>
</tr>
<tr>
<td>[75-90%]</td>
<td>5</td>
</tr>
<tr>
<td>[90-110%]</td>
<td>73</td>
</tr>
<tr>
<td>[110-125%]</td>
<td>0</td>
</tr>
<tr>
<td>>125%</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>78</td>
</tr>
</tbody>
</table>
6.7.2. Overview of toxicity profile
<table>
<thead>
<tr>
<th>Cycle number</th>
<th>Grade allergy</th>
<th>RITUXIMAB</th>
<th>Actual arm of maintenance</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Grade</td>
<td>All Tox.</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>All</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>94</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>All</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>95</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>All</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>96</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>All</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>96</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>All</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>95</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>All</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>96</td>
<td>0</td>
</tr>
<tr>
<td>Grade auditory</td>
<td>RITUXIMAB</td>
<td>OBSERVATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-----------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>Grade</td>
<td>Grade</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tox.</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>88</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>91</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>91</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>73</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>82</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>63</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>75</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>48</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>94</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>72</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>73</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>34</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>94</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>71</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade blood</th>
<th>Actual arm of maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
</tr>
<tr>
<td></td>
<td>Tox.</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade auditory</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>Grade</td>
</tr>
<tr>
<td></td>
<td>Tox.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade blood</th>
<th>Actual arm of maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
</tr>
<tr>
<td></td>
<td>Tox.</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>
Grade cardiovascular

<table>
<thead>
<tr>
<th>Grade</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>>=3</th>
<th>NE</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>2</td>
<td>108</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>%</td>
<td>2</td>
<td>93</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>N</td>
<td>1</td>
<td>95</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>%</td>
<td>1</td>
<td>95</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>N</td>
<td>1</td>
<td>87</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>%</td>
<td>1</td>
<td>96</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>N</td>
<td>1</td>
<td>85</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>%</td>
<td>1</td>
<td>96</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>N</td>
<td>3</td>
<td>74</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>%</td>
<td>4</td>
<td>93</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>N</td>
<td>4</td>
<td>72</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>%</td>
<td>5</td>
<td>92</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Grade coagulation

<table>
<thead>
<tr>
<th>Grade</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>>=3</th>
<th>NE</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>4</td>
<td>104</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>%</td>
<td>3</td>
<td>90</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>N</td>
<td>1</td>
<td>92</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>%</td>
<td>1</td>
<td>92</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>N</td>
<td>1</td>
<td>84</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>%</td>
<td>1</td>
<td>92</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>N</td>
<td>3</td>
<td>80</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>%</td>
<td>3</td>
<td>90</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>N</td>
<td>2</td>
<td>72</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>%</td>
<td>3</td>
<td>90</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>N</td>
<td>2</td>
<td>71</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>%</td>
<td>3</td>
<td>91</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Grade skin</td>
<td>All</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>>=3</td>
<td>NE</td>
</tr>
<tr>
<td>------------</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>----</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>7</td>
<td>103</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>6</td>
<td>89</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>N</td>
<td>9</td>
<td>87</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>9</td>
<td>87</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>N</td>
<td>5</td>
<td>83</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>5</td>
<td>91</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>N</td>
<td>3</td>
<td>83</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>3</td>
<td>93</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>N</td>
<td>3</td>
<td>74</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>4</td>
<td>93</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>N</td>
<td>2</td>
<td>74</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>3</td>
<td>91</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade gastrointestinal</th>
<th>All</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>>=3</th>
<th>NE</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N</td>
<td>21</td>
<td>89</td>
<td>14</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>18</td>
<td>77</td>
<td>12</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>N</td>
<td>12</td>
<td>84</td>
<td>8</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>12</td>
<td>84</td>
<td>8</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>N</td>
<td>10</td>
<td>78</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>11</td>
<td>86</td>
<td>9</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>N</td>
<td>4</td>
<td>82</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>4</td>
<td>92</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>N</td>
<td>1</td>
<td>76</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>1</td>
<td>95</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>N</td>
<td>2</td>
<td>74</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>3</td>
<td>95</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>Grade hepatic</td>
<td>Actual arm of maintenance</td>
<td>OBSERVATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RITUXIMAB Grade</td>
<td>Grade</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>All Tox. 0 1 2 3 4 5 6</td>
<td>NE Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>10 100 7 2 1 0 0 1 6 116</td>
<td>11 79 8 2 0 1 1 29 119</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>9 86 6 2 1 0 0 1 5 100</td>
<td>9 66 7 2 0 1 1 24 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>8 88 8 0 0 0 0 0 4 100</td>
<td>5 76 3 0 2 0 2 19 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>4 84 4 0 0 0 0 3 91</td>
<td>2 71 0 1 1 0 1 29 102</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>4 92 4 0 0 0 0 3 100</td>
<td>2 70 0 1 1 0 1 28 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>6 80 6 0 0 0 0 3 89</td>
<td>2 60 1 1 0 0 0 26 88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>7 90 7 0 0 0 0 3 100</td>
<td>2 68 1 1 0 0 0 30 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>6 71 6 0 0 0 0 3 80</td>
<td>2 46 2 0 0 0 0 19 67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>8 89 8 0 0 0 0 4 100</td>
<td>3 69 3 0 0 0 0 28 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>5 71 5 0 0 0 0 2 78</td>
<td>1 33 1 0 0 0 0 14 48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>6 91 6 0 0 0 0 3 100</td>
<td>2 69 2 0 0 0 0 29 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade infection</td>
<td>Actual arm of maintenance</td>
<td>OBSERVATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>11 99 3 5 2 0 1 3 6 116</td>
<td>10 80 5 2 3 0 3 29 119</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>9 85 3 4 2 0 1 3 5 100</td>
<td>8 67 4 2 3 0 3 24 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>8 88 3 5 0 0 0 0 4 100</td>
<td>15 79 5 3 6 1 7 22 116</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>8 88 3 5 0 0 0 0 4 100</td>
<td>13 68 4 3 5 1 6 19 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>12 76 4 4 3 1 0 4 3 91</td>
<td>5 68 0 4 1 0 1 29 102</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>13 84 4 4 3 1 0 4 3 100</td>
<td>5 67 0 4 1 0 1 28 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>16 70 3 11 1 0 1 2 3 89</td>
<td>6 57 2 3 0 1 1 25 88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>18 79 3 12 1 0 1 2 3 100</td>
<td>7 65 2 3 0 1 1 28 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>11 66 3 7 1 0 1 3 80</td>
<td>3 45 1 2 0 0 0 19 67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>14 83 4 9 1 0 1 4 100</td>
<td>4 67 1 3 0 0 0 28 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>9 66 2 5 2 0 0 2 3 78</td>
<td>4 30 0 4 0 0 0 14 48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>12 85 3 6 3 0 0 3 4 100</td>
<td>8 63 0 8 0 0 0 29 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Grade Viral Infection

<table>
<thead>
<tr>
<th>Grade</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grade</td>
<td>Tox.</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>0</td>
</tr>
</tbody>
</table>

Grade Metabolic

<table>
<thead>
<tr>
<th>Grade</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grade</td>
<td>Tox.</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>10</td>
</tr>
<tr>
<td>Grade neurology</td>
<td>RITUXIMAB</td>
<td>OBSERVATION</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Grade</td>
<td>All Tox.</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>N</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>N</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>N</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>N</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>N</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>6</td>
</tr>
<tr>
<td>Grade pulmonary</td>
<td>Actual arm of maintenance</td>
<td>Grade pulmonary</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Grade</td>
<td>All Tox.</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>N</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>N</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>N</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>N</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>N</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>8</td>
</tr>
</tbody>
</table>
RITUXIMAB

<table>
<thead>
<tr>
<th>Grade renal</th>
<th>Actual arm of maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grade</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>%</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>%</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>%</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>%</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>%</td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>%</td>
</tr>
</tbody>
</table>

OBSERVATION

<table>
<thead>
<tr>
<th>Other Toxicity</th>
<th>Actual arm of maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grade</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>%</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>%</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>%</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>%</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>%</td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>%</td>
</tr>
</tbody>
</table>
Listing 6.7-1 Other toxicities during maintenance (MSAP)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Actual arm of maintenance</th>
<th>Other</th>
<th>Toxicity</th>
<th>Cycle number</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003101031001</td>
<td>RITUXIMAB YES</td>
<td>BONE PAIN</td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003101031621</td>
<td>RITUXIMAB YES</td>
<td>CLIMATERIC SYNDROME POST CHEMOTHERAPY</td>
<td></td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>5003101031634</td>
<td>RITUXIMAB YES</td>
<td>RIGHT HIP PAIN</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003101031634</td>
<td>RITUXIMAB YES</td>
<td>RIGHT HIP PAIN</td>
<td></td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003101031634</td>
<td>RITUXIMAB YES</td>
<td>SHOULDER PAIN</td>
<td></td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003101031634</td>
<td>RITUXIMAB YES</td>
<td>RIGHT HIP PAIN</td>
<td></td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003101031634</td>
<td>RITUXIMAB YES</td>
<td>SHOULDER PAIN</td>
<td></td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003101031634</td>
<td>RITUXIMAB YES</td>
<td>RIGHT HIP PAIN</td>
<td></td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5003101031634</td>
<td>RITUXIMAB YES</td>
<td>SHOULDER PAIN</td>
<td></td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5003101051405</td>
<td>RITUXIMAB YES</td>
<td>PLATELETS</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003101051405</td>
<td>RITUXIMAB YES</td>
<td>PLATELETS</td>
<td></td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003101071408</td>
<td>RITUXIMAB YES</td>
<td>DORSAL LESIONS</td>
<td></td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003101071417</td>
<td>RITUXIMAB YES</td>
<td>ASTHENIA</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003101071417</td>
<td>RITUXIMAB YES</td>
<td>ASTHENIA</td>
<td></td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003101071417</td>
<td>RITUXIMAB YES</td>
<td>ASTHENIA</td>
<td></td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003101071417</td>
<td>RITUXIMAB YES</td>
<td>ASTHENIA</td>
<td></td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5003101071417</td>
<td>RITUXIMAB YES</td>
<td>ASTHENIA</td>
<td></td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>5003101071417</td>
<td>RITUXIMAB YES</td>
<td>CONSTITUTIONAL SYNDROME</td>
<td></td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>5003101071417</td>
<td>RITUXIMAB YES</td>
<td>ASTHENIA</td>
<td></td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>5003101171633</td>
<td>RITUXIMAB YES</td>
<td>ANOREXIA</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003101171633</td>
<td>RITUXIMAB YES</td>
<td>ANOREXIA</td>
<td></td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003101171633</td>
<td>RITUXIMAB YES</td>
<td>ANOREXIA</td>
<td></td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5003101171633</td>
<td>RITUXIMAB YES</td>
<td>ASTHENIA</td>
<td></td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5003101171637</td>
<td>RITUXIMAB YES</td>
<td>ASTHENIA</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003101171644</td>
<td>RITUXIMAB YES</td>
<td>ASTHENIA</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003101171644</td>
<td>RITUXIMAB YES</td>
<td>ASTHENIA</td>
<td></td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003101171644</td>
<td>RITUXIMAB YES</td>
<td>ASTHENIA</td>
<td></td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003101171644</td>
<td>RITUXIMAB YES</td>
<td>ASTHENIA</td>
<td></td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003101171644</td>
<td>RITUXIMAB YES</td>
<td>ASTHENIA</td>
<td></td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5003101171644</td>
<td>RITUXIMAB YES</td>
<td>ASTHENIA</td>
<td></td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5003101171644</td>
<td>RITUXIMAB YES</td>
<td>ASTHENIA</td>
<td></td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>5003101171644</td>
<td>RITUXIMAB YES</td>
<td>ASTHENIA</td>
<td></td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>5003101171644</td>
<td>RITUXIMAB YES</td>
<td>ASTHENIA</td>
<td></td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>5003101171644</td>
<td>RITUXIMAB YES</td>
<td>ASTHENIA</td>
<td></td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>5003101211642</td>
<td>RITUXIMAB YES</td>
<td>PAIN-MUSCULO/NEURO (CRURALGIA)</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003101431608</td>
<td>RITUXIMAB YES</td>
<td>ASTHENIA</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003101431608</td>
<td>RITUXIMAB YES</td>
<td>ASTHENIA</td>
<td></td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003101431608</td>
<td>RITUXIMAB YES</td>
<td>ASTHENIA</td>
<td></td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>5003101481614</td>
<td>RITUXIMAB YES</td>
<td>NOSE INFECTION</td>
<td></td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>5003101491042</td>
<td>RITUXIMAB YES</td>
<td>FLUID RETENTION</td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003102171419</td>
<td>RITUXIMAB YES</td>
<td>CANKER OF RIGHT CHEEK (DUE TO PROTHESIS)</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003102441011</td>
<td>RITUXIMAB YES</td>
<td>ASTHENIA</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003102441011</td>
<td>RITUXIMAB YES</td>
<td>NERVOUS BREAKDOWN</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003102441011</td>
<td>RITUXIMAB YES</td>
<td>ASTHENIA</td>
<td></td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003102441011</td>
<td>RITUXIMAB YES</td>
<td>NERVOUS BREAKDOWN</td>
<td></td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003102441011</td>
<td>RITUXIMAB YES</td>
<td>ASTHENIA</td>
<td></td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003102441011</td>
<td>RITUXIMAB YES</td>
<td>NERVOUS BREAKDOWN</td>
<td></td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003102441011</td>
<td>RITUXIMAB YES</td>
<td>ASTHENIA</td>
<td></td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5003102441011</td>
<td>RITUXIMAB YES</td>
<td>NERVOUS BREAKDOWN</td>
<td></td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5003102441011</td>
<td>RITUXIMAB YES</td>
<td>ASTHENIA</td>
<td></td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Actual arm of maintenance</td>
<td>Other</td>
<td>Toxicity</td>
<td>Cycle number</td>
<td>Grade</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------------</td>
<td>-------</td>
<td>----------</td>
<td>--------------</td>
<td>-------</td>
</tr>
<tr>
<td>500310441011</td>
<td>RITUXIMAB</td>
<td></td>
<td>ASTHENIA</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>500310491619</td>
<td>RITUXIMAB</td>
<td></td>
<td>MOOD ALTERATION (DEPRESSED FEELING)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>500310491619</td>
<td>RITUXIMAB</td>
<td></td>
<td>HYPOXANOSIA + XEROSTOMIA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>500310491619</td>
<td>RITUXIMAB</td>
<td></td>
<td>FATIGUE</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>500310491619</td>
<td>RITUXIMAB</td>
<td></td>
<td>FATIGUE</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>500310491619</td>
<td>RITUXIMAB</td>
<td></td>
<td>FATIGUE</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>500310491619</td>
<td>RITUXIMAB</td>
<td></td>
<td>FATIGUE</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>500310491619</td>
<td>RITUXIMAB</td>
<td></td>
<td>FATIGUE</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>5003601501407</td>
<td>RITUXIMAB</td>
<td></td>
<td>ALOPECIA GRADE 1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5003601501407</td>
<td>RITUXIMAB</td>
<td></td>
<td>ALOPECIA GRADE 1</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>5003601501407</td>
<td>RITUXIMAB</td>
<td></td>
<td>ALOPECIA GRADE 1</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>500360181601</td>
<td>RITUXIMAB</td>
<td></td>
<td>SWEATING</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>500360181601</td>
<td>RITUXIMAB</td>
<td></td>
<td>HYPOGAMAGLOBULINEMIA</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>500360381404</td>
<td>RITUXIMAB</td>
<td></td>
<td>HERPES SIMPLEX LABIALIS</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>500360381404</td>
<td>RITUXIMAB</td>
<td></td>
<td>HERPES SIMPLEX LABIALIS</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>500360381601</td>
<td>RITUXIMAB</td>
<td></td>
<td>HEADACHE</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>500360381601</td>
<td>RITUXIMAB</td>
<td></td>
<td>HEADACHE</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>500360431202</td>
<td>RITUXIMAB</td>
<td></td>
<td>FATIGUE</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>500360431202</td>
<td>RITUXIMAB</td>
<td></td>
<td>FATIGUE</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>500360431202</td>
<td>RITUXIMAB</td>
<td></td>
<td>LOWER LEG CRAMP</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>500360431602</td>
<td>RITUXIMAB</td>
<td></td>
<td>FATIGUE</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>500360431602</td>
<td>RITUXIMAB</td>
<td></td>
<td>FATIGUE</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>500360431602</td>
<td>RITUXIMAB</td>
<td></td>
<td>FEVER</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>500360471002</td>
<td>RITUXIMAB</td>
<td></td>
<td>BONE PAIN</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>500360471002</td>
<td>RITUXIMAB</td>
<td></td>
<td>BONE PAIN</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>500360471002</td>
<td>RITUXIMAB</td>
<td></td>
<td>BONE PAIN</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>500360471602</td>
<td>RITUXIMAB</td>
<td></td>
<td>INFLAMMATION EYES</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>500360471602</td>
<td>RITUXIMAB</td>
<td></td>
<td>INFLAMMATION EYES</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>500360471602</td>
<td>RITUXIMAB</td>
<td></td>
<td>INFLAMMATION EYES</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>500360491004</td>
<td>RITUXIMAB</td>
<td></td>
<td>COUGH</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>500360491004</td>
<td>RITUXIMAB</td>
<td></td>
<td>ABDOMINAL PAIN</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>500360491004</td>
<td>RITUXIMAB</td>
<td></td>
<td>COUGH</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>500360491005</td>
<td>RITUXIMAB</td>
<td></td>
<td>FATIGUE</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>500360491006</td>
<td>RITUXIMAB</td>
<td></td>
<td>COMA DEPRESSED LEVEL OF CONCIOUSNESS</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>500360491603</td>
<td>RITUXIMAB</td>
<td></td>
<td>SUPERFICIAL BLEEDING AFTER REMOVAL OF PORTACATH</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>500360571401</td>
<td>RITUXIMAB</td>
<td></td>
<td>CONSTITUTIONAL : FATIGUE</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>500360571401</td>
<td>RITUXIMAB</td>
<td></td>
<td>CONSTITUTIONAL : FATIGUE</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>500360571401</td>
<td>RITUXIMAB</td>
<td></td>
<td>CONSTITUTIONAL : FATIGUE</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>500360571401</td>
<td>RITUXIMAB</td>
<td></td>
<td>CONSTITUTIONAL : FATIGUE</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>500360571401</td>
<td>RITUXIMAB</td>
<td></td>
<td>CONSTITUTIONAL : FATIGUE</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>500360571401</td>
<td>RITUXIMAB</td>
<td></td>
<td>PERONAEUS PARESIS LEFT</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>500360571401</td>
<td>RITUXIMAB</td>
<td></td>
<td>CONSTITUTIONAL : FATIGUE</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>500360620109</td>
<td>RITUXIMAB</td>
<td></td>
<td>FATIGUE</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>500360620109</td>
<td>RITUXIMAB</td>
<td></td>
<td>FATIGUE</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>500360620109</td>
<td>RITUXIMAB</td>
<td></td>
<td>FATIGUE</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Actual arm of maintenance</td>
<td>Other</td>
<td>Toxicity</td>
<td>Cycle number</td>
<td>Grade</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------------</td>
<td>---------</td>
<td>------------------</td>
<td>--------------</td>
<td>-------</td>
</tr>
<tr>
<td>5003606201019</td>
<td>RITUXIMAB YES</td>
<td>FATIGUE</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5003606201019</td>
<td>RITUXIMAB YES</td>
<td>FATIGUE</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5003606201019</td>
<td>RITUXIMAB YES</td>
<td>FATIGUE</td>
<td>6</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5003606201605</td>
<td>RITUXIMAB YES</td>
<td>ABDOMINAL PAIN</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5003606201605</td>
<td>RITUXIMAB YES</td>
<td>ABDOMINAL PAIN</td>
<td>6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5003610201206</td>
<td>RITUXIMAB YES</td>
<td>ALOPEZIA</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5003610701014</td>
<td>RITUXIMAB YES</td>
<td>LOSS OF APPETITE</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5003610701014</td>
<td>RITUXIMAB YES</td>
<td>PAIN BACK</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5003610701014</td>
<td>RITUXIMAB YES</td>
<td>LOSS OF APPETITE</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5003610701014</td>
<td>RITUXIMAB YES</td>
<td>PAIN BACK</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5003610701014</td>
<td>RITUXIMAB YES</td>
<td>NAUSEA</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5003610701014</td>
<td>RITUXIMAB YES</td>
<td>LOSS OF APPETITE</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5003610701014</td>
<td>RITUXIMAB YES</td>
<td>PAIN BACK</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5003614501022</td>
<td>RITUXIMAB YES</td>
<td>LEFT EAR PAIN</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5003614501022</td>
<td>RITUXIMAB YES</td>
<td>FATIGUE</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5003614501022</td>
<td>RITUXIMAB YES</td>
<td>MUSKULOSKELETAL PAIN</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5003614501022</td>
<td>RITUXIMAB YES</td>
<td>MUSKULOSKELETAL PAIN</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5003614501032</td>
<td>RITUXIMAB YES</td>
<td>FATIGUE</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5003616301615</td>
<td>RITUXIMAB YES</td>
<td>DENTAL - PERIODONTAL</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5003616301615</td>
<td>RITUXIMAB YES</td>
<td>DENTAL - TEETH</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5003617301616</td>
<td>RITUXIMAB YES</td>
<td>FATIGUE</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5003617301616</td>
<td>RITUXIMAB YES</td>
<td>FATIGUE</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5003618201030</td>
<td>RITUXIMAB YES</td>
<td>PAIN MUSCULO/SKELETAL</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5003618201030</td>
<td>RITUXIMAB YES</td>
<td>PAIN MUSCULO/SKELETAL</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5003618201030</td>
<td>RITUXIMAB YES</td>
<td>PAIN MUSCULO/SKELETAL</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5003618301405</td>
<td>RITUXIMAB YES</td>
<td>FATIGUE</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5003618301405</td>
<td>RITUXIMAB YES</td>
<td>HYPMAGNESIUM</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5003618301405</td>
<td>RITUXIMAB YES</td>
<td>NEUTROPENIA</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5003618301405</td>
<td>RITUXIMAB YES</td>
<td>FATIGUE</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5003618301405</td>
<td>RITUXIMAB YES</td>
<td>HYPMAGNESIUM</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5003618301405</td>
<td>RITUXIMAB YES</td>
<td>NEUTROPENIA</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5003618301405</td>
<td>RITUXIMAB YES</td>
<td>FATIGUE</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5003618301405</td>
<td>RITUXIMAB YES</td>
<td>NEUTROPENIA</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5003618301405</td>
<td>RITUXIMAB YES</td>
<td>FATIGUE</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5003618301405</td>
<td>RITUXIMAB YES</td>
<td>NEUTROPENIA</td>
<td>6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5003620501602</td>
<td>RITUXIMAB YES</td>
<td>ASTHENIA</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5003620501602</td>
<td>RITUXIMAB YES</td>
<td>NEW MOLES (SKIN)</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5003620501602</td>
<td>RITUXIMAB YES</td>
<td>TINNITUS</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5003622201014</td>
<td>RITUXIMAB YES</td>
<td>LEUKOPENIA</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5003630201621</td>
<td>RITUXIMAB YES</td>
<td>FATIGUE</td>
<td>6</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5003631021038</td>
<td>OBSERVATION YES</td>
<td>CONSTITUTIONAL (WEIGHT LOSS)</td>
<td>4</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>5003631021038</td>
<td>OBSERVATION YES</td>
<td>CONSTITUTIONAL (WEIGHT LOSS)</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>50036101051648</td>
<td>OBSERVATION YES</td>
<td>CONSTITUTIONAL SYMPTOMS = FATIGUE</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>50036101051648</td>
<td>OBSERVATION YES</td>
<td>CONSTITUTIONAL SYMPTOMS = FATIGUE</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>50036101051648</td>
<td>OBSERVATION YES</td>
<td>CONSTITUTIONAL SYMPTOMS = FATIGUE</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Actual arm of maintenance</td>
<td>Other</td>
<td>Toxicity</td>
<td>Cycle number</td>
<td>Grade</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------------</td>
<td>---------------</td>
<td>---------------------------</td>
<td>--------------</td>
<td>-------</td>
</tr>
<tr>
<td>5003101071643</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003101071643</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>MUCOSITIS</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003101071643</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003101191632</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>MUSCULAR PAIN</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003101191632</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>MUSCULAR PAIN</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>5003101211628</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>FATIGUE</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003101211630</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>INSOMNIA</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003101251021</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003101251021</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>ARTIFICIAL PAIN</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003101251205</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003101351012</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>DEPRESSION</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003101351012</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>DEPRESSION</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003101351012</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>DEPRESSION</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5003101351012</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>DEPRESSION</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>5003101351012</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>DEPRESSION</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>5003101431627</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003101461629</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003101461629</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>IMPOTENCE</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5003101621026</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>PNEUMOPATHY INTERSTINAL</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003101621055</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>PAIN PELVIS</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003101621055</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>LEGS OEDEMA</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003101621055</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>PAIN PELVIS</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003101621055</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>LEGS OEDEMA</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003101621055</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>PAIN PELVIS</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>5003101621055</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>LEGS OEDEMA</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>5003101621609</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>FATIGUE</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003101621609</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>PAIN (SHOULDER)</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003101621609</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>FATIGUE</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003101621609</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>PAIN (SHOULDER)</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003101641618</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003101641618</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>LOSS OF APPETITE</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003101641618</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003101641618</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003101641618</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>LOSS OF APPETITE</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003101641618</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5003101641618</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>WEIGHT GAIN</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5003101641618</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>5003101641618</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>ASTHENIA</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>5003102541636</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>FATIGUE</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003102541636</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>ANEREXIA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003102541636</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>FATIGUE</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003102541636</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>FATIGUE</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5003601601003</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>TASTE ALTERATION</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003601601003</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>ALOPECIA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003601601005</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>CHRONIC L LOWER EXTREMITY PAIN</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Actual arm of maintenance</td>
<td>Other</td>
<td>Toxicity</td>
<td>Cycle number</td>
<td>Grade</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------------</td>
<td>------------------------</td>
<td>-------------------------------</td>
<td>--------------</td>
<td>-------</td>
</tr>
<tr>
<td>5003601601005</td>
<td>OBSERVATION YES</td>
<td></td>
<td>FATIGUE</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003601601005</td>
<td>OBSERVATION YES</td>
<td></td>
<td>CHRONIC L LOWER EXTREMITY PAIN</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003601601005</td>
<td>OBSERVATION YES</td>
<td></td>
<td>FATIGUE</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003601601602</td>
<td>OBSERVATION YES</td>
<td></td>
<td>FATIGUE</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003601601602</td>
<td>OBSERVATION YES</td>
<td></td>
<td>PAIN RIGHT HIP/SHOULDER</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003601881602</td>
<td>OBSERVATION YES</td>
<td></td>
<td>FEVER</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003601881602</td>
<td>OBSERVATION YES</td>
<td></td>
<td>FEVER</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003602301009</td>
<td>OBSERVATION YES</td>
<td></td>
<td>LYMHPATICS</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003602301009</td>
<td>OBSERVATION YES</td>
<td></td>
<td>CONSTITUTIONAL</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003602301009</td>
<td>OBSERVATION YES</td>
<td></td>
<td>LYMHPATICS</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>5003602301009</td>
<td>OBSERVATION YES</td>
<td></td>
<td>CONSTITUTIONAL</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>5003602901402</td>
<td>OBSERVATION YES</td>
<td></td>
<td>WEIGHT LOSS</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003603701001</td>
<td>OBSERVATION YES</td>
<td></td>
<td>ALOPECIA</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003603701001</td>
<td>OBSERVATION YES</td>
<td></td>
<td>WEAKNESS</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003603701001</td>
<td>OBSERVATION YES</td>
<td></td>
<td>DYSGENSIA</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003603701001</td>
<td>OBSERVATION YES</td>
<td></td>
<td>ALOPECIA</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003603701001</td>
<td>OBSERVATION YES</td>
<td></td>
<td>WEAKNESS</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003603701001</td>
<td>OBSERVATION YES</td>
<td></td>
<td>DYSGENSIA</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003603701001</td>
<td>OBSERVATION YES</td>
<td></td>
<td>ALOPECIA</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003604901007</td>
<td>OBSERVATION YES</td>
<td></td>
<td>RIGHT LOWER LIMB PAIN</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003605701601</td>
<td>OBSERVATION YES</td>
<td></td>
<td>MUSCULOSKELETAL PAIN / BACK PAIN</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003605701601</td>
<td>OBSERVATION YES</td>
<td></td>
<td>MUSCULOSKELETAL PAIN / BACK PAIN</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003605701601</td>
<td>OBSERVATION YES</td>
<td></td>
<td>MUSCULOSKELETAL PAIN / BACK PAIN</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003605701601</td>
<td>OBSERVATION YES</td>
<td></td>
<td>MUSCULOSKELETAL PAIN / BACK PAIN</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5003605701601</td>
<td>OBSERVATION YES</td>
<td></td>
<td>MUSCULOSKELETAL PAIN / BACK PAIN</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>5003605701601</td>
<td>OBSERVATION YES</td>
<td></td>
<td>MUSCULOSKELETAL PAIN / BACK PAIN</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>5003606201029</td>
<td>OBSERVATION YES</td>
<td></td>
<td>PNP</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003606201620</td>
<td>OBSERVATION YES</td>
<td></td>
<td>FATIGUE</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003606201620</td>
<td>OBSERVATION YES</td>
<td></td>
<td>FATIGUE</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003606201620</td>
<td>OBSERVATION YES</td>
<td></td>
<td>PAIN (TRIGEMINUS)</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003606201620</td>
<td>OBSERVATION YES</td>
<td></td>
<td>FATIGUE</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003606201620</td>
<td>OBSERVATION YES</td>
<td></td>
<td>PAIN (TRIGEMINUS)</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5003606201620</td>
<td>OBSERVATION YES</td>
<td></td>
<td>FATIGUE</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5003606201620</td>
<td>OBSERVATION YES</td>
<td></td>
<td>PAIN (TRIGEMINUS)</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>5003606201620</td>
<td>OBSERVATION YES</td>
<td></td>
<td>FATIGUE</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>5003606301207</td>
<td>OBSERVATION YES</td>
<td></td>
<td>PAIN-PELVIC (INGUINAL HERNIA)</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5003606501409</td>
<td>OBSERVATION YES</td>
<td></td>
<td>COUGH</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003606501409</td>
<td>OBSERVATION YES</td>
<td></td>
<td>SORE THROAT</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003606501409</td>
<td>OBSERVATION YES</td>
<td></td>
<td>NIGHT SWEATS</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003606501409</td>
<td>OBSERVATION YES</td>
<td></td>
<td>COUGH</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003606501409</td>
<td>OBSERVATION YES</td>
<td></td>
<td>COUGH</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>5003606501601</td>
<td>OBSERVATION YES</td>
<td></td>
<td>ANXIETY</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003606501601</td>
<td>OBSERVATION YES</td>
<td></td>
<td>ANOREXIA</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003606501601</td>
<td>OBSERVATION YES</td>
<td></td>
<td>URINARY URGENCY</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003606501601</td>
<td>OBSERVATION YES</td>
<td></td>
<td>ANXIETY</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Table: Randomization and Toxicity

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Actual arm of maintenance</th>
<th>Other</th>
<th>Toxicity</th>
<th>Cycle number</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003606501601</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>ANXIETY</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003606501601</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>ANXIETY</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5003606501601</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>ANXIETY</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>5003606701003</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>BUCCAL INFECTION (CLINICAL)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003607201016</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>LOSS OF APPETITE</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>5003610701403</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>HEADPAIN</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003610701403</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>HEADPAIN</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003610701403</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>PAIN-VARIX NODE</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003612501011</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>FATIGUE</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003612501011</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>FATIGUE</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003612501011</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>EYE PAIN</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003612501011</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>FATIGUE</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5003612501011</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>FATIGUE</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5003612501011</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>PAIN-FOOT</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5003612501011</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>FATIGUE</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>5003612501011</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>FATIGUE</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>5003617201209</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>FATIGUE</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003617201209</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>FATIGUE</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5003617201209</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>FATIGUE</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5003617201209</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>FATIGUE</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5003617201209</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>FATIGUE</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>5003618301005</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>PAIN-ABDOMIN</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003618501025</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>LEFT ARM PAIN</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003619301621</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>ORAL MUCOSA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5003619301621</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>LETHARGY</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003619301621</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>DRY COUGH</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5003619301621</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>LETHARGY</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003619301621</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>DRY COUGH</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5003619301621</td>
<td>OBSERVATION</td>
<td>YES</td>
<td>DRY COUGH</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

N = 253
6.7.3. Serious adverse events

Listing 6.7-2 Serious adverse events declared to Pharmacovigilance department but not present in clinical database

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>First Randomization Date</th>
<th>Arm of treatment</th>
<th>Date of 2nd randomization</th>
<th>Arm of 2nd randomization</th>
<th>SAE diagnosis</th>
<th>SAE: date of start</th>
<th>AE/SAE: date of end</th>
<th>Outcome</th>
<th>Sponsor</th>
<th>Causality</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003613301007</td>
<td>14/11/2006</td>
<td>ARM A / R-ICE</td>
<td>31/01/2007</td>
<td>RITUXIMAB</td>
<td>ACUTE RENAL IMPAIEMENT</td>
<td>03/01/2007</td>
<td>08/01/2007</td>
<td>Recovered without sequelae</td>
<td>Related</td>
<td></td>
</tr>
<tr>
<td>5003613301007</td>
<td>14/11/2006</td>
<td>ARM B / R-DHAP</td>
<td>08/02/2007</td>
<td>OBSERVATION</td>
<td>FEVER, NAUSEA AND VOMITING</td>
<td>13/05/2007</td>
<td>-</td>
<td>Not yet recovered</td>
<td>Unrelated</td>
<td></td>
</tr>
</tbody>
</table>

N = 5

Listing 6.7-3 Serious adverse events within 100 days after ASCT (MSAP)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Actual arm of induction</th>
<th>Actual arm of maintenance</th>
<th>Sex</th>
<th>Age (years)</th>
<th>Adverse event description</th>
<th>Date of AE become serious</th>
<th>Non hematological toxicity grade</th>
<th>Hematological toxicity grade</th>
<th>Relation with study drugs</th>
<th>Action taken with study drug</th>
<th>AE outcome</th>
<th>Duration of AE serious (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003101431622</td>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>49</td>
<td>INTERSTITIAL PNEUMOPATHY</td>
<td>19/09/2005</td>
<td>SEVERE</td>
<td>No</td>
<td>No</td>
<td>RECOVERED/ RECOVERED WITHOUT SEQUELAE</td>
<td>-</td>
<td>15</td>
</tr>
<tr>
<td>5003101431622</td>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>49</td>
<td>BRUTAL NEUTROPENIA APPEARANCE</td>
<td>10/10/2005</td>
<td>UNKNOWN</td>
<td>SEVERE</td>
<td>Yes</td>
<td>RECOVERED/ RECOVERED WITHOUT SEQUELAE</td>
<td>150</td>
<td>3</td>
</tr>
<tr>
<td>5003101491042</td>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>46</td>
<td>RESPIRATORY DISTRESS WITH SEPTICEMIA</td>
<td>26/05/2006</td>
<td>LIFE THREATENING</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>RECOVERED WITH SEQUELAE</td>
<td>1600</td>
<td>3</td>
</tr>
<tr>
<td>5003101641623</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>62</td>
<td>PERSISTANT COUGH -> PULMONARY INFILTRATE ON CT SCAN</td>
<td>28/02/2006</td>
<td>MODERATE</td>
<td>NORMAL</td>
<td>No</td>
<td>YES</td>
<td>ONGOING / PERSISTANT</td>
<td>20</td>
</tr>
<tr>
<td>5003601401602</td>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>56</td>
<td>SEPTICAEMIA (STREPTOCOCCUS PNEUMONIAE)</td>
<td>28/01/2004</td>
<td>SEVERE</td>
<td>LIFE THREATENING</td>
<td>No</td>
<td>No</td>
<td>RECOVERED/ RECOVERED WITHOUT SEQUELAE</td>
<td>20</td>
</tr>
<tr>
<td>5003601401602</td>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>41</td>
<td>septicaemia</td>
<td>04/11/2004</td>
<td>LIFE THREATENING</td>
<td>LIFE THREATENING</td>
<td>No</td>
<td>No</td>
<td>RECOVERED/ RECOVERED WITHOUT SEQUELAE</td>
<td>3</td>
</tr>
<tr>
<td>5003601401602</td>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>41</td>
<td>HYPOTENSION</td>
<td>04/11/2004</td>
<td>LIFE THREATENING</td>
<td>-</td>
<td>No</td>
<td>No</td>
<td>RECOVERED/ RECOVERED WITHOUT SEQUELAE</td>
<td>3</td>
</tr>
<tr>
<td>5003601401602</td>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>41</td>
<td>GASTRO INTESTINAL SYMPTOMS (DIARRHEA)</td>
<td>04/11/2004</td>
<td>SEVERE</td>
<td>-</td>
<td>No</td>
<td>No</td>
<td>RECOVERED/ RECOVERED WITHOUT SEQUELAE</td>
<td>3</td>
</tr>
<tr>
<td>5003601401602</td>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>53</td>
<td>CATHETER RELATED INFECTION</td>
<td>02/11/2004</td>
<td>SEVERE</td>
<td>MODERATE</td>
<td>No</td>
<td>No</td>
<td>RECOVERED/ RECOVERED WITHOUT SEQUELAE</td>
<td>4</td>
</tr>
<tr>
<td>5003604701015</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>56</td>
<td>PANCYTOPENIA, COPOSTASIS</td>
<td>23/03/2008</td>
<td>MILD</td>
<td>MILD</td>
<td>No</td>
<td>No</td>
<td>RECOVERED/ RECOVERED WITHOUT SEQUELAE</td>
<td>3</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Actual arm of induction</td>
<td>Actual arm of maintenance</td>
<td>Sex</td>
<td>Age (years)</td>
<td>Adverse event description</td>
<td>Date of AE</td>
<td>Non hematological toxicity grade</td>
<td>Hematological toxicity grade</td>
<td>Relation with study drugs</td>
<td>Action taken with study drug</td>
<td>AE outcome</td>
<td>Duration of AE serious (days)</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------</td>
<td>---------------------------</td>
<td>---------</td>
<td>-------------</td>
<td>--</td>
<td>------------</td>
<td>---------------------------------</td>
<td>----------------------------</td>
<td>---------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>5003604901004</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>52</td>
<td>LINE SEPSIS - PSEUDOMONAS AERUGINOSA</td>
<td>21/06/2006</td>
<td>SEVERE</td>
<td>SEVERE</td>
<td>No</td>
<td>Yes</td>
<td>RECOVERED/ RECOVERED WITHOUT SEQUELAE</td>
<td>13</td>
</tr>
<tr>
<td>5003604901603</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>62</td>
<td>CMV INFECTION</td>
<td>19/07/2008</td>
<td>SEVERE</td>
<td>MODERATE</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED/ RECOVERED WITHOUT SEQUELAE</td>
<td>5</td>
</tr>
<tr>
<td>5003604901603</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>62</td>
<td>SUPERFICIAL BLEEDING AFTER REMOVAL OF PORTACATH</td>
<td>12/08/2008</td>
<td>MILD</td>
<td>MODERATE</td>
<td>No</td>
<td>No</td>
<td>RECOVERED/ RECOVERED WITHOUT SEQUELAE</td>
<td>1</td>
</tr>
<tr>
<td>5003604901603</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>62</td>
<td>THROMBOCYTOPENIA</td>
<td>17/08/2008</td>
<td>-</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED/ RECOVERED WITHOUT SEQUELAE</td>
<td>3</td>
</tr>
<tr>
<td>5003604901603</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>62</td>
<td>BRONCHOPNEUMONIA, EXTENSIVE DIFFUSE ALVEOLAR DAMAGE</td>
<td>04/09/2008</td>
<td>DEATH</td>
<td>-</td>
<td>Yes</td>
<td>No</td>
<td>FATAL / DEATH</td>
<td>9</td>
</tr>
<tr>
<td>5003605701401</td>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>30</td>
<td>HOSPITALIZATION DUE TO PNEUMONIA</td>
<td>14/02/2007</td>
<td>SEVERE</td>
<td>MILD</td>
<td>No</td>
<td>No</td>
<td>RECOVERED/ RECOVERED WITHOUT SEQUELAE</td>
<td>9</td>
</tr>
<tr>
<td>5003606201617</td>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>54</td>
<td>INFECTION, FEVER</td>
<td>12/01/2006</td>
<td>SEVERE</td>
<td>-</td>
<td>No</td>
<td>Yes</td>
<td>RECOVERED/ RECOVERED WITHOUT SEQUELAE</td>
<td>13</td>
</tr>
<tr>
<td>5003607501401</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>54</td>
<td>FOLLOWING FIRST RITUXIMAB MAINTENANCE NEUTROPHILS 0.21 ABSOLUTE VALUE</td>
<td>03/01/2007</td>
<td>-</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED/ RECOVERED WITHOUT SEQUELAE</td>
<td>9</td>
</tr>
<tr>
<td>50036080701013</td>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>54</td>
<td>GASTROINTESTINAL BLEEDING (NEUTROPENIC COLITIS)</td>
<td>03/09/2007</td>
<td>SEVERE</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED/ RECOVERED WITHOUT SEQUELAE</td>
<td>4</td>
</tr>
<tr>
<td>5003610501402</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>58</td>
<td>ACQUIRED TYPE 4 RENAL TUBULAR ACIDOSIS CAUSING REFRACTORY HYPERKALEMIA GRADE 2 FROM 05/01/2007-06/01/2007 GRADE 3 FROM 06/01/2007-09/01/2007, DECREASE GRADE 2 09/012007-11/01/2007 THEN FULLY RESOLVED</td>
<td>05/01/2007</td>
<td>SEVERE</td>
<td>-</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED WITH SEQUELAE</td>
<td>6</td>
</tr>
<tr>
<td>5003810510505</td>
<td>ARM A / R-ICE</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>64</td>
<td>HEARING LOSS</td>
<td>03/04/2007</td>
<td>SEVERE</td>
<td>-</td>
<td>Yes</td>
<td>No</td>
<td>ONGOING / PERSISTANT</td>
<td>-</td>
</tr>
<tr>
<td>5003810510516</td>
<td>ARM A / R-ICE</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>36</td>
<td>Cardiac infarction</td>
<td>28/06/2004</td>
<td>SEVERE</td>
<td>MILD</td>
<td>No</td>
<td>No</td>
<td>RECOVERED/ RECOVERED WITHOUT SEQUELAE</td>
<td>4</td>
</tr>
<tr>
<td>50038101071643</td>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>FEMALE</td>
<td>58</td>
<td>SEPTICEMIA STAPHYLOCOCCUS EPIDERMIDIS PNEUMOPATH</td>
<td>07/05/2008</td>
<td>LIFE THREATENING</td>
<td>SEVERE</td>
<td>Yes</td>
<td>No</td>
<td>FATAL / DEATH</td>
<td>8</td>
</tr>
<tr>
<td>5003810141624</td>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>FEMALE</td>
<td>64</td>
<td>CLOSTRIDUM DIFFICILE INFECTION WITH THROMBOPENIA</td>
<td>13/12/2005</td>
<td>SEVERE</td>
<td>LIFE THREATENING</td>
<td>No</td>
<td>No</td>
<td>RECOVERED/ RECOVERED WITHOUT SEQUELAE</td>
<td>50</td>
</tr>
<tr>
<td>50038101621026</td>
<td>ARM A / R-ICE</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>64</td>
<td>PNEUMOPATH INTERSTITIAL</td>
<td>15/11/2005</td>
<td>MODERATE</td>
<td>MODERATE</td>
<td>No</td>
<td>No</td>
<td>RECOVERED/ RECOVERED WITHOUT SEQUELAE</td>
<td>8</td>
</tr>
<tr>
<td>50038101621615</td>
<td>ARM A / R-ICE</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>64</td>
<td>HEPATITIS</td>
<td>14/10/2004</td>
<td>SEVERE</td>
<td>NORMAL</td>
<td>No</td>
<td>No</td>
<td>RECOVERED/ RECOVERED WITHOUT SEQUELAE</td>
<td>33</td>
</tr>
<tr>
<td>50038102411069</td>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>63</td>
<td>MALIGNANT CHICKEN POX INFECTION</td>
<td>23/11/2007</td>
<td>SEVERE</td>
<td>SEVERE</td>
<td>No</td>
<td>No</td>
<td>RECOVERED/ RECOVERED WITHOUT SEQUELAE</td>
<td>14</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Actual arm of induction</td>
<td>Actual arm of maintenance</td>
<td>Sex</td>
<td>Age (years)</td>
<td>Adverse event description</td>
<td>Date of AE become serious</td>
<td>Non hematological toxicity grade</td>
<td>Hematological toxicity grade</td>
<td>Relation with study drugs</td>
<td>Action taken with study drug</td>
<td>AE outcome</td>
<td>Duration of AE serious (days)</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------</td>
<td>--------------------------</td>
<td>-----</td>
<td>-------------</td>
<td>---</td>
<td>----------------------------</td>
<td>---------------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>5003601801607</td>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>FEMALE</td>
<td>40</td>
<td>PERIPHERAL PARESIS OF NERVUS VII LEFT (PROBABLE ASSOCIATED WITH PREVIOUS HERPES ZOSTER)</td>
<td>14/05/2008</td>
<td>SEVERE</td>
<td>MILD</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED/RECOVERED WITHOUT SEQUELAE</td>
<td>30</td>
</tr>
<tr>
<td>5003602901601</td>
<td>ARM A / R-ICE</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>63</td>
<td>SUBDURAL HEMATOMA. ON 12/01/05 THE PATIENT WAS ADMITTED FOR FURTHER THERAPY. ON THE 17/01/05 HE COMPLAINED ABOUT HEADACHES AND THUS UNDERWENT HEAD CT SCAN.</td>
<td>17/01/2005</td>
<td>SEVERE</td>
<td>NORMAL</td>
<td>No</td>
<td>No</td>
<td>RECOVERED/RECOVERED WITHOUT SEQUELAE</td>
<td>34</td>
</tr>
<tr>
<td>5003603201053</td>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>52</td>
<td>DIARRHEA</td>
<td>24/03/2008</td>
<td>MODERATE</td>
<td>-</td>
<td>No</td>
<td>No</td>
<td>RECOVERED/RECOVERED WITHOUT SEQUELAE</td>
<td>3</td>
</tr>
<tr>
<td>5003603701001</td>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>64</td>
<td>ANEMIA CAUSED BY INSUFFICIENT ERYTHROPOIESIS AFTER STEM CELL TRANSPLANTATION</td>
<td>13/06/2005</td>
<td>UNKNOWN</td>
<td>SEVERE</td>
<td>No</td>
<td>No</td>
<td>RECOVERED/RECOVERED WITHOUT SEQUELAE</td>
<td>3</td>
</tr>
<tr>
<td>5003603701207</td>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>64</td>
<td>INFECTION (BACTEREMIA WITH PSEUDOMONAS AERUGINOSA, ENTEROCoccus GALLinarum and STAPH. EPIDERMIS)</td>
<td>20/04/2005</td>
<td>SEVERE</td>
<td>-</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED/RECOVERED WITHOUT SEQUELAE</td>
<td>5</td>
</tr>
<tr>
<td>5003606301604</td>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>37</td>
<td>DENTAL CARIES - REQUIRING FULL UPPER DENTAL CLEARANCE AND PARTIAL LOWER DENTAL CLEARANCE / DENTAL PREVIOUSLY REPORTED HISTORY OF DENTAL DECAY OVER MANY YEARS</td>
<td>20/02/2005</td>
<td>MODERATE</td>
<td>NORMAL</td>
<td>No</td>
<td>No</td>
<td>RECOVERED/RECOVERED WITHOUT SEQUELAE</td>
<td>68</td>
</tr>
<tr>
<td>5003606301604</td>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>61</td>
<td>SOCIAL HOSPITAL ADMISSION</td>
<td>24/09/2004</td>
<td>MODERATE</td>
<td>LIFE THREATENING</td>
<td>No</td>
<td>No</td>
<td>RECOVERED/RECOVERED WITHOUT SEQUELAE</td>
<td>10</td>
</tr>
<tr>
<td>5003606301604</td>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>61</td>
<td>ACUTE RENAL FAILURE SECONDARY TO PRE RENAL DEHYDRATATION WITH DIARRHOEA</td>
<td>11/10/2004</td>
<td>MODERATE</td>
<td>LIFE THREATENING</td>
<td>No</td>
<td>No</td>
<td>RECOVERED/RECOVERED WITHOUT SEQUELAE</td>
<td>3</td>
</tr>
<tr>
<td>5003620501406</td>
<td>ARM A / R-ICE</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>44</td>
<td>DIARRHOEA AND VOMITING</td>
<td>12/12/2007</td>
<td>SEVERE</td>
<td>MILD</td>
<td>No</td>
<td>No</td>
<td>RECOVERED/RECOVERED WITHOUT SEQUELAE</td>
<td>5</td>
</tr>
<tr>
<td>5003622501604</td>
<td>ARM A / R-ICE</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>47</td>
<td>CHEST INFECTION</td>
<td>10/01/2008</td>
<td>SEVERE</td>
<td>LIFE THREATENING</td>
<td>No</td>
<td>No</td>
<td>RECOVERED/RECOVERED WITHOUT SEQUELAE</td>
<td>4</td>
</tr>
</tbody>
</table>

N = 37
Listing 6.7-4 Serious adverse events more than 100 days after ASCT (MSAP)

<table>
<thead>
<tr>
<th>Randomization Number</th>
<th>Actual arm of induction</th>
<th>Actual arm of maintenance</th>
<th>Sex</th>
<th>Age (years)</th>
<th>Adverse event description</th>
<th>Date of AE become serious</th>
<th>Non hematological toxicity grade</th>
<th>Hematological toxicity grade</th>
<th>Relation with study drugs</th>
<th>Action taken with study drug</th>
<th>AE outcome</th>
<th>Duration of AE serious (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5003101021601</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>48</td>
<td>BRONCHI SUPER INFECTION DOCUMENTED : PYOCYANIC</td>
<td>10/01/2005</td>
<td>SEVERE</td>
<td>SEVERE</td>
<td>Yes</td>
<td>Yes</td>
<td>RECOVERED/RECOVERED WITHOUT SEQUELAE</td>
<td>24</td>
</tr>
<tr>
<td>5003101031621</td>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>55</td>
<td>SEPTIC SHOCK WITH PNEUMONIA</td>
<td>06/07/2006</td>
<td>LIFE THREATENING</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>Yes</td>
<td>RECOVERED/RECOVERED WITHOUT SEQUELAE</td>
<td>33</td>
</tr>
<tr>
<td>5003101031621</td>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>55</td>
<td>PULMONARY ASPERGILLIOSIS</td>
<td>06/07/2006</td>
<td>LIFE THREATENING</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>Yes</td>
<td>RECOVERED/RECOVERED WITHOUT SEQUELAE</td>
<td>50</td>
</tr>
<tr>
<td>5003101031621</td>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>55</td>
<td>BRONCHITIS TO PNEUMOCOCCUS</td>
<td>18/01/2007</td>
<td>SEVERE</td>
<td>MILD</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED/RECOVERED WITHOUT SEQUELAE</td>
<td>64</td>
</tr>
<tr>
<td>5003101031621</td>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>55</td>
<td>PULMONARY INFECTION TO PSEUDOMONAS AERUGINOSA WITH HEMOPTYSIA</td>
<td>02/06/2007</td>
<td>SEVERE</td>
<td>MILD</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED/RECOVERED WITHOUT SEQUELAE</td>
<td>72</td>
</tr>
<tr>
<td>5003101431608</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>64</td>
<td>PULMONARY INFECTION WITH HAEOMOPHILUS INFLUENZAE</td>
<td>16/03/2005</td>
<td>SEVERE</td>
<td>UNKNOWN</td>
<td>No</td>
<td>No</td>
<td>RECOVERED/RECOVERED WITHOUT SEQUELAE</td>
<td>13</td>
</tr>
<tr>
<td>5003101431608</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>64</td>
<td>SECONDARY MALIGNANCY : HEPATIC ADENOCARCINOMA</td>
<td>24/04/2007</td>
<td>LIFE THREATENING</td>
<td>NORMAL</td>
<td>No</td>
<td>No</td>
<td>FATAL / DEATH</td>
<td>361</td>
</tr>
<tr>
<td>5003102161604</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>55</td>
<td>NOSE MELANOMA</td>
<td>15/03/2009</td>
<td>SEVERE</td>
<td>-</td>
<td>No</td>
<td>No</td>
<td>RECOVERED/RECOVERED WITHOUT SEQUELAE</td>
<td>184</td>
</tr>
<tr>
<td>5003601401002</td>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>56</td>
<td>ACUTE NON-LYMPHOCYTIC LEUKEMIA = AML</td>
<td>15/06/2006</td>
<td>UNKNOWN</td>
<td>UNKNOWN</td>
<td>Yes</td>
<td>-</td>
<td>FATAL / DEATH</td>
<td>24</td>
</tr>
<tr>
<td>5003601401004</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>62</td>
<td>FEVER AND MENTAL DISTURBANCES. VARICELLA LESIONS IN THE SKIN. VARICELLA ZOSTER VIRUS SEEN IN BLISTERS</td>
<td>26/06/2007</td>
<td>DEATH</td>
<td>NORMAL</td>
<td>Yes</td>
<td>Yes</td>
<td>FATAL / DEATH</td>
<td>61</td>
</tr>
<tr>
<td>5003601401602</td>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>41</td>
<td>MYOCARDITIS</td>
<td>06/08/2006</td>
<td>LIFE THREATENING</td>
<td>UNKNOWN</td>
<td>Yes</td>
<td>No</td>
<td>FATAL / DEATH</td>
<td>0</td>
</tr>
<tr>
<td>5003601401604</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>62</td>
<td>PNEUMOCYSTIS IIROVECII</td>
<td>17/07/2006</td>
<td>SEVERE</td>
<td>SEVERE</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED/RECOVERED WITHOUT SEQUELAE</td>
<td>19</td>
</tr>
<tr>
<td>5003602201601</td>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>55</td>
<td>HERPES ZOSTER INFECTION WITH INVOLVEMENT OF FACE, LEFT TRIGEMINUS</td>
<td>09/05/2005</td>
<td>MODERATE</td>
<td>NORMAL</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED/RECOVERED WITHOUT SEQUELAE</td>
<td>122</td>
</tr>
<tr>
<td>5003604901004</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>52</td>
<td>FEVER, SUSP. PNEUMONIA</td>
<td>04/02/2007</td>
<td>MODERATE</td>
<td>SEVERE</td>
<td>No</td>
<td>Yes</td>
<td>RECOVERED/RECOVERED WITHOUT SEQUELAE</td>
<td>7</td>
</tr>
<tr>
<td>5003605701401</td>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>30</td>
<td>BACTERIAL PNEUMONIA</td>
<td>18/09/2007</td>
<td>MODERATE</td>
<td>NORMAL</td>
<td>Yes</td>
<td>Yes</td>
<td>RECOVERED/RECOVERED WITHOUT SEQUELAE</td>
<td>3</td>
</tr>
<tr>
<td>5003605701401</td>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>30</td>
<td>PERONEAUS PARESIS LEFT AND CRUSH KIDNEY (GRADE 3) DUE TO Rhabdomyolysis after Heroin Injection and Unresponsive Syndrome (Trauma)</td>
<td>17/10/2007</td>
<td>SEVERE</td>
<td>NORMAL</td>
<td>No</td>
<td>Yes</td>
<td>RECOVERED WITH SEQUELAE</td>
<td>9</td>
</tr>
<tr>
<td>Randomization Number</td>
<td>Actual arm of inuction</td>
<td>Actual arm of maintenance</td>
<td>Sex</td>
<td>Age (years)</td>
<td>Adverse event description</td>
<td>Date of AE become serious</td>
<td>Non hematological toxicity grade</td>
<td>Hematological toxicity grade</td>
<td>Relation with study drugs</td>
<td>Action taken with study drug</td>
<td>AE outcome</td>
<td>Duration of AE serious (days)</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>---------------------------</td>
<td>-----</td>
<td>-------------</td>
<td>---------------------------</td>
<td>-------------------------</td>
<td>-------------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>-----------------------------</td>
<td>------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>5003610501402</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>58</td>
<td>NEUTROPENIC SEPSIS</td>
<td>21/06/2007</td>
<td>SEVERE</td>
<td>SEVERE</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED/RECOVERED WITHOUT SEQUELAE</td>
<td>6</td>
</tr>
<tr>
<td>5003610501402</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>58</td>
<td>CHEST INFECTION</td>
<td>21/08/2007</td>
<td>MODERATE</td>
<td>-</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED/RECOVERED WITHOUT SEQUELAE</td>
<td>11</td>
</tr>
<tr>
<td>5003610501402</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>58</td>
<td>LOWER RESPIRATORY TRACT INFECTION</td>
<td>01/02/2008</td>
<td>SEVERE</td>
<td>-</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED WITH SEQUELAE</td>
<td>7</td>
</tr>
<tr>
<td>5003610501402</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>58</td>
<td>RESPIRATORY TRACT INFECTION WITH NEUTROPENIA</td>
<td>14/04/2008</td>
<td>LIFE THREATENING</td>
<td>SEVERE</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED/RECOVERED WITHOUT SEQUELAE</td>
<td>14</td>
</tr>
<tr>
<td>5003616301615</td>
<td>ARM A / R-ICE</td>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>63</td>
<td>CHRONIC COUGH, DRY NON PRODUCTIVE ASSOCIATED WITH FEBRILE ILLNESS FOR 2 WEEKS. DIAGNOSED WITH PNEUMONIA 14082006</td>
<td>15/08/2006</td>
<td>DEATH</td>
<td>MILD</td>
<td>Yes</td>
<td>No</td>
<td>FATAL / DEATH</td>
<td>17</td>
</tr>
<tr>
<td>5003618201030</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>45</td>
<td>HERPES ZOSTER (OPHTALMIC NERVE RIGHT)</td>
<td>19/05/2007</td>
<td>SEVERE</td>
<td>MILD</td>
<td>No</td>
<td>Yes</td>
<td>RECOVERED/RECOVERED WITHOUT SEQUELAE</td>
<td>60</td>
</tr>
<tr>
<td>5003618201030</td>
<td>ARM B / R-DHAP</td>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>45</td>
<td>INTERMITTEND HYPESTHESIA OF LEFT LEG, HAND AND LIPS, TONGUE. ON 02/09/2007 REDUCTION OF VISUAL FIELD LEFT WITH SPONTANEOUS REMISSION</td>
<td>03/09/2007</td>
<td>MILD</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td>RECOVERED/RECOVERED WITHOUT SEQUELAE</td>
<td>3</td>
</tr>
<tr>
<td>5003101141624</td>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>FEMALE</td>
<td>64</td>
<td>DISCONFORT WITH TREMOR THAN FAINTING AND FINALLY REGAIN CONSCIOUSNESS WITHOUT DEFICIENCY. REACTION TO METRONIDAZOL (CONFUSION) + CLOSTRIDIUM DIFFICILE INFECTION</td>
<td>29/01/2006</td>
<td>SEVERE</td>
<td>SEVERE</td>
<td>No</td>
<td>No</td>
<td>RECOVERED/RECOVERED WITHOUT SEQUELAE</td>
<td>19</td>
</tr>
<tr>
<td>5003101541415</td>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>53</td>
<td>STREPTOCOCCUS PNEUMONIAE</td>
<td>14/07/2007</td>
<td>SEVERE</td>
<td>-</td>
<td>No</td>
<td>No</td>
<td>RECOVERED/RECOVERED WITHOUT SEQUELAE</td>
<td>13</td>
</tr>
<tr>
<td>5003606301207</td>
<td>ARM A / R-ICE</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>37</td>
<td>HIGH GRADE UROTHELIAL CARCINOMA</td>
<td>20/03/2008</td>
<td>LIFE THREATENING</td>
<td>-</td>
<td>Yes</td>
<td>No</td>
<td>FATAL / DEATH</td>
<td>568</td>
</tr>
<tr>
<td>5003606301604</td>
<td>ARM B / R-DHAP</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>61</td>
<td>MYELODYSPLASTIC SYNDROME</td>
<td>05/02/2008</td>
<td>-</td>
<td>MODERATE</td>
<td>Yes</td>
<td>-</td>
<td>FATAL / DEATH</td>
<td>503</td>
</tr>
<tr>
<td>5003620501406</td>
<td>ARM A / R-ICE</td>
<td>OBSERVATION</td>
<td>MALE</td>
<td>44</td>
<td>GRADE 4 NEUTROPENIA. PROBABLY RITUXIMAB INDUCED, NO SEQUELAE, MORE INFORMATION TO FOLLOW, NEUT 0.13</td>
<td>13/03/2008</td>
<td>-</td>
<td>LIFE THREATENING</td>
<td>Yes</td>
<td>No</td>
<td>RECOVERED/RECOVERED WITHOUT SEQUELAE</td>
<td>13</td>
</tr>
</tbody>
</table>

N = 28
6.7.4. Laboratory tests

Table 6.7-3 Hemoglobin (MSAP)

Actual arm of maintenance=RITUXIMAB

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>Std</th>
<th>Median</th>
<th>Min</th>
<th>Max</th>
<th>N</th>
<th>Mean</th>
<th>Std</th>
<th>Median</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>116</td>
<td>13.28</td>
<td>1.736</td>
<td>13.55</td>
<td>7.9</td>
<td>17.4</td>
<td>116</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>C1 between D7 and D10</td>
<td>108</td>
<td>12.70</td>
<td>1.832</td>
<td>12.65</td>
<td>7.6</td>
<td>17.9</td>
<td>108</td>
<td>-0.63</td>
<td>1.472</td>
<td>-0.50</td>
<td>-3.5</td>
<td>5.0</td>
</tr>
<tr>
<td>C1 around D14</td>
<td>107</td>
<td>11.54</td>
<td>1.775</td>
<td>11.60</td>
<td>7.6</td>
<td>15.8</td>
<td>107</td>
<td>-1.75</td>
<td>1.403</td>
<td>-1.70</td>
<td>-5.6</td>
<td>2.6</td>
</tr>
<tr>
<td>C2 pre-cycle</td>
<td>115</td>
<td>11.21</td>
<td>1.481</td>
<td>11.40</td>
<td>7.0</td>
<td>15.1</td>
<td>115</td>
<td>-2.07</td>
<td>1.321</td>
<td>-1.90</td>
<td>-5.6</td>
<td>1.4</td>
</tr>
<tr>
<td>C2 between D7 and D10</td>
<td>103</td>
<td>11.10</td>
<td>1.483</td>
<td>11.20</td>
<td>7.3</td>
<td>14.8</td>
<td>103</td>
<td>-2.27</td>
<td>1.772</td>
<td>-2.40</td>
<td>-6.5</td>
<td>4.2</td>
</tr>
<tr>
<td>C2 around D14</td>
<td>103</td>
<td>10.24</td>
<td>1.385</td>
<td>10.30</td>
<td>7.6</td>
<td>14.8</td>
<td>103</td>
<td>-2.91</td>
<td>1.667</td>
<td>-3.00</td>
<td>-6.3</td>
<td>2.8</td>
</tr>
<tr>
<td>C3 pre-cycle</td>
<td>114</td>
<td>10.38</td>
<td>1.432</td>
<td>10.40</td>
<td>6.9</td>
<td>14.8</td>
<td>114</td>
<td>-2.92</td>
<td>1.691</td>
<td>-3.10</td>
<td>-7.0</td>
<td>2.0</td>
</tr>
<tr>
<td>C3 between D7 and D10</td>
<td>106</td>
<td>10.08</td>
<td>1.317</td>
<td>9.90</td>
<td>6.4</td>
<td>14.1</td>
<td>106</td>
<td>-3.28</td>
<td>2.092</td>
<td>-3.20</td>
<td>-8.3</td>
<td>4.4</td>
</tr>
<tr>
<td>C3 around D14</td>
<td>105</td>
<td>9.63</td>
<td>1.368</td>
<td>9.60</td>
<td>6.1</td>
<td>13.5</td>
<td>105</td>
<td>-3.69</td>
<td>2.036</td>
<td>-3.60</td>
<td>-8.7</td>
<td>2.6</td>
</tr>
<tr>
<td>FU n°1</td>
<td>115</td>
<td>10.99</td>
<td>1.303</td>
<td>11.10</td>
<td>6.3</td>
<td>13.8</td>
<td>115</td>
<td>-2.26</td>
<td>1.863</td>
<td>-2.30</td>
<td>-7.4</td>
<td>2.3</td>
</tr>
<tr>
<td>FU n°2</td>
<td>109</td>
<td>11.99</td>
<td>1.637</td>
<td>12.10</td>
<td>7.7</td>
<td>15.9</td>
<td>109</td>
<td>-1.27</td>
<td>2.046</td>
<td>-1.20</td>
<td>-5.8</td>
<td>4.6</td>
</tr>
<tr>
<td>FU n°3</td>
<td>101</td>
<td>12.49</td>
<td>1.586</td>
<td>12.60</td>
<td>8.2</td>
<td>16.0</td>
<td>101</td>
<td>-0.79</td>
<td>1.924</td>
<td>-0.50</td>
<td>-7.8</td>
<td>3.7</td>
</tr>
<tr>
<td>FU n°4</td>
<td>93</td>
<td>12.72</td>
<td>1.556</td>
<td>12.90</td>
<td>8.7</td>
<td>16.4</td>
<td>93</td>
<td>-0.68</td>
<td>1.973</td>
<td>-0.60</td>
<td>-5.8</td>
<td>8.5</td>
</tr>
<tr>
<td>FU n°5</td>
<td>90</td>
<td>12.76</td>
<td>1.653</td>
<td>12.85</td>
<td>7.6</td>
<td>17.3</td>
<td>90</td>
<td>-0.64</td>
<td>1.816</td>
<td>-0.60</td>
<td>-6.9</td>
<td>4.5</td>
</tr>
<tr>
<td>FU n°6</td>
<td>85</td>
<td>12.89</td>
<td>1.621</td>
<td>13.10</td>
<td>8.5</td>
<td>15.9</td>
<td>85</td>
<td>-0.57</td>
<td>1.776</td>
<td>-0.40</td>
<td>-5.5</td>
<td>3.6</td>
</tr>
<tr>
<td>FU n°7</td>
<td>79</td>
<td>12.72</td>
<td>2.030</td>
<td>13.10</td>
<td>1.3</td>
<td>16.0</td>
<td>79</td>
<td>-0.83</td>
<td>2.076</td>
<td>-0.40</td>
<td>-11.6</td>
<td>2.7</td>
</tr>
<tr>
<td>FU n°8</td>
<td>82</td>
<td>13.10</td>
<td>1.500</td>
<td>13.30</td>
<td>8.3</td>
<td>15.9</td>
<td>82</td>
<td>-0.36</td>
<td>1.607</td>
<td>-0.35</td>
<td>-4.5</td>
<td>4.3</td>
</tr>
<tr>
<td>FU n°9</td>
<td>72</td>
<td>13.44</td>
<td>1.440</td>
<td>13.50</td>
<td>9.8</td>
<td>16.2</td>
<td>72</td>
<td>-0.05</td>
<td>1.538</td>
<td>0.00</td>
<td>-4.9</td>
<td>3.4</td>
</tr>
<tr>
<td>FU n°10</td>
<td>58</td>
<td>13.24</td>
<td>1.710</td>
<td>13.60</td>
<td>7.1</td>
<td>16.0</td>
<td>58</td>
<td>-0.19</td>
<td>1.667</td>
<td>0.10</td>
<td>-5.7</td>
<td>3.8</td>
</tr>
<tr>
<td>FU n°11</td>
<td>54</td>
<td>13.36</td>
<td>1.663</td>
<td>13.35</td>
<td>9.3</td>
<td>16.1</td>
<td>54</td>
<td>0.00</td>
<td>1.558</td>
<td>0.10</td>
<td>-5.2</td>
<td>3.7</td>
</tr>
<tr>
<td>FU n°12</td>
<td>40</td>
<td>13.53</td>
<td>1.585</td>
<td>13.70</td>
<td>10.2</td>
<td>16.9</td>
<td>40</td>
<td>0.40</td>
<td>1.724</td>
<td>0.55</td>
<td>-3.8</td>
<td>5.1</td>
</tr>
<tr>
<td>FU n°13</td>
<td>24</td>
<td>13.52</td>
<td>1.363</td>
<td>13.10</td>
<td>11.0</td>
<td>16.0</td>
<td>24</td>
<td>0.40</td>
<td>1.394</td>
<td>0.45</td>
<td>-2.4</td>
<td>3.3</td>
</tr>
<tr>
<td>FU n°14</td>
<td>19</td>
<td>13.28</td>
<td>1.370</td>
<td>12.70</td>
<td>10.6</td>
<td>16.1</td>
<td>19</td>
<td>0.34</td>
<td>1.450</td>
<td>0.60</td>
<td>-2.4</td>
<td>2.6</td>
</tr>
<tr>
<td>FU n°15</td>
<td>9</td>
<td>13.30</td>
<td>2.292</td>
<td>13.00</td>
<td>8.7</td>
<td>16.5</td>
<td>9</td>
<td>0.81</td>
<td>3.053</td>
<td>1.40</td>
<td>-6.0</td>
<td>4.5</td>
</tr>
</tbody>
</table>
Actual arm of maintenance=OBSERVATION

<table>
<thead>
<tr>
<th></th>
<th>Actual values</th>
<th>Hemoglobin (g/dl)</th>
<th>Change from baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean</td>
<td>Std</td>
</tr>
<tr>
<td>Baseline</td>
<td>119</td>
<td>13.11</td>
<td>1.870</td>
</tr>
<tr>
<td>C1 between D7 and D10</td>
<td>105</td>
<td>12.28</td>
<td>1.821</td>
</tr>
<tr>
<td>C1 around D14</td>
<td>103</td>
<td>11.36</td>
<td>1.709</td>
</tr>
<tr>
<td>C2 pre-cycle</td>
<td>115</td>
<td>11.08</td>
<td>1.548</td>
</tr>
<tr>
<td>C2 between D7 and D10</td>
<td>101</td>
<td>11.03</td>
<td>1.639</td>
</tr>
<tr>
<td>C2 around D14</td>
<td>99</td>
<td>10.08</td>
<td>1.573</td>
</tr>
<tr>
<td>C3 pre-cycle</td>
<td>116</td>
<td>10.20</td>
<td>1.326</td>
</tr>
<tr>
<td>C3 between D7 and D10</td>
<td>95</td>
<td>9.95</td>
<td>1.609</td>
</tr>
<tr>
<td>C3 around D14</td>
<td>104</td>
<td>9.60</td>
<td>1.573</td>
</tr>
<tr>
<td>FU n°1</td>
<td>103</td>
<td>10.87</td>
<td>1.308</td>
</tr>
<tr>
<td>FU n°2</td>
<td>111</td>
<td>12.02</td>
<td>1.619</td>
</tr>
<tr>
<td>FU n°3</td>
<td>79</td>
<td>12.19</td>
<td>1.960</td>
</tr>
<tr>
<td>FU n°4</td>
<td>76</td>
<td>12.31</td>
<td>1.859</td>
</tr>
<tr>
<td>FU n°5</td>
<td>56</td>
<td>12.88</td>
<td>1.553</td>
</tr>
<tr>
<td>FU n°6</td>
<td>48</td>
<td>13.12</td>
<td>1.633</td>
</tr>
<tr>
<td>FU n°7</td>
<td>69</td>
<td>13.18</td>
<td>1.292</td>
</tr>
<tr>
<td>FU n°8</td>
<td>74</td>
<td>13.21</td>
<td>1.463</td>
</tr>
<tr>
<td>FU n°9</td>
<td>72</td>
<td>13.24</td>
<td>1.489</td>
</tr>
<tr>
<td>FU n°10</td>
<td>58</td>
<td>13.61</td>
<td>1.224</td>
</tr>
<tr>
<td>FU n°11</td>
<td>50</td>
<td>13.51</td>
<td>1.301</td>
</tr>
<tr>
<td>FU n°12</td>
<td>36</td>
<td>13.69</td>
<td>1.976</td>
</tr>
<tr>
<td>FU n°13</td>
<td>18</td>
<td>13.87</td>
<td>1.740</td>
</tr>
<tr>
<td>FU n°14</td>
<td>11</td>
<td>13.88</td>
<td>1.568</td>
</tr>
<tr>
<td>FU n°15</td>
<td>5</td>
<td>13.62</td>
<td>0.540</td>
</tr>
</tbody>
</table>
Table 6.7-4 Leukocytes (MSAP)

Actual arm of maintenance=RITUXIMAB

<table>
<thead>
<tr>
<th></th>
<th>Actual values</th>
<th>Leukocytes (G/L)</th>
<th>Change from baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean</td>
<td>Std</td>
</tr>
<tr>
<td>Baseline</td>
<td>116</td>
<td>6.461</td>
<td>2.8987</td>
</tr>
<tr>
<td>C1 between D7 and D10</td>
<td>107</td>
<td>7.519</td>
<td>7.1483</td>
</tr>
<tr>
<td>C1 around D14</td>
<td>108</td>
<td>6.101</td>
<td>6.7334</td>
</tr>
<tr>
<td>C2 pre-cycle</td>
<td>114</td>
<td>7.869</td>
<td>8.8768</td>
</tr>
<tr>
<td>C2 between D7 and D10</td>
<td>103</td>
<td>11.030</td>
<td>11.2918</td>
</tr>
<tr>
<td>C2 around D14</td>
<td>103</td>
<td>14.281</td>
<td>15.3269</td>
</tr>
<tr>
<td>C3 pre-cycle</td>
<td>113</td>
<td>7.217</td>
<td>7.9445</td>
</tr>
<tr>
<td>C3 between D7 and D10</td>
<td>105</td>
<td>6.712</td>
<td>6.5808</td>
</tr>
<tr>
<td>C3 around D14</td>
<td>104</td>
<td>11.739</td>
<td>13.3774</td>
</tr>
<tr>
<td>FU n°1</td>
<td>113</td>
<td>5.039</td>
<td>2.6109</td>
</tr>
<tr>
<td>FU n°3</td>
<td>100</td>
<td>4.638</td>
<td>2.4587</td>
</tr>
<tr>
<td>FU n°4</td>
<td>92</td>
<td>4.974</td>
<td>2.2140</td>
</tr>
<tr>
<td>FU n°5</td>
<td>89</td>
<td>5.023</td>
<td>2.5140</td>
</tr>
<tr>
<td>FU n°6</td>
<td>83</td>
<td>5.056</td>
<td>2.2339</td>
</tr>
<tr>
<td>FU n°7</td>
<td>78</td>
<td>5.374</td>
<td>2.3579</td>
</tr>
<tr>
<td>FU n°8</td>
<td>82</td>
<td>5.724</td>
<td>2.1049</td>
</tr>
<tr>
<td>FU n°9</td>
<td>71</td>
<td>6.047</td>
<td>2.2495</td>
</tr>
<tr>
<td>FU n°10</td>
<td>58</td>
<td>6.013</td>
<td>2.6158</td>
</tr>
<tr>
<td>FU n°11</td>
<td>54</td>
<td>6.436</td>
<td>2.4280</td>
</tr>
<tr>
<td>FU n°12</td>
<td>41</td>
<td>6.440</td>
<td>1.9975</td>
</tr>
<tr>
<td>FU n°13</td>
<td>24</td>
<td>5.419</td>
<td>1.6543</td>
</tr>
<tr>
<td>FU n°14</td>
<td>19</td>
<td>5.693</td>
<td>2.6017</td>
</tr>
<tr>
<td>FU n°15</td>
<td>9</td>
<td>5.280</td>
<td>1.2976</td>
</tr>
</tbody>
</table>
Actual arm of maintenance=OBSERVATION

<table>
<thead>
<tr>
<th></th>
<th>Actual values</th>
<th>Leukocytes (G/L)</th>
<th>Change from baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean</td>
<td>Std</td>
</tr>
<tr>
<td>Baseline</td>
<td>119</td>
<td>6.805</td>
<td>2.6503</td>
</tr>
<tr>
<td>C1 between D7 and D10</td>
<td>105</td>
<td>8.672</td>
<td>9.2784</td>
</tr>
<tr>
<td>C1 around D14</td>
<td>103</td>
<td>7.370</td>
<td>8.9353</td>
</tr>
<tr>
<td>C2 pre-cycle</td>
<td>115</td>
<td>7.615</td>
<td>5.4613</td>
</tr>
<tr>
<td>C2 between D7 and D10</td>
<td>101</td>
<td>11.081</td>
<td>12.5055</td>
</tr>
<tr>
<td>C2 around D14</td>
<td>98</td>
<td>16.091</td>
<td>17.6852</td>
</tr>
<tr>
<td>C3 pre-cycle</td>
<td>116</td>
<td>6.375</td>
<td>3.2144</td>
</tr>
<tr>
<td>C3 between D7 and D10</td>
<td>95</td>
<td>8.946</td>
<td>11.0557</td>
</tr>
<tr>
<td>C3 around D14</td>
<td>104</td>
<td>13.166</td>
<td>12.9999</td>
</tr>
<tr>
<td>FU n°1</td>
<td>103</td>
<td>5.504</td>
<td>2.5823</td>
</tr>
<tr>
<td>FU n°2</td>
<td>110</td>
<td>5.007</td>
<td>2.3475</td>
</tr>
<tr>
<td>FU n°3</td>
<td>78</td>
<td>4.876</td>
<td>2.5903</td>
</tr>
<tr>
<td>FU n°4</td>
<td>74</td>
<td>5.107</td>
<td>2.0072</td>
</tr>
<tr>
<td>FU n°5</td>
<td>55</td>
<td>5.476</td>
<td>2.0356</td>
</tr>
<tr>
<td>FU n°6</td>
<td>47</td>
<td>5.588</td>
<td>1.7895</td>
</tr>
<tr>
<td>FU n°7</td>
<td>68</td>
<td>6.152</td>
<td>2.2905</td>
</tr>
<tr>
<td>FU n°8</td>
<td>74</td>
<td>5.822</td>
<td>2.2554</td>
</tr>
<tr>
<td>FU n°9</td>
<td>71</td>
<td>6.388</td>
<td>2.2916</td>
</tr>
<tr>
<td>FU n°10</td>
<td>59</td>
<td>6.664</td>
<td>2.2588</td>
</tr>
<tr>
<td>FU n°11</td>
<td>50</td>
<td>6.739</td>
<td>2.3381</td>
</tr>
<tr>
<td>FU n°12</td>
<td>36</td>
<td>6.215</td>
<td>2.4542</td>
</tr>
<tr>
<td>FU n°13</td>
<td>18</td>
<td>7.211</td>
<td>4.4084</td>
</tr>
<tr>
<td>FU n°14</td>
<td>11</td>
<td>6.455</td>
<td>2.6579</td>
</tr>
<tr>
<td>FU n°15</td>
<td>5</td>
<td>5.780</td>
<td>1.8499</td>
</tr>
</tbody>
</table>
Table 6.7-5 Neutrophils (MSAP)

<table>
<thead>
<tr>
<th>Actual arm of maintenance=RITUXIMAB</th>
<th>Neutrophils (G/L)</th>
<th>Change from baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean</td>
</tr>
<tr>
<td>Baseline</td>
<td>114</td>
<td>4.467</td>
</tr>
<tr>
<td>C1 between D7 and D10</td>
<td>93</td>
<td>6.814</td>
</tr>
<tr>
<td>C1 around D14</td>
<td>92</td>
<td>3.931</td>
</tr>
<tr>
<td>C2 pre-cycle</td>
<td>106</td>
<td>5.395</td>
</tr>
<tr>
<td>C2 between D7 and D10</td>
<td>86</td>
<td>9.676</td>
</tr>
<tr>
<td>C2 around D14</td>
<td>94</td>
<td>9.840</td>
</tr>
<tr>
<td>C3 pre-cycle</td>
<td>100</td>
<td>5.019</td>
</tr>
<tr>
<td>C3 between D7 and D10</td>
<td>91</td>
<td>5.589</td>
</tr>
<tr>
<td>C3 around D14</td>
<td>87</td>
<td>7.993</td>
</tr>
<tr>
<td>FU n1</td>
<td>104</td>
<td>2.603</td>
</tr>
<tr>
<td>FU n2</td>
<td>102</td>
<td>2.409</td>
</tr>
<tr>
<td>FU n3</td>
<td>95</td>
<td>2.806</td>
</tr>
<tr>
<td>FU n4</td>
<td>87</td>
<td>3.071</td>
</tr>
<tr>
<td>FU n5</td>
<td>82</td>
<td>3.057</td>
</tr>
<tr>
<td>FU n6</td>
<td>77</td>
<td>3.206</td>
</tr>
<tr>
<td>FU n7</td>
<td>75</td>
<td>3.261</td>
</tr>
<tr>
<td>FU n8</td>
<td>78</td>
<td>3.414</td>
</tr>
<tr>
<td>FU n9</td>
<td>66</td>
<td>3.860</td>
</tr>
<tr>
<td>FU n10</td>
<td>53</td>
<td>3.738</td>
</tr>
<tr>
<td>FU n11</td>
<td>50</td>
<td>3.843</td>
</tr>
<tr>
<td>FU n12</td>
<td>38</td>
<td>3.782</td>
</tr>
<tr>
<td>FU n13</td>
<td>23</td>
<td>3.185</td>
</tr>
<tr>
<td>FU n14</td>
<td>19</td>
<td>3.351</td>
</tr>
<tr>
<td>FU n15</td>
<td>8</td>
<td>2.744</td>
</tr>
</tbody>
</table>
Actual arm of maintenance=OBSERVATION

<table>
<thead>
<tr>
<th></th>
<th>Neutrophils (G/L)</th>
<th>Change from baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Actual values</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>Mean</td>
</tr>
<tr>
<td>Baseline</td>
<td>115</td>
<td>4.827</td>
</tr>
<tr>
<td>C1 between D7 and D10</td>
<td>90</td>
<td>8.212</td>
</tr>
<tr>
<td>C1 around D14</td>
<td>86</td>
<td>5.264</td>
</tr>
<tr>
<td>C2 pre-cycle</td>
<td>94</td>
<td>4.994</td>
</tr>
<tr>
<td>C2 between D7 and D10</td>
<td>75</td>
<td>10.172</td>
</tr>
<tr>
<td>C2 around D14</td>
<td>76</td>
<td>10.894</td>
</tr>
<tr>
<td>C3 pre-cycle</td>
<td>102</td>
<td>4.049</td>
</tr>
<tr>
<td>C3 between D7 and D10</td>
<td>81</td>
<td>7.759</td>
</tr>
<tr>
<td>C3 around D14</td>
<td>88</td>
<td>10.205</td>
</tr>
<tr>
<td>FU n1</td>
<td>95</td>
<td>2.779</td>
</tr>
<tr>
<td>FU n2</td>
<td>103</td>
<td>2.669</td>
</tr>
<tr>
<td>FU n3</td>
<td>69</td>
<td>2.947</td>
</tr>
<tr>
<td>FU n4</td>
<td>69</td>
<td>3.008</td>
</tr>
<tr>
<td>FU n5</td>
<td>49</td>
<td>3.208</td>
</tr>
<tr>
<td>FU n6</td>
<td>44</td>
<td>3.426</td>
</tr>
<tr>
<td>FU n7</td>
<td>63</td>
<td>3.576</td>
</tr>
<tr>
<td>FU n8</td>
<td>70</td>
<td>3.355</td>
</tr>
<tr>
<td>FU n9</td>
<td>63</td>
<td>3.737</td>
</tr>
<tr>
<td>FU n10</td>
<td>54</td>
<td>3.761</td>
</tr>
<tr>
<td>FU n11</td>
<td>45</td>
<td>3.824</td>
</tr>
<tr>
<td>FU n12</td>
<td>34</td>
<td>3.296</td>
</tr>
<tr>
<td>FU n13</td>
<td>17</td>
<td>4.427</td>
</tr>
<tr>
<td>FU n14</td>
<td>10</td>
<td>3.662</td>
</tr>
<tr>
<td>FU n15</td>
<td>4</td>
<td>3.195</td>
</tr>
</tbody>
</table>
Table 6.7-6 Platelets (MSAP)

Actual arm of maintenance=RITUXIMAB

<table>
<thead>
<tr>
<th></th>
<th>Actual values</th>
<th>Platelets (G/L)</th>
<th>Change from baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean</td>
<td>Std</td>
</tr>
<tr>
<td>Baseline</td>
<td>116</td>
<td>242.3</td>
<td>89.07</td>
</tr>
<tr>
<td>C1 between D7 and D10</td>
<td>108</td>
<td>149.8</td>
<td>86.60</td>
</tr>
<tr>
<td>C1 around D14</td>
<td>108</td>
<td>86.8</td>
<td>80.02</td>
</tr>
<tr>
<td>C2 pre-cycle</td>
<td>115</td>
<td>353.9</td>
<td>198.15</td>
</tr>
<tr>
<td>C2 between D7 and D10</td>
<td>104</td>
<td>226.3</td>
<td>157.56</td>
</tr>
<tr>
<td>C2 around D14</td>
<td>104</td>
<td>75.0</td>
<td>54.98</td>
</tr>
<tr>
<td>C3 pre-cycle</td>
<td>114</td>
<td>243.9</td>
<td>115.72</td>
</tr>
<tr>
<td>C3 between D7 and D10</td>
<td>105</td>
<td>167.6</td>
<td>131.56</td>
</tr>
<tr>
<td>C3 around D14</td>
<td>105</td>
<td>56.6</td>
<td>59.50</td>
</tr>
<tr>
<td>FU n°1</td>
<td>114</td>
<td>139.2</td>
<td>73.17</td>
</tr>
<tr>
<td>FU n°2</td>
<td>109</td>
<td>158.5</td>
<td>69.83</td>
</tr>
<tr>
<td>FU n°3</td>
<td>101</td>
<td>162.4</td>
<td>67.48</td>
</tr>
<tr>
<td>FU n°4</td>
<td>93</td>
<td>172.4</td>
<td>71.11</td>
</tr>
<tr>
<td>FU n°5</td>
<td>90</td>
<td>178.6</td>
<td>82.48</td>
</tr>
<tr>
<td>FU n°6</td>
<td>85</td>
<td>185.1</td>
<td>65.63</td>
</tr>
<tr>
<td>FU n°7</td>
<td>79</td>
<td>186.6</td>
<td>76.78</td>
</tr>
<tr>
<td>FU n°8</td>
<td>82</td>
<td>203.7</td>
<td>75.99</td>
</tr>
<tr>
<td>FU n°9</td>
<td>71</td>
<td>203.6</td>
<td>73.37</td>
</tr>
<tr>
<td>FU n°10</td>
<td>59</td>
<td>204.7</td>
<td>72.58</td>
</tr>
<tr>
<td>FU n°11</td>
<td>53</td>
<td>201.6</td>
<td>65.27</td>
</tr>
<tr>
<td>FU n°12</td>
<td>40</td>
<td>195.9</td>
<td>74.96</td>
</tr>
<tr>
<td>FU n°13</td>
<td>24</td>
<td>189.8</td>
<td>72.25</td>
</tr>
<tr>
<td>FU n°14</td>
<td>19</td>
<td>188.1</td>
<td>99.18</td>
</tr>
<tr>
<td>FU n°15</td>
<td>9</td>
<td>179.0</td>
<td>74.14</td>
</tr>
<tr>
<td>Actual arm of maintenance=OBSERVATION</td>
<td>Platelets (G/L)</td>
<td>Change from baseline</td>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------</td>
<td>----------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Actual values</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>Mean</td>
<td>Std</td>
</tr>
<tr>
<td>Baseline</td>
<td>119</td>
<td>292.3</td>
<td>188.59</td>
</tr>
<tr>
<td>C1 between D7 and D10</td>
<td>104</td>
<td>162.9</td>
<td>114.12</td>
</tr>
<tr>
<td>C1 around D14</td>
<td>103</td>
<td>95.5</td>
<td>84.89</td>
</tr>
<tr>
<td>C2 pre-cycle</td>
<td>115</td>
<td>334.2</td>
<td>169.53</td>
</tr>
<tr>
<td>C2 between D7 and D10</td>
<td>100</td>
<td>209.4</td>
<td>142.09</td>
</tr>
<tr>
<td>C2 around D14</td>
<td>98</td>
<td>67.5</td>
<td>56.92</td>
</tr>
<tr>
<td>C3 pre-cycle</td>
<td>116</td>
<td>292.1</td>
<td>162.65</td>
</tr>
<tr>
<td>C3 between D7 and D10</td>
<td>95</td>
<td>150.4</td>
<td>113.68</td>
</tr>
<tr>
<td>C3 around D14</td>
<td>103</td>
<td>62.4</td>
<td>66.31</td>
</tr>
<tr>
<td>FU n1</td>
<td>103</td>
<td>124.7</td>
<td>75.10</td>
</tr>
<tr>
<td>FU n2</td>
<td>111</td>
<td>159.4</td>
<td>78.83</td>
</tr>
<tr>
<td>FU n3</td>
<td>79</td>
<td>159.2</td>
<td>80.68</td>
</tr>
<tr>
<td>FU n4</td>
<td>75</td>
<td>161.5</td>
<td>84.20</td>
</tr>
<tr>
<td>FU n5</td>
<td>55</td>
<td>172.6</td>
<td>79.17</td>
</tr>
<tr>
<td>FU n6</td>
<td>48</td>
<td>181.1</td>
<td>72.01</td>
</tr>
<tr>
<td>FU n7</td>
<td>68</td>
<td>183.1</td>
<td>69.50</td>
</tr>
<tr>
<td>FU n8</td>
<td>74</td>
<td>180.2</td>
<td>72.47</td>
</tr>
<tr>
<td>FU n9</td>
<td>72</td>
<td>183.4</td>
<td>76.79</td>
</tr>
<tr>
<td>FU n10</td>
<td>59</td>
<td>196.5</td>
<td>69.94</td>
</tr>
<tr>
<td>FU n11</td>
<td>50</td>
<td>191.1</td>
<td>64.78</td>
</tr>
<tr>
<td>FU n12</td>
<td>36</td>
<td>204.0</td>
<td>76.38</td>
</tr>
<tr>
<td>FU n13</td>
<td>18</td>
<td>176.4</td>
<td>60.63</td>
</tr>
<tr>
<td>FU n14</td>
<td>11</td>
<td>226.1</td>
<td>98.13</td>
</tr>
<tr>
<td>FU n15</td>
<td>5</td>
<td>181.8</td>
<td>33.61</td>
</tr>
</tbody>
</table>
Table 6.7-7 LDH (MSAP)

Actual arm of maintenance=RITUXIMAB

<table>
<thead>
<tr>
<th></th>
<th>LDH (UI/l)</th>
<th>Change from baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Actual values</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>Mean</td>
</tr>
<tr>
<td>Baseline</td>
<td>114</td>
<td>420.4</td>
</tr>
<tr>
<td>FU n1</td>
<td>110</td>
<td>2.9</td>
</tr>
<tr>
<td>FU n2</td>
<td>107</td>
<td>2.3</td>
</tr>
<tr>
<td>FU n3</td>
<td>100</td>
<td>2.8</td>
</tr>
<tr>
<td>FU n4</td>
<td>90</td>
<td>2.6</td>
</tr>
<tr>
<td>FU n5</td>
<td>83</td>
<td>2.5</td>
</tr>
<tr>
<td>FU n6</td>
<td>78</td>
<td>2.6</td>
</tr>
<tr>
<td>FU n7</td>
<td>74</td>
<td>2.2</td>
</tr>
<tr>
<td>FU n8</td>
<td>81</td>
<td>2.1</td>
</tr>
<tr>
<td>FU n9</td>
<td>70</td>
<td>2.1</td>
</tr>
<tr>
<td>FU n10</td>
<td>58</td>
<td>2.1</td>
</tr>
<tr>
<td>FU n11</td>
<td>53</td>
<td>1.8</td>
</tr>
<tr>
<td>FU n12</td>
<td>41</td>
<td>2.1</td>
</tr>
<tr>
<td>FU n13</td>
<td>22</td>
<td>3.0</td>
</tr>
<tr>
<td>FU n14</td>
<td>18</td>
<td>1.8</td>
</tr>
<tr>
<td>FU n15</td>
<td>7</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Actual arm of maintenance=OBSERVATION

<table>
<thead>
<tr>
<th></th>
<th>LDH (UI/l)</th>
<th>Change from baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Actual values</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>Mean</td>
</tr>
<tr>
<td>Baseline</td>
<td>118</td>
<td>385.5</td>
</tr>
<tr>
<td>FU n1</td>
<td>102</td>
<td>3.1</td>
</tr>
<tr>
<td>FU n2</td>
<td>108</td>
<td>2.1</td>
</tr>
<tr>
<td>FU n3</td>
<td>76</td>
<td>2.5</td>
</tr>
<tr>
<td>FU n4</td>
<td>75</td>
<td>2.6</td>
</tr>
<tr>
<td>FU n5</td>
<td>56</td>
<td>1.7</td>
</tr>
<tr>
<td>FU n6</td>
<td>46</td>
<td>2.5</td>
</tr>
<tr>
<td>FU n7</td>
<td>66</td>
<td>1.9</td>
</tr>
<tr>
<td>FU n8</td>
<td>74</td>
<td>2.1</td>
</tr>
<tr>
<td>FU n9</td>
<td>70</td>
<td>1.8</td>
</tr>
<tr>
<td>FU n10</td>
<td>58</td>
<td>1.4</td>
</tr>
<tr>
<td>FU n11</td>
<td>49</td>
<td>1.7</td>
</tr>
<tr>
<td>FU n12</td>
<td>35</td>
<td>1.8</td>
</tr>
<tr>
<td>FU n13</td>
<td>19</td>
<td>2.4</td>
</tr>
<tr>
<td>FU n14</td>
<td>11</td>
<td>1.7</td>
</tr>
<tr>
<td>FU n15</td>
<td>5</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Table 6.7-8 Monoclonal component at relapse diagnosis (MSAP)

<table>
<thead>
<tr>
<th>Monoclonal component</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Yes</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>No</td>
<td>96</td>
<td>96</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 6.7-9 Serologies at relapse diagnosis (MSAP)

<table>
<thead>
<tr>
<th>Serology</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>HIV Serology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEGATIVE</td>
<td>108</td>
<td>93</td>
</tr>
<tr>
<td>NOT DONE</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>HCV Serology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEGATIVE</td>
<td>105</td>
<td>91</td>
</tr>
<tr>
<td>POSITIVE</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>NOT DONE</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>HBs Ag Serology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEGATIVE</td>
<td>108</td>
<td>93</td>
</tr>
<tr>
<td>POSITIVE</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NOT DONE</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>116</td>
<td>100</td>
</tr>
<tr>
<td>HBs vaccination</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>32</td>
<td>30</td>
</tr>
<tr>
<td>Yes</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Not Done</td>
<td>70</td>
<td>66</td>
</tr>
<tr>
<td>Total</td>
<td>106</td>
<td>100</td>
</tr>
</tbody>
</table>
6.7.5. Vital signs

Table 6.7-10 LVEF value at relapse diagnosis (MSAP)

<table>
<thead>
<tr>
<th>LVEF value (%)</th>
<th>Actual arm of maintenance</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td></td>
<td>86</td>
<td>82</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>62.2</td>
<td>63.8</td>
</tr>
<tr>
<td>Std</td>
<td></td>
<td>8.55</td>
<td>8.38</td>
</tr>
<tr>
<td>Median</td>
<td></td>
<td>62.0</td>
<td>65.0</td>
</tr>
<tr>
<td>Min</td>
<td></td>
<td>31</td>
<td>43</td>
</tr>
<tr>
<td>Max</td>
<td></td>
<td>82</td>
<td>89</td>
</tr>
</tbody>
</table>

Table 6.7-11 Cardiac exams at relapse diagnosis (MSAP)

<table>
<thead>
<tr>
<th>Actual arm of maintenance</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>ECG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>78</td>
<td>67</td>
</tr>
<tr>
<td>Abnormal</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Not done</td>
<td>32</td>
<td>28</td>
</tr>
<tr>
<td>Total</td>
<td>116</td>
<td>100</td>
</tr>
</tbody>
</table>

Echocardiography / Isotopic method				
Normal	81	70	82	69
Abnormal	14	12	17	14
Not done	20	17	20	17
Total	115	100	119	100

Table 6.7-12 Other exams at relapse diagnosis (MSAP)

<table>
<thead>
<tr>
<th>Actual arm of maintenance</th>
<th>RITUXIMAB</th>
<th>OBSERVATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Other exams baseline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>98</td>
<td>84</td>
</tr>
<tr>
<td>Yes</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td>Total</td>
<td>116</td>
<td>100</td>
</tr>
</tbody>
</table>
Exploratory analysis

Frequency table of overall response rate after induction by Response after 1st line - Induction ITT

<table>
<thead>
<tr>
<th>Response after first line</th>
<th>Response after complete induction (including deaths for all patients)</th>
<th>Arm of treatment</th>
<th>P-value (Chi-2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CR/CRu/PR</td>
<td>ARM A / R-ICE</td>
<td>ARM B / R-DHAP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>CR/CRu</td>
<td></td>
<td>117</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>40</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>157</td>
<td>100</td>
</tr>
<tr>
<td>PR</td>
<td>CR/CRu/PR</td>
<td>21</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>22</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>43</td>
<td>100</td>
</tr>
<tr>
<td>SD</td>
<td>CR/CRu/PR</td>
<td>6</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>5</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>11</td>
<td>100</td>
</tr>
<tr>
<td>PD</td>
<td>CR/CRu/PR</td>
<td>7</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>20</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>27</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>238</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Response after complete induction (including deaths for all patients) by Treatment</th>
<th>P-value (Chi-2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response after 1st line (CR/CRu)</td>
<td>0.8289</td>
</tr>
<tr>
<td>Response after 1st line (PR)</td>
<td>0.2330</td>
</tr>
<tr>
<td>Response after 1st line (SD)</td>
<td>0.8274</td>
</tr>
<tr>
<td>Response after 1st line (PD)</td>
<td>0.8727</td>
</tr>
</tbody>
</table>
Frequency table of overall response rate after induction by Response after 1st line - Induction ITT

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>N</th>
<th>%</th>
<th>N</th>
<th>%</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response after first line</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response after complete induction (including deaths for all patients)</td>
<td>138</td>
<td>69</td>
<td>135</td>
<td>70</td>
<td>273</td>
<td>70</td>
</tr>
<tr>
<td>CR/CRu/PR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR/CRu/PR</td>
<td>62</td>
<td>31</td>
<td>57</td>
<td>30</td>
<td>119</td>
<td>30</td>
</tr>
<tr>
<td>Other</td>
<td>200</td>
<td>100</td>
<td>192</td>
<td>100</td>
<td>392</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>238</td>
<td>100</td>
<td>229</td>
<td>100</td>
<td>467</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Response after complete induction (including deaths for all patients) by Treatment</th>
<th>P-value (Chi-2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response after 1st line (CR/CRu/PR)</td>
<td>0.7775</td>
</tr>
<tr>
<td>Response after 1st line (Other)</td>
<td>0.8703</td>
</tr>
</tbody>
</table>

Frequency table of complete response rate after induction by Response after 1st line - Induction ITT

<table>
<thead>
<tr>
<th>Arm of treatment</th>
<th>N</th>
<th>%</th>
<th>N</th>
<th>%</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response after first line</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response after complete induction (including deaths for all patients)</td>
<td>72</td>
<td>46</td>
<td>68</td>
<td>48</td>
<td>140</td>
<td>47</td>
</tr>
<tr>
<td>CR/CRu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR/CRu</td>
<td>72</td>
<td>46</td>
<td>68</td>
<td>48</td>
<td>140</td>
<td>47</td>
</tr>
<tr>
<td>Other</td>
<td>85</td>
<td>54</td>
<td>75</td>
<td>52</td>
<td>160</td>
<td>53</td>
</tr>
<tr>
<td>Total</td>
<td>157</td>
<td>100</td>
<td>143</td>
<td>100</td>
<td>300</td>
<td>100</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response after complete induction (including deaths for all patients)</td>
<td>15</td>
<td>19</td>
<td>17</td>
<td>20</td>
<td>32</td>
<td>19</td>
</tr>
<tr>
<td>CR/CRu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR/CRu</td>
<td>15</td>
<td>19</td>
<td>17</td>
<td>20</td>
<td>32</td>
<td>19</td>
</tr>
<tr>
<td>Other</td>
<td>66</td>
<td>81</td>
<td>69</td>
<td>80</td>
<td>135</td>
<td>81</td>
</tr>
<tr>
<td>Total</td>
<td>81</td>
<td>100</td>
<td>86</td>
<td>100</td>
<td>167</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>238</td>
<td>100</td>
<td>229</td>
<td>100</td>
<td>467</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Response after complete induction (including deaths for all patients) by Treatment</th>
<th>P-value (Chi-2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response after 1st line (CR/CRu)</td>
<td>0.7691</td>
</tr>
<tr>
<td>Response after 1st line (Other)</td>
<td>0.8376</td>
</tr>
</tbody>
</table>
Event-Free Survival according to Response after 1st line - induction ITT

Median and 95% CI

<table>
<thead>
<tr>
<th>Response after first line</th>
<th>N</th>
<th>Median</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFS (months)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR/CRu</td>
<td>300</td>
<td>11</td>
<td>9</td>
<td>21</td>
<td>0</td>
<td>79</td>
</tr>
<tr>
<td>PR</td>
<td>92</td>
<td>5</td>
<td>3</td>
<td>7</td>
<td>0</td>
<td>74</td>
</tr>
<tr>
<td>SD</td>
<td>23</td>
<td>4</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>78</td>
</tr>
<tr>
<td>PD</td>
<td>52</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>65</td>
</tr>
</tbody>
</table>

Survival Probability

- Logrank p < 0.0001
- EFS (months)
- Time Point (months)
- EFS (%)
- 95% CI Lower
- 95% CI Upper
- Patients at risk

<table>
<thead>
<tr>
<th>Response after first line</th>
<th>Time Point (months)</th>
<th>EFS (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR/CRu</td>
<td>12</td>
<td>49.4</td>
<td>43.5</td>
<td>54.9</td>
<td>145</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>24</td>
<td>42.1</td>
<td>36.4</td>
<td>47.7</td>
<td>117</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>36</td>
<td>35.8</td>
<td>30.3</td>
<td>41.4</td>
<td>81</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>48</td>
<td>35.4</td>
<td>29.9</td>
<td>41.0</td>
<td>51</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>60</td>
<td>34.6</td>
<td>29.0</td>
<td>40.3</td>
<td>24</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>72</td>
<td>29.5</td>
<td>22.5</td>
<td>36.8</td>
<td>6</td>
</tr>
<tr>
<td>PR</td>
<td>12</td>
<td>31.3</td>
<td>22.1</td>
<td>41.0</td>
<td>27</td>
</tr>
<tr>
<td>PR</td>
<td>24</td>
<td>24.4</td>
<td>16.0</td>
<td>33.7</td>
<td>19</td>
</tr>
<tr>
<td>PR</td>
<td>36</td>
<td>23.0</td>
<td>14.9</td>
<td>32.3</td>
<td>13</td>
</tr>
<tr>
<td>PR</td>
<td>48</td>
<td>23.0</td>
<td>14.9</td>
<td>32.3</td>
<td>10</td>
</tr>
<tr>
<td>PR</td>
<td>60</td>
<td>23.0</td>
<td>14.9</td>
<td>32.3</td>
<td>6</td>
</tr>
<tr>
<td>PR</td>
<td>72</td>
<td>19.2</td>
<td>10.3</td>
<td>30.1</td>
<td>1</td>
</tr>
<tr>
<td>SD</td>
<td>12</td>
<td>37.0</td>
<td>17.8</td>
<td>56.3</td>
<td>8</td>
</tr>
<tr>
<td>Response after first line</td>
<td>Time Point (months)</td>
<td>EFS (%)</td>
<td>95% CI Lower</td>
<td>95% CI Upper</td>
<td>Patients at risk</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------------</td>
<td>---------</td>
<td>--------------</td>
<td>--------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>SD</td>
<td>24</td>
<td>37.0</td>
<td>17.8</td>
<td>56.3</td>
<td>6</td>
</tr>
<tr>
<td>SD</td>
<td>36</td>
<td>30.8</td>
<td>12.9</td>
<td>50.9</td>
<td>4</td>
</tr>
<tr>
<td>SD</td>
<td>48</td>
<td>30.8</td>
<td>12.9</td>
<td>50.9</td>
<td>2</td>
</tr>
<tr>
<td>SD</td>
<td>60</td>
<td>30.8</td>
<td>12.9</td>
<td>50.9</td>
<td>1</td>
</tr>
<tr>
<td>SD</td>
<td>72</td>
<td>30.8</td>
<td>12.9</td>
<td>50.9</td>
<td>1</td>
</tr>
<tr>
<td>PD</td>
<td>12</td>
<td>19.2</td>
<td>9.9</td>
<td>30.9</td>
<td>10</td>
</tr>
<tr>
<td>PD</td>
<td>24</td>
<td>15.4</td>
<td>7.2</td>
<td>26.4</td>
<td>8</td>
</tr>
<tr>
<td>PD</td>
<td>36</td>
<td>12.3</td>
<td>4.8</td>
<td>23.5</td>
<td>4</td>
</tr>
<tr>
<td>PD</td>
<td>48</td>
<td>12.3</td>
<td>4.8</td>
<td>23.5</td>
<td>4</td>
</tr>
<tr>
<td>PD</td>
<td>60</td>
<td>12.3</td>
<td>4.8</td>
<td>23.5</td>
<td>2</td>
</tr>
<tr>
<td>PD</td>
<td>72</td>
<td>6.2</td>
<td>0.7</td>
<td>20.6</td>
<td>0</td>
</tr>
</tbody>
</table>
Progression-Free Survival according to Response after 1st line - induction ITT

<table>
<thead>
<tr>
<th>Response after first line</th>
<th>N</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFS (months)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR/CRu</td>
<td>300</td>
<td>21</td>
<td>13</td>
<td>31</td>
<td>0</td>
<td>79</td>
</tr>
<tr>
<td>PR</td>
<td>92</td>
<td>13</td>
<td>7</td>
<td>61</td>
<td>0</td>
<td>76</td>
</tr>
<tr>
<td>SD</td>
<td>23</td>
<td>10</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>78</td>
</tr>
<tr>
<td>PD</td>
<td>52</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>65</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Response after first line</th>
<th>Time Point (months)</th>
<th>PFS (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR/CRu</td>
<td>12</td>
<td>56.8</td>
<td>51.0</td>
<td>62.2</td>
<td>167</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>24</td>
<td>48.5</td>
<td>42.7</td>
<td>54.1</td>
<td>135</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>36</td>
<td>41.4</td>
<td>35.6</td>
<td>47.1</td>
<td>93</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>48</td>
<td>40.9</td>
<td>35.1</td>
<td>46.6</td>
<td>59</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>60</td>
<td>38.4</td>
<td>32.3</td>
<td>44.4</td>
<td>27</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>72</td>
<td>33.3</td>
<td>25.9</td>
<td>40.9</td>
<td>6</td>
</tr>
<tr>
<td>PR</td>
<td>12</td>
<td>52.2</td>
<td>41.4</td>
<td>61.9</td>
<td>44</td>
</tr>
<tr>
<td>PR</td>
<td>24</td>
<td>41.4</td>
<td>31.0</td>
<td>51.5</td>
<td>30</td>
</tr>
<tr>
<td>PR</td>
<td>36</td>
<td>39.9</td>
<td>29.5</td>
<td>50.0</td>
<td>21</td>
</tr>
<tr>
<td>PR</td>
<td>48</td>
<td>39.9</td>
<td>29.5</td>
<td>50.0</td>
<td>14</td>
</tr>
<tr>
<td>PR</td>
<td>60</td>
<td>39.9</td>
<td>29.5</td>
<td>50.0</td>
<td>8</td>
</tr>
<tr>
<td>PR</td>
<td>72</td>
<td>34.9</td>
<td>22.4</td>
<td>47.6</td>
<td>2</td>
</tr>
<tr>
<td>Response after first line</td>
<td>Time Point (months)</td>
<td>PFS (%)</td>
<td>95% CI Lower</td>
<td>95% CI Upper</td>
<td>Patients at risk</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------------</td>
<td>---------</td>
<td>--------------</td>
<td>--------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>SD</td>
<td>12</td>
<td>46.2</td>
<td>25.1</td>
<td>65.0</td>
<td>10</td>
</tr>
<tr>
<td>SD</td>
<td>24</td>
<td>41.6</td>
<td>21.4</td>
<td>60.7</td>
<td>7</td>
</tr>
<tr>
<td>SD</td>
<td>36</td>
<td>35.6</td>
<td>16.3</td>
<td>55.6</td>
<td>5</td>
</tr>
<tr>
<td>SD</td>
<td>48</td>
<td>35.6</td>
<td>16.3</td>
<td>55.6</td>
<td>2</td>
</tr>
<tr>
<td>SD</td>
<td>60</td>
<td>35.6</td>
<td>16.3</td>
<td>55.6</td>
<td>1</td>
</tr>
<tr>
<td>PD</td>
<td>12</td>
<td>23.1</td>
<td>12.8</td>
<td>35.2</td>
<td>12</td>
</tr>
<tr>
<td>PD</td>
<td>24</td>
<td>17.3</td>
<td>8.5</td>
<td>28.6</td>
<td>9</td>
</tr>
<tr>
<td>PD</td>
<td>36</td>
<td>13.8</td>
<td>5.7</td>
<td>25.6</td>
<td>4</td>
</tr>
<tr>
<td>PD</td>
<td>48</td>
<td>13.8</td>
<td>5.7</td>
<td>25.6</td>
<td>4</td>
</tr>
<tr>
<td>PD</td>
<td>60</td>
<td>13.8</td>
<td>5.7</td>
<td>25.6</td>
<td>2</td>
</tr>
<tr>
<td>PD</td>
<td>72</td>
<td>6.9</td>
<td>0.8</td>
<td>22.7</td>
<td>0</td>
</tr>
</tbody>
</table>
Overall Survival according to Response after 1st line - induction ITT

Response after first line
- **N**: Number of patients
- **Median**: Median survival time
- **95% CI Lower**: Lower confidence interval for 95% confidence interval
- **95% CI Upper**: Upper confidence interval for 95% confidence interval
- **Min**: Minimum survival time
- **Max**: Maximum survival time

OS (months)

<table>
<thead>
<tr>
<th>Response after first line</th>
<th>N</th>
<th>Median</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR/CRu</td>
<td>300</td>
<td>54</td>
<td>35</td>
<td>-</td>
<td>1</td>
<td>79</td>
</tr>
<tr>
<td>PR</td>
<td>92</td>
<td>61</td>
<td>17</td>
<td>-</td>
<td>0</td>
<td>76</td>
</tr>
<tr>
<td>SD</td>
<td>23</td>
<td>35</td>
<td>6</td>
<td>-</td>
<td>2</td>
<td>78</td>
</tr>
<tr>
<td>PD</td>
<td>52</td>
<td>8</td>
<td>6</td>
<td>11</td>
<td>0</td>
<td>71</td>
</tr>
</tbody>
</table>

Response after first line - Time Point (months)

<table>
<thead>
<tr>
<th>Response after first line</th>
<th>Time Point (months)</th>
<th>OS (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR/CRu</td>
<td>12</td>
<td>76.6</td>
<td>71.3</td>
<td>81.0</td>
<td>224</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>24</td>
<td>62.4</td>
<td>56.6</td>
<td>67.7</td>
<td>169</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>36</td>
<td>55.5</td>
<td>49.4</td>
<td>61.1</td>
<td>123</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>48</td>
<td>52.3</td>
<td>46.1</td>
<td>58.1</td>
<td>76</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>60</td>
<td>48.4</td>
<td>41.4</td>
<td>54.9</td>
<td>34</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>72</td>
<td>41.7</td>
<td>33.2</td>
<td>50.0</td>
<td>8</td>
</tr>
<tr>
<td>PR</td>
<td>12</td>
<td>70.8</td>
<td>60.2</td>
<td>79.1</td>
<td>60</td>
</tr>
<tr>
<td>PR</td>
<td>24</td>
<td>54.0</td>
<td>42.9</td>
<td>63.9</td>
<td>39</td>
</tr>
<tr>
<td>PR</td>
<td>36</td>
<td>50.8</td>
<td>39.5</td>
<td>61.0</td>
<td>27</td>
</tr>
<tr>
<td>PR</td>
<td>48</td>
<td>50.8</td>
<td>39.5</td>
<td>61.0</td>
<td>16</td>
</tr>
<tr>
<td>PR</td>
<td>60</td>
<td>50.8</td>
<td>39.5</td>
<td>61.0</td>
<td>9</td>
</tr>
<tr>
<td>PR</td>
<td>72</td>
<td>45.1</td>
<td>30.7</td>
<td>58.5</td>
<td>2</td>
</tr>
<tr>
<td>Response after first line</td>
<td>Time Point (months)</td>
<td>OS (%)</td>
<td>95% CI Lower</td>
<td>95% CI Upper</td>
<td>Patients at risk</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------------</td>
<td>--------</td>
<td>--------------</td>
<td>--------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>SD</td>
<td>12</td>
<td>59.2</td>
<td>36.2</td>
<td>76.3</td>
<td>13</td>
</tr>
<tr>
<td>SD</td>
<td>24</td>
<td>50.1</td>
<td>28.3</td>
<td>68.5</td>
<td>9</td>
</tr>
<tr>
<td>SD</td>
<td>36</td>
<td>42.9</td>
<td>21.1</td>
<td>63.2</td>
<td>6</td>
</tr>
<tr>
<td>SD</td>
<td>48</td>
<td>28.6</td>
<td>6.9</td>
<td>55.7</td>
<td>2</td>
</tr>
<tr>
<td>SD</td>
<td>60</td>
<td>28.6</td>
<td>6.9</td>
<td>55.7</td>
<td>1</td>
</tr>
<tr>
<td>SD</td>
<td>72</td>
<td>28.6</td>
<td>6.9</td>
<td>55.7</td>
<td>1</td>
</tr>
<tr>
<td>PD</td>
<td>12</td>
<td>35.6</td>
<td>22.9</td>
<td>48.6</td>
<td>18</td>
</tr>
<tr>
<td>PD</td>
<td>24</td>
<td>25.4</td>
<td>14.4</td>
<td>38.0</td>
<td>11</td>
</tr>
<tr>
<td>PD</td>
<td>36</td>
<td>21.8</td>
<td>11.0</td>
<td>34.9</td>
<td>6</td>
</tr>
<tr>
<td>PD</td>
<td>48</td>
<td>21.8</td>
<td>11.0</td>
<td>34.9</td>
<td>6</td>
</tr>
<tr>
<td>PD</td>
<td>60</td>
<td>21.8</td>
<td>11.0</td>
<td>34.9</td>
<td>4</td>
</tr>
<tr>
<td>PD</td>
<td>72</td>
<td>16.3</td>
<td>6.0</td>
<td>31.2</td>
<td>0</td>
</tr>
</tbody>
</table>
Prognostic factors

Gender

2nd randomization: EFS (MITT)

<table>
<thead>
<tr>
<th>Sex</th>
<th>N</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>MALE</td>
<td>159</td>
<td>32</td>
<td>21</td>
<td>58</td>
<td>1</td>
<td>74</td>
</tr>
<tr>
<td>FEMALE</td>
<td>83</td>
<td>-</td>
<td>62</td>
<td>-</td>
<td>1</td>
<td>76</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sex</th>
<th>Time Point (years)</th>
<th>Survival</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>MALE</td>
<td>12</td>
<td>63.3</td>
<td>55.2</td>
<td>70.2</td>
<td>98</td>
</tr>
<tr>
<td>MALE</td>
<td>24</td>
<td>54.8</td>
<td>46.6</td>
<td>62.3</td>
<td>65</td>
</tr>
<tr>
<td>MALE</td>
<td>36</td>
<td>48.3</td>
<td>39.7</td>
<td>56.3</td>
<td>45</td>
</tr>
<tr>
<td>MALE</td>
<td>48</td>
<td>46.4</td>
<td>37.5</td>
<td>54.9</td>
<td>25</td>
</tr>
<tr>
<td>MALE</td>
<td>60</td>
<td>37.1</td>
<td>25.6</td>
<td>48.7</td>
<td>11</td>
</tr>
<tr>
<td>MALE</td>
<td>72</td>
<td>37.1</td>
<td>25.6</td>
<td>48.7</td>
<td>3</td>
</tr>
<tr>
<td>FEMALE</td>
<td>12</td>
<td>75.0</td>
<td>64.0</td>
<td>83.1</td>
<td>60</td>
</tr>
<tr>
<td>FEMALE</td>
<td>24</td>
<td>67.5</td>
<td>56.1</td>
<td>76.6</td>
<td>53</td>
</tr>
<tr>
<td>FEMALE</td>
<td>36</td>
<td>63.6</td>
<td>52.0</td>
<td>73.1</td>
<td>41</td>
</tr>
<tr>
<td>FEMALE</td>
<td>48</td>
<td>63.6</td>
<td>52.0</td>
<td>73.1</td>
<td>28</td>
</tr>
<tr>
<td>FEMALE</td>
<td>60</td>
<td>63.6</td>
<td>52.0</td>
<td>73.1</td>
<td>15</td>
</tr>
<tr>
<td>FEMALE</td>
<td>72</td>
<td>59.0</td>
<td>44.8</td>
<td>70.7</td>
<td>3</td>
</tr>
</tbody>
</table>
Model with gender only:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>Parameter Estimate</th>
<th>Standard Error</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
<th>Variable Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEXE</td>
<td>1</td>
<td>-0.53721</td>
<td>0.21486</td>
<td>6.2515</td>
<td>0.0124</td>
<td>0.584</td>
<td>0.384 0.890</td>
<td>Sex FEMALE</td>
</tr>
</tbody>
</table>

Model with gender and maintenance arm:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>Parameter Estimate</th>
<th>Standard Error</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
<th>Variable Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEXE</td>
<td>1</td>
<td>-0.53532</td>
<td>0.21555</td>
<td>6.1682</td>
<td>0.0130</td>
<td>0.585</td>
<td>0.384 0.893</td>
<td>Sex FEMALE</td>
</tr>
<tr>
<td>brasrand2</td>
<td>1</td>
<td>-0.02066</td>
<td>0.19056</td>
<td>0.0118</td>
<td>0.9137</td>
<td>0.980</td>
<td>0.674 1.423</td>
<td>Arm of 2nd randomization RITUXIMAB</td>
</tr>
</tbody>
</table>

Model with gender, maintenance arm and interaction:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>Parameter Estimate</th>
<th>Standard Error</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEXE</td>
<td>1</td>
<td>-0.19064</td>
<td>0.29084</td>
<td>0.4296</td>
<td>0.5122</td>
</tr>
<tr>
<td>brasrand2</td>
<td>1</td>
<td>0.16862</td>
<td>0.22290</td>
<td>0.5723</td>
<td>0.4494</td>
</tr>
<tr>
<td>SEXE*brasrand2</td>
<td>1</td>
<td>-0.69997</td>
<td>0.43150</td>
<td>2.6315</td>
<td>0.1048</td>
</tr>
</tbody>
</table>
Arm of 2nd randomization = RITUXIMAB

Arm of 2nd randomization = OBSERVATION

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>Sex</th>
<th>N</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>76</td>
<td>25</td>
<td>16</td>
<td>58</td>
<td>1</td>
<td>72</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>46</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>76</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>MALE</td>
<td>83</td>
<td>57</td>
<td>18</td>
<td>-</td>
<td>1</td>
<td>74</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>FEMALE</td>
<td>37</td>
<td>62</td>
<td>23</td>
<td>-</td>
<td>2</td>
<td>71</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>Sex</th>
<th>Time Point (years)</th>
<th>Survival (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>12</td>
<td>64.5</td>
<td>52.6</td>
<td>74.1</td>
<td>48</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>24</td>
<td>52.9</td>
<td>40.9</td>
<td>63.6</td>
<td>32</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>36</td>
<td>43.2</td>
<td>31.0</td>
<td>54.9</td>
<td>19</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>48</td>
<td>38.4</td>
<td>24.7</td>
<td>52.0</td>
<td>8</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>60</td>
<td>28.8</td>
<td>11.8</td>
<td>48.4</td>
<td>3</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>72</td>
<td>28.8</td>
<td>11.8</td>
<td>48.4</td>
<td>1</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>12</td>
<td>79.2</td>
<td>63.8</td>
<td>88.6</td>
<td>34</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>24</td>
<td>69.8</td>
<td>53.8</td>
<td>81.2</td>
<td>30</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>36</td>
<td>69.8</td>
<td>53.8</td>
<td>81.2</td>
<td>25</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>48</td>
<td>69.8</td>
<td>53.8</td>
<td>81.2</td>
<td>19</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>60</td>
<td>69.8</td>
<td>53.8</td>
<td>81.2</td>
<td>11</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>72</td>
<td>69.8</td>
<td>53.8</td>
<td>81.2</td>
<td>3</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>MALE</td>
<td>12</td>
<td>62.1</td>
<td>50.7</td>
<td>71.6</td>
<td>50</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>MALE</td>
<td>24</td>
<td>56.8</td>
<td>45.3</td>
<td>66.8</td>
<td>33</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>MALE</td>
<td>36</td>
<td>53.0</td>
<td>41.1</td>
<td>63.5</td>
<td>26</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>MALE</td>
<td>48</td>
<td>53.0</td>
<td>41.1</td>
<td>63.5</td>
<td>17</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>MALE</td>
<td>60</td>
<td>43.4</td>
<td>28.0</td>
<td>57.8</td>
<td>8</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>MALE</td>
<td>72</td>
<td>43.4</td>
<td>28.0</td>
<td>57.8</td>
<td>2</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>FEMALE</td>
<td>12</td>
<td>70.3</td>
<td>52.8</td>
<td>82.3</td>
<td>26</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>FEMALE</td>
<td>24</td>
<td>64.9</td>
<td>47.3</td>
<td>77.9</td>
<td>23</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>FEMALE</td>
<td>36</td>
<td>56.0</td>
<td>38.5</td>
<td>70.4</td>
<td>16</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>FEMALE</td>
<td>48</td>
<td>56.0</td>
<td>38.5</td>
<td>70.4</td>
<td>9</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>FEMALE</td>
<td>60</td>
<td>56.0</td>
<td>38.5</td>
<td>70.4</td>
<td>4</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>FEMALE</td>
<td>72</td>
<td>42.0</td>
<td>16.5</td>
<td>65.9</td>
<td>0</td>
</tr>
</tbody>
</table>
Arm of 2nd randomization = RITUXIMAB

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>Parameter Estimate</th>
<th>Standard Error</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
<th>Variable Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEXE</td>
<td>FEMALE</td>
<td>1</td>
<td>-0.88680</td>
<td>0.32082</td>
<td>7.6404</td>
<td>0.0057</td>
<td>0.412</td>
<td>0.220</td>
</tr>
</tbody>
</table>

Arm of 2nd randomization = OBSERVATION

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>Parameter Estimate</th>
<th>Standard Error</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
<th>Variable Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEXE</td>
<td>FEMALE</td>
<td>1</td>
<td>-0.17877</td>
<td>0.29101</td>
<td>0.3774</td>
<td>0.5390</td>
<td>0.836</td>
<td>0.473</td>
</tr>
</tbody>
</table>

Sex = MALE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>Parameter Estimate</th>
<th>Standard Error</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
<th>Variable Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>brasrand2</td>
<td>RITUXIMAB</td>
<td>1</td>
<td>0.18015</td>
<td>0.22348</td>
<td>0.6498</td>
<td>0.4202</td>
<td>1.197</td>
<td>0.773</td>
</tr>
</tbody>
</table>

Sex = FEMALE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>Parameter Estimate</th>
<th>Standard Error</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
<th>Variable Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>brasrand2</td>
<td>RITUXIMAB</td>
<td>1</td>
<td>-0.52052</td>
<td>0.36927</td>
<td>1.9869</td>
<td>0.1587</td>
<td>0.594</td>
<td>0.288</td>
</tr>
</tbody>
</table>
Prognostic factors

Gender

2nd randomization : PFS (MITT)

<table>
<thead>
<tr>
<th>Sex</th>
<th>N</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>MALE</td>
<td>159</td>
<td>48</td>
<td>23</td>
<td>-</td>
<td>1</td>
<td>74</td>
</tr>
<tr>
<td>FEMALE</td>
<td>83</td>
<td>-</td>
<td>62</td>
<td>-</td>
<td>1</td>
<td>76</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sex</th>
<th>Time Point (years)</th>
<th>Survival (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>MALE</td>
<td>12</td>
<td>65.2</td>
<td>57.2</td>
<td>72.0</td>
<td>101</td>
</tr>
<tr>
<td>MALE</td>
<td>24</td>
<td>56.7</td>
<td>48.4</td>
<td>64.1</td>
<td>66</td>
</tr>
<tr>
<td>MALE</td>
<td>36</td>
<td>50.0</td>
<td>41.4</td>
<td>58.0</td>
<td>45</td>
</tr>
<tr>
<td>MALE</td>
<td>48</td>
<td>48.1</td>
<td>39.0</td>
<td>56.6</td>
<td>25</td>
</tr>
<tr>
<td>MALE</td>
<td>60</td>
<td>38.5</td>
<td>26.6</td>
<td>50.2</td>
<td>11</td>
</tr>
<tr>
<td>MALE</td>
<td>72</td>
<td>38.5</td>
<td>26.6</td>
<td>50.2</td>
<td>3</td>
</tr>
<tr>
<td>FEMALE</td>
<td>12</td>
<td>76.3</td>
<td>65.4</td>
<td>84.2</td>
<td>61</td>
</tr>
<tr>
<td>FEMALE</td>
<td>24</td>
<td>68.8</td>
<td>57.4</td>
<td>77.7</td>
<td>54</td>
</tr>
<tr>
<td>FEMALE</td>
<td>36</td>
<td>64.8</td>
<td>53.2</td>
<td>74.2</td>
<td>41</td>
</tr>
<tr>
<td>FEMALE</td>
<td>48</td>
<td>64.8</td>
<td>53.2</td>
<td>74.2</td>
<td>28</td>
</tr>
<tr>
<td>FEMALE</td>
<td>60</td>
<td>64.8</td>
<td>53.2</td>
<td>74.2</td>
<td>15</td>
</tr>
<tr>
<td>FEMALE</td>
<td>72</td>
<td>60.2</td>
<td>45.9</td>
<td>71.8</td>
<td>3</td>
</tr>
</tbody>
</table>
Model with gender only:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>Parameter Estimate</th>
<th>Standard Error</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
<th>Variable Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEXE</td>
<td>1</td>
<td>-0.53367</td>
<td>0.21869</td>
<td>5.9553</td>
<td>0.0147</td>
<td>0.586</td>
<td>0.382 0.900</td>
<td>Sex FEMALE</td>
</tr>
</tbody>
</table>

Model with gender and maintenance arm:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>Parameter Estimate</th>
<th>Standard Error</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
<th>Variable Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEXE</td>
<td>1</td>
<td>-0.54152</td>
<td>0.21951</td>
<td>6.0861</td>
<td>0.0136</td>
<td>0.582</td>
<td>0.378 0.895</td>
<td>Sex FEMALE</td>
</tr>
<tr>
<td>brasrand2</td>
<td>1</td>
<td>0.08406</td>
<td>0.19417</td>
<td>0.1874</td>
<td>0.6651</td>
<td>1.088</td>
<td>0.743 1.591</td>
<td>Arm of 2nd randomization RITUXIMAB</td>
</tr>
</tbody>
</table>

Model with gender, maintenance arm and interaction:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>Parameter Estimate</th>
<th>Standard Error</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEXE</td>
<td>1</td>
<td>-0.17025</td>
<td>0.30070</td>
<td>0.3206</td>
<td>0.5713</td>
</tr>
<tr>
<td>brasrand2</td>
<td>1</td>
<td>0.28135</td>
<td>0.22765</td>
<td>1.5274</td>
<td>0.2165</td>
</tr>
<tr>
<td>SEXE*brasrand2</td>
<td>1</td>
<td>-0.72785</td>
<td>0.43830</td>
<td>2.7577</td>
<td>0.0968</td>
</tr>
</tbody>
</table>
Arm of 2nd randomization = RITUXIMAB

Survival Probability

PFS (months)

Logrank p=0.0044

No. of Subjects | Event | Censored | Median Survival (95% CL)
FEMALE | 46 | 28% (13) | 72% (33) | NA (NA NA)
MALE | 76 | 55% (42) | 45% (34) | 25.30 (15.87 57.59)

Arm of 2nd randomization = OBSERVATION

Survival Probability

PFS (months)

Logrank p=0.5921

No. of Subjects | Event | Censored | Median Survival (95% CL)
FEMALE | 37 | 43% (16) | 57% (21) | 61.60 (26.89 NA)
MALE | 83 | 43% (36) | 57% (47) | 58.22 (20.90 NA)
<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>Sex</th>
<th>N</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>76</td>
<td>25</td>
<td>16</td>
<td>58</td>
<td>1</td>
<td>72</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>46</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>76</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>MALE</td>
<td>83</td>
<td>58</td>
<td>21</td>
<td>-</td>
<td>1</td>
<td>74</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>FEMALE</td>
<td>37</td>
<td>62</td>
<td>26</td>
<td>-</td>
<td>2</td>
<td>71</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>Sex</th>
<th>Time Point (years)</th>
<th>Survival (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>12</td>
<td>64.5</td>
<td>52.6</td>
<td>74.1</td>
<td>48</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>24</td>
<td>52.9</td>
<td>40.9</td>
<td>63.6</td>
<td>32</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>36</td>
<td>43.2</td>
<td>31.0</td>
<td>54.9</td>
<td>19</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>48</td>
<td>38.4</td>
<td>24.7</td>
<td>52.0</td>
<td>8</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>60</td>
<td>28.8</td>
<td>11.8</td>
<td>48.4</td>
<td>3</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>72</td>
<td>28.8</td>
<td>11.8</td>
<td>48.4</td>
<td>1</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>12</td>
<td>79.2</td>
<td>63.8</td>
<td>88.6</td>
<td>34</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>24</td>
<td>69.8</td>
<td>53.8</td>
<td>81.2</td>
<td>30</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>36</td>
<td>69.8</td>
<td>53.8</td>
<td>81.2</td>
<td>25</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>48</td>
<td>69.8</td>
<td>53.8</td>
<td>81.2</td>
<td>19</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>60</td>
<td>69.8</td>
<td>53.8</td>
<td>81.2</td>
<td>11</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>72</td>
<td>69.8</td>
<td>53.8</td>
<td>81.2</td>
<td>3</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>MALE</td>
<td>12</td>
<td>65.8</td>
<td>54.4</td>
<td>74.9</td>
<td>53</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>MALE</td>
<td>24</td>
<td>60.4</td>
<td>48.8</td>
<td>70.2</td>
<td>34</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>MALE</td>
<td>36</td>
<td>56.5</td>
<td>44.5</td>
<td>66.9</td>
<td>26</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>MALE</td>
<td>48</td>
<td>56.5</td>
<td>44.5</td>
<td>66.9</td>
<td>17</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>MALE</td>
<td>60</td>
<td>46.2</td>
<td>30.0</td>
<td>61.0</td>
<td>8</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>MALE</td>
<td>72</td>
<td>46.2</td>
<td>30.0</td>
<td>61.0</td>
<td>2</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>FEMALE</td>
<td>12</td>
<td>73.0</td>
<td>55.6</td>
<td>84.4</td>
<td>27</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>FEMALE</td>
<td>24</td>
<td>67.6</td>
<td>50.0</td>
<td>80.1</td>
<td>24</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>FEMALE</td>
<td>36</td>
<td>58.8</td>
<td>41.1</td>
<td>72.8</td>
<td>16</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>FEMALE</td>
<td>48</td>
<td>58.8</td>
<td>41.1</td>
<td>72.8</td>
<td>9</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>FEMALE</td>
<td>60</td>
<td>58.8</td>
<td>41.1</td>
<td>72.8</td>
<td>4</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>FEMALE</td>
<td>72</td>
<td>44.1</td>
<td>17.1</td>
<td>68.3</td>
<td>0</td>
</tr>
</tbody>
</table>
Arm of 2nd randomization=RITUXIMAB

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>Parameter Estimate</th>
<th>Standard Error</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
<th>Variable Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEXE</td>
<td>1</td>
<td>-0.88581</td>
<td>0.32083</td>
<td>7.6229</td>
<td>0.0058</td>
<td>0.412</td>
<td>0.220 0.773</td>
<td>Sex FEMALE</td>
</tr>
</tbody>
</table>

Arm of 2nd randomization=OBSERVATION

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>Parameter Estimate</th>
<th>Standard Error</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
<th>Variable Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEXE</td>
<td>1</td>
<td>-0.16097</td>
<td>0.30091</td>
<td>0.2862</td>
<td>0.5927</td>
<td>0.851</td>
<td>0.472 1.535</td>
<td>Sex FEMALE</td>
</tr>
</tbody>
</table>

Sex=MALE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>Parameter Estimate</th>
<th>Standard Error</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
<th>Variable Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>brasrand2</td>
<td>1</td>
<td>0.29243</td>
<td>0.22825</td>
<td>1.6414</td>
<td>0.2001</td>
<td>1.340</td>
<td>0.856 2.096</td>
<td>Arm of 2nd randomization RITUXIMAB</td>
</tr>
</tbody>
</table>

Sex=FEMALE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>Parameter Estimate</th>
<th>Standard Error</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
<th>Variable Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>brasrand2</td>
<td>1</td>
<td>-0.43290</td>
<td>0.37427</td>
<td>1.3379</td>
<td>0.2474</td>
<td>0.649</td>
<td>0.311 1.351</td>
<td>Arm of 2nd randomization RITUXIMAB</td>
</tr>
</tbody>
</table>
Prognostic factors

Gender

2nd randomization : OS (MITT)

<table>
<thead>
<tr>
<th>Sex</th>
<th>N</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>MALE</td>
<td>159</td>
<td>58</td>
<td>40</td>
<td>-</td>
<td>1</td>
<td>74</td>
</tr>
<tr>
<td>FEMALE</td>
<td>83</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>76</td>
</tr>
</tbody>
</table>

No. of Subjects | Event | Censored | Median Survival (95% CL)
FEMALE | 83 | 25% (21) | 75% (62) | NA | NA | NA |
MALE | 159 | 40% (63) | 60% (96) | 58.05 | 40.48 | NA |
Model with gender only:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>Parameter Estimate</th>
<th>Standard Error</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
<th>Variable Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEXE</td>
<td>1</td>
<td>-0.67898</td>
<td>0.25437</td>
<td>7.1247</td>
<td>0.0076</td>
<td>0.507</td>
<td>0.308 0.835</td>
<td>Sex FEMALE</td>
</tr>
</tbody>
</table>

Model with gender and maintenance arm:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>Parameter Estimate</th>
<th>Standard Error</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
<th>Variable Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEXE</td>
<td>1</td>
<td>-0.69179</td>
<td>0.25547</td>
<td>7.3327</td>
<td>0.0068</td>
<td>0.501</td>
<td>0.303 0.826</td>
<td>Sex FEMALE</td>
</tr>
<tr>
<td>brasrand2</td>
<td>1</td>
<td>0.12602</td>
<td>0.21938</td>
<td>0.3300</td>
<td>0.5657</td>
<td>1.134</td>
<td>0.738 1.744</td>
<td>Arm of 2nd randomization RITUXIMAB</td>
</tr>
</tbody>
</table>

Model with gender and maintenance arm:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>Parameter Estimate</th>
<th>Standard Error</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEXE</td>
<td>1</td>
<td>-0.34575</td>
<td>0.35476</td>
<td>0.9498</td>
<td>0.3298</td>
</tr>
<tr>
<td>brasrand2</td>
<td>1</td>
<td>0.28894</td>
<td>0.25315</td>
<td>1.3028</td>
<td>0.2537</td>
</tr>
<tr>
<td>SEXE*brasrand2</td>
<td>1</td>
<td>-0.65444</td>
<td>0.50590</td>
<td>1.6734</td>
<td>0.1958</td>
</tr>
</tbody>
</table>
Arm of 2nd randomization = RITUXIMAB

![Survival Probability graph for RITUXIMAB group with Logrank p=0.0071.](image)

<table>
<thead>
<tr>
<th>No. of Subjects</th>
<th>Event</th>
<th>Censored</th>
<th>Median Survival (95% CL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEMALE</td>
<td>46</td>
<td>22% (10)</td>
<td>78% (36) NA (NA NA)</td>
</tr>
<tr>
<td>MALE</td>
<td>76</td>
<td>45% (34)</td>
<td>55% (42) 58.05 (25.56 NA)</td>
</tr>
</tbody>
</table>

Arm of 2nd randomization = OBSERVATION

![Survival Probability graph for OBSERVATION group with Logrank p=0.2983.](image)

<table>
<thead>
<tr>
<th>No. of Subjects</th>
<th>Event</th>
<th>Censored</th>
<th>Median Survival (95% CL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEMALE</td>
<td>37</td>
<td>30% (11)</td>
<td>70% (26) 62.92 (53.72 NA)</td>
</tr>
<tr>
<td>MALE</td>
<td>83</td>
<td>35% (29)</td>
<td>65% (54) 58.22 (40.87 NA)</td>
</tr>
</tbody>
</table>
Sex=MALE

Logrank p=0.2362

Sex=FEMALE

Logrank p=0.4233
<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>Sex</th>
<th>N</th>
<th>Median</th>
<th>95% CI lower</th>
<th>95% CI Upper</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>76</td>
<td>58</td>
<td>26</td>
<td>-</td>
<td>3</td>
<td>72</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>46</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>76</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>MALE</td>
<td>83</td>
<td>58</td>
<td>41</td>
<td>-</td>
<td>1</td>
<td>74</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>FEMALE</td>
<td>37</td>
<td>63</td>
<td>54</td>
<td>-</td>
<td>2</td>
<td>71</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arm of 2nd randomization</th>
<th>Sex</th>
<th>Time Point (years)</th>
<th>Survival (%)</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>Patients at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>12</td>
<td>82.9</td>
<td>72.4</td>
<td>89.7</td>
<td>62</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>24</td>
<td>63.0</td>
<td>50.8</td>
<td>73.0</td>
<td>39</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>36</td>
<td>57.6</td>
<td>44.9</td>
<td>68.3</td>
<td>25</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>48</td>
<td>50.2</td>
<td>35.4</td>
<td>63.4</td>
<td>10</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>60</td>
<td>33.5</td>
<td>14.2</td>
<td>54.2</td>
<td>4</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>MALE</td>
<td>72</td>
<td>33.5</td>
<td>14.2</td>
<td>54.2</td>
<td>1</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>12</td>
<td>90.7</td>
<td>77.1</td>
<td>96.4</td>
<td>39</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>24</td>
<td>79.1</td>
<td>63.6</td>
<td>88.5</td>
<td>34</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>36</td>
<td>79.1</td>
<td>63.6</td>
<td>88.5</td>
<td>29</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>48</td>
<td>76.3</td>
<td>60.4</td>
<td>86.5</td>
<td>22</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>60</td>
<td>76.3</td>
<td>60.4</td>
<td>86.5</td>
<td>13</td>
</tr>
<tr>
<td>RITUXIMAB</td>
<td>FEMALE</td>
<td>72</td>
<td>76.3</td>
<td>60.4</td>
<td>86.5</td>
<td>3</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>MALE</td>
<td>12</td>
<td>81.6</td>
<td>71.4</td>
<td>88.5</td>
<td>66</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>MALE</td>
<td>24</td>
<td>76.5</td>
<td>65.6</td>
<td>84.3</td>
<td>44</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>MALE</td>
<td>36</td>
<td>65.1</td>
<td>52.3</td>
<td>75.3</td>
<td>29</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>MALE</td>
<td>48</td>
<td>59.9</td>
<td>46.1</td>
<td>71.3</td>
<td>18</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>MALE</td>
<td>60</td>
<td>49.0</td>
<td>31.2</td>
<td>64.6</td>
<td>8</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>MALE</td>
<td>72</td>
<td>49.0</td>
<td>31.2</td>
<td>64.6</td>
<td>2</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>FEMALE</td>
<td>12</td>
<td>86.5</td>
<td>70.5</td>
<td>94.1</td>
<td>32</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>FEMALE</td>
<td>24</td>
<td>83.8</td>
<td>67.4</td>
<td>92.4</td>
<td>28</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>FEMALE</td>
<td>36</td>
<td>77.7</td>
<td>60.2</td>
<td>88.2</td>
<td>21</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>FEMALE</td>
<td>48</td>
<td>74.0</td>
<td>55.6</td>
<td>85.7</td>
<td>13</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>FEMALE</td>
<td>60</td>
<td>65.8</td>
<td>41.9</td>
<td>81.7</td>
<td>5</td>
</tr>
<tr>
<td>OBSERVATION</td>
<td>FEMALE</td>
<td>72</td>
<td>49.3</td>
<td>17.3</td>
<td>75.2</td>
<td>0</td>
</tr>
</tbody>
</table>
Arm of 2nd randomization=RITUXIMAB

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>Parameter Estimate</th>
<th>Standard Error</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
<th>Variable Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEXE 1</td>
<td>-0.95023</td>
<td>0.36531</td>
<td>6.7663</td>
<td>0.0093</td>
<td>0.387</td>
<td>0.189</td>
<td>0.791</td>
<td>Sex FEMALE</td>
</tr>
</tbody>
</table>

Arm of 2nd randomization=OBSERVATION

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>Parameter Estimate</th>
<th>Standard Error</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
<th>Variable Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEXE 1</td>
<td>-0.36793</td>
<td>0.35591</td>
<td>1.0687</td>
<td>0.3012</td>
<td>0.692</td>
<td>0.345</td>
<td>1.390</td>
<td>Sex FEMALE</td>
</tr>
</tbody>
</table>

Sex=MALE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>Parameter Estimate</th>
<th>Standard Error</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
<th>Variable Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>brasrand2 1</td>
<td>RITUXIMAB</td>
<td>0.29959</td>
<td>0.25341</td>
<td>1.3977</td>
<td>0.2371</td>
<td>1.349</td>
<td>0.821</td>
<td>2.217</td>
</tr>
</tbody>
</table>

Sex=FEMALE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>Parameter Estimate</th>
<th>Standard Error</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
<th>Variable Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>brasrand2 1</td>
<td>RITUXIMAB</td>
<td>-0.34876</td>
<td>0.43775</td>
<td>0.6347</td>
<td>0.4256</td>
<td>0.706</td>
<td>0.299</td>
<td>1.664</td>
</tr>
</tbody>
</table>

Coral study

Cox models - maintenance population (excluding SD patients)

PFS from 2nd randomization

| Number of Observations Read | 234 |
| Number of Observations Used | 229 |
Testing Global Null Hypothesis: BETA=0

<table>
<thead>
<tr>
<th>Test</th>
<th>Chi-Square</th>
<th>DF</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Likelihood Ratio</td>
<td>20.3524</td>
<td>3</td>
<td>0.0001</td>
</tr>
<tr>
<td>Score</td>
<td>21.4500</td>
<td>3</td>
<td><.0001</td>
</tr>
<tr>
<td>Wald</td>
<td>20.6540</td>
<td>3</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

Analysis of Maximum Likelihood Estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>Parameter Estimate</th>
<th>Standard Error</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
<th>Variable Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>brasrand2</td>
<td>1</td>
<td>0.12762</td>
<td>0.20445</td>
<td>0.3896</td>
<td>0.5325</td>
<td>1.136</td>
<td>0.761 1.696</td>
<td>Arm of 2nd randomization RITUXIMAB</td>
</tr>
<tr>
<td>aaipi</td>
<td>1</td>
<td>0.78873</td>
<td>0.20596</td>
<td>14.6654</td>
<td>0.0001</td>
<td>2.201</td>
<td>1.470 3.295</td>
<td>Age-adjusted IPI 2-3</td>
</tr>
<tr>
<td>SEXE</td>
<td>1</td>
<td>0.60309</td>
<td>0.23156</td>
<td>6.7835</td>
<td>0.0092</td>
<td>1.828</td>
<td>1.161 2.878</td>
<td>Sex MALE</td>
</tr>
</tbody>
</table>
CORAL study

Cox models - maintenance population (excluding SD patients)

PFS from 2nd randomization

<table>
<thead>
<tr>
<th>Number of Observations Read</th>
<th>234</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Observations Used</td>
<td>229</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test</th>
<th>Chi-Square</th>
<th>DF</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Likelihood Ratio</td>
<td>27.0463</td>
<td>7</td>
<td>0.0003</td>
</tr>
<tr>
<td>Score</td>
<td>28.1385</td>
<td>7</td>
<td>0.0002</td>
</tr>
<tr>
<td>Wald</td>
<td>27.1232</td>
<td>7</td>
<td>0.0003</td>
</tr>
</tbody>
</table>

Analysis of Maximum Likelihood Estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>Parameter Estimate</th>
<th>Standard Error</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arm of 2nd randomization RITUXIMAB</td>
<td>1</td>
<td>0.13214</td>
<td>0.20672</td>
<td>0.4086</td>
<td>0.5227</td>
<td>1.141</td>
<td>0.761 1.711</td>
</tr>
<tr>
<td>Age-adjusted IPI 2-3</td>
<td>1</td>
<td>0.74159</td>
<td>0.20798</td>
<td>12.7139</td>
<td>0.0004</td>
<td>2.099</td>
<td>1.396 3.156</td>
</tr>
<tr>
<td>Sex MALE</td>
<td>1</td>
<td>0.58717</td>
<td>0.23223</td>
<td>6.3926</td>
<td>0.0115</td>
<td>1.799</td>
<td>1.141 2.836</td>
</tr>
<tr>
<td>Prior treatment with Rituximab No</td>
<td>1</td>
<td>-0.17526</td>
<td>0.22847</td>
<td>0.5884</td>
<td>0.4430</td>
<td>0.839</td>
<td>0.536 1.313</td>
</tr>
<tr>
<td>Failure from diagnosis < 12 months</td>
<td>1</td>
<td>0.19620</td>
<td>0.23001</td>
<td>0.7276</td>
<td>0.3937</td>
<td>1.217</td>
<td>0.775 1.910</td>
</tr>
<tr>
<td>Response after complete induction PR</td>
<td>1</td>
<td>0.14102</td>
<td>0.20908</td>
<td>0.4549</td>
<td>0.5000</td>
<td>1.151</td>
<td>0.764 1.735</td>
</tr>
<tr>
<td>Arm of treatment ARM A / R-ICE</td>
<td>1</td>
<td>0.38543</td>
<td>0.20591</td>
<td>3.5038</td>
<td>0.0612</td>
<td>1.470</td>
<td>0.982 2.201</td>
</tr>
</tbody>
</table>
Coral study

Cox models - maintenance population (excluding SD patients)

2nd randomization: OS

<table>
<thead>
<tr>
<th>Number of Observations Read</th>
<th>234</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Observations Used</td>
<td>229</td>
</tr>
</tbody>
</table>

Testing Global Null Hypothesis: BETA=0

<table>
<thead>
<tr>
<th>Test</th>
<th>Chi-Square</th>
<th>DF</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Likelihood Ratio</td>
<td>20.4930</td>
<td>3</td>
<td>0.0001</td>
</tr>
<tr>
<td>Score</td>
<td>21.8743</td>
<td>3</td>
<td><.0001</td>
</tr>
<tr>
<td>Wald</td>
<td>20.8338</td>
<td>3</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

Analysis of Maximum Likelihood Estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>Parameter Estimate</th>
<th>Standard Error</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
<th>Variable Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>brasrand2</td>
<td>RITUXIMAB</td>
<td>1</td>
<td>0.19196</td>
<td>0.22723</td>
<td>0.7137</td>
<td>0.3982</td>
<td>1.212</td>
<td>0.776</td>
</tr>
<tr>
<td>aaipi</td>
<td>2-3</td>
<td>1</td>
<td>0.89373</td>
<td>0.22754</td>
<td>15.4281</td>
<td><.0001</td>
<td>2.444</td>
<td>1.565</td>
</tr>
<tr>
<td>SEXE</td>
<td>MALE</td>
<td>1</td>
<td>0.63522</td>
<td>0.25860</td>
<td>6.0341</td>
<td>0.0140</td>
<td>1.887</td>
<td>1.137</td>
</tr>
</tbody>
</table>
CORAL study

Cox models - maintenance population (excluding SD patients)

2nd randomization: OS

<table>
<thead>
<tr>
<th>Number of Observations Read</th>
<th>234</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Observations Used</td>
<td>229</td>
</tr>
</tbody>
</table>

Testing Global Null Hypothesis: BETA=0

<table>
<thead>
<tr>
<th>Test</th>
<th>Chi-Square</th>
<th>DF</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Likelihood Ratio</td>
<td>26.9752</td>
<td>7</td>
<td>0.0003</td>
</tr>
<tr>
<td>Score</td>
<td>28.3489</td>
<td>7</td>
<td>0.0002</td>
</tr>
<tr>
<td>Wald</td>
<td>27.1006</td>
<td>7</td>
<td>0.0003</td>
</tr>
</tbody>
</table>

Analysis of Maximum Likelihood Estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>Parameter Estimate</th>
<th>Standard Error</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
<th>Hazard Ratio</th>
<th>95% Hazard Ratio Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arm of 2nd randomization RITUXIMAB</td>
<td>1</td>
<td>0.19336</td>
<td>0.22899</td>
<td>0.7130</td>
<td>0.3984</td>
<td>1.213</td>
<td>0.775 - 1.901</td>
</tr>
<tr>
<td>Age-adjusted IPI 2-3</td>
<td>1</td>
<td>0.84439</td>
<td>0.22978</td>
<td>13.5035</td>
<td>0.0002</td>
<td>2.327</td>
<td>1.483 - 3.650</td>
</tr>
<tr>
<td>Sex MALE</td>
<td>1</td>
<td>0.61535</td>
<td>0.25988</td>
<td>5.6067</td>
<td>0.0179</td>
<td>1.850</td>
<td>1.112 - 3.079</td>
</tr>
<tr>
<td>Prior treatment with Rituximab No</td>
<td>1</td>
<td>-0.24360</td>
<td>0.25747</td>
<td>0.8951</td>
<td>0.3441</td>
<td>0.784</td>
<td>0.473 - 1.298</td>
</tr>
<tr>
<td>Failure from diagnosis (< 12 months)</td>
<td>1</td>
<td>0.18435</td>
<td>0.25763</td>
<td>0.5120</td>
<td>0.4743</td>
<td>1.202</td>
<td>0.726 - 1.992</td>
</tr>
<tr>
<td>Response after complete induction PR</td>
<td>1</td>
<td>0.13211</td>
<td>0.23275</td>
<td>0.3222</td>
<td>0.5703</td>
<td>1.141</td>
<td>0.723 - 1.801</td>
</tr>
<tr>
<td>Arm of treatment ARM A / R-ICE</td>
<td>1</td>
<td>0.41014</td>
<td>0.22914</td>
<td>3.2037</td>
<td>0.0735</td>
<td>1.507</td>
<td>0.962 - 2.361</td>
</tr>
</tbody>
</table>
CORAL study

PET scan in PR patients after induction

<table>
<thead>
<tr>
<th>PET scan after induction chemo</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEGATIVE</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>POSITIVE</td>
<td>24</td>
<td>27</td>
</tr>
<tr>
<td>NOT DONE</td>
<td>58</td>
<td>65</td>
</tr>
<tr>
<td>Total</td>
<td>89</td>
<td>100</td>
</tr>
</tbody>
</table>
CORAL study

PET scan in PR patients after induction

List of PET positive and PR patients after induction

<table>
<thead>
<tr>
<th>No.</th>
<th>PET scan after induction</th>
<th>PET scan at M3 post transplant</th>
<th>Transplantation date</th>
<th>Progression / Relapse</th>
<th>Date of Progression / Relapse</th>
<th>PFS (months) from 1st rando</th>
<th>PFS (months) from 2nd rando</th>
<th>Date of death</th>
<th>OS (months) from 1st rando</th>
</tr>
</thead>
<tbody>
<tr>
<td>02</td>
<td>POSITIVE</td>
<td>POSITIVE</td>
<td>11/10/2006</td>
<td>Yes</td>
<td>04/01/2007</td>
<td>5.7495</td>
<td>2.6283</td>
<td>19/02/2007</td>
<td>7.2608</td>
</tr>
<tr>
<td>03</td>
<td>POSITIVE</td>
<td>NOT DONE</td>
<td>21/12/2004</td>
<td>-</td>
<td>67.0838</td>
<td>62.5544</td>
<td>-</td>
<td>67.0883</td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>POSITIVE</td>
<td>NOT DONE</td>
<td>27/12/2007</td>
<td>-</td>
<td>27.8275</td>
<td>24.4107</td>
<td>-</td>
<td>27.8275</td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>POSITIVE</td>
<td>NOT DONE</td>
<td>04/10/2005</td>
<td>Yes</td>
<td>10/01/2006</td>
<td>5.8809</td>
<td>1.8398</td>
<td>16/02/2006</td>
<td>7.0965</td>
</tr>
<tr>
<td>06</td>
<td>POSITIVE</td>
<td>NEGATIVE</td>
<td>21/11/2005</td>
<td>-</td>
<td>49.6756</td>
<td>46.6530</td>
<td>-</td>
<td>49.6756</td>
<td></td>
</tr>
<tr>
<td>07</td>
<td>POSITIVE</td>
<td>POSITIVE</td>
<td>28/11/2005</td>
<td>-</td>
<td>50.6612</td>
<td>47.6715</td>
<td>-</td>
<td>50.6612</td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>POSITIVE</td>
<td>NEGATIVE</td>
<td>17/05/2004</td>
<td>-</td>
<td>75.2033</td>
<td>72.3450</td>
<td>-</td>
<td>75.2033</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>POSITIVE</td>
<td>NEGATIVE</td>
<td>15/07/2008</td>
<td>-</td>
<td>22.1766</td>
<td>17.9055</td>
<td>-</td>
<td>22.1766</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>POSITIVE</td>
<td>POSITIVE</td>
<td>21/06/2006</td>
<td>-</td>
<td>38.3409</td>
<td>35.2197</td>
<td>-</td>
<td>38.3409</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>POSITIVE</td>
<td>NOT DONE</td>
<td>28/11/2007</td>
<td>Yes</td>
<td>21/10/2009</td>
<td>25.5606</td>
<td>22.7680</td>
<td>32.0000</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>POSITIVE</td>
<td>NOT DONE</td>
<td>04/10/2007</td>
<td>Yes</td>
<td>21/01/2008</td>
<td>6.5708</td>
<td>2.9240</td>
<td>16/10/2008</td>
<td>15.4086</td>
</tr>
<tr>
<td>15</td>
<td>POSITIVE</td>
<td>-</td>
<td>14/02/2008</td>
<td>-</td>
<td>3.8768</td>
<td>1.2813</td>
<td>-</td>
<td>3.8768</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>POSITIVE</td>
<td>NEGATIVE</td>
<td>10/03/2008</td>
<td>-</td>
<td>29.6674</td>
<td>25.7248</td>
<td>-</td>
<td>29.6674</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>POSITIVE</td>
<td>NEGATIVE</td>
<td>14/11/2007</td>
<td>-</td>
<td>33.7413</td>
<td>30.7187</td>
<td>-</td>
<td>33.7413</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>POSITIVE</td>
<td>POSITIVE</td>
<td>19/05/2008</td>
<td>-</td>
<td>26.7433</td>
<td>21.6509</td>
<td>-</td>
<td>26.7433</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>POSITIVE</td>
<td>POSITIVE</td>
<td>08/06/2005</td>
<td>Yes</td>
<td>13/01/2006</td>
<td>10.1520</td>
<td>7.2279</td>
<td>-</td>
<td>54.3080</td>
</tr>
<tr>
<td>21</td>
<td>POSITIVE</td>
<td>NEGATIVE</td>
<td>16/09/2008</td>
<td>-</td>
<td>23.8850</td>
<td>19.6797</td>
<td>-</td>
<td>23.8850</td>
<td></td>
</tr>
</tbody>
</table>

N = 24
SAFETY REPORT
CORAL: 50-03B

03/07/2003 – 02/07/2011 (96 MONTHS)

PHASE III MULTICENTRE OPEN-LABEL RANDOMIZED STUDY OF ICE PLUS RITUXIMAB (R-ICE) VERSUS DHAP PLUS RITUXIMAB (R-DHAP) IN PREVIOUSLY TREATED PATIENTS WITH CD 20 POSITIVE DIFFUSE LARGE B-CELL LYMPHOMA, ELIGIBLE FOR TRANSPLANTATION FOLLOWED BY RANDOMIZED MAINTENANCE TREATMENT WITH RITUXIMAB

EudraCT number: 2004-002103-32

Sponsor
GELARC, CORAL GROUP

GELA : Groupe d’Etude des Lymphomes de l’Adulte
CHU Saint Louis – Centre Hayem
75475 Paris cedex 10 - France
☎: +33(0)1 42 49 98 11
Fax: +33(0)1 42 49 99 72

Study Coordinator
Intergroup Protocol Coordinator

Pr. Christian Gisselbrecht
Hôpital Saint Louis - Centre Hayem
1, Avenue Claude Vellefaux
75010 Paris
☎: 33 1 42 49 98 11
Fax: 33 1 42 49 99 72
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFSSAPS</td>
<td>French Health Authority</td>
</tr>
<tr>
<td>GELA</td>
<td>Study Group of Adults' Lymphoma</td>
</tr>
<tr>
<td>SAE</td>
<td>Serious Adverse Event</td>
</tr>
<tr>
<td>AE</td>
<td>Adverse Event</td>
</tr>
<tr>
<td>SAR</td>
<td>Serious Adverse Reaction</td>
</tr>
<tr>
<td>SUSAR</td>
<td>Suspected Unexpected Serious Adverse Event</td>
</tr>
<tr>
<td>SmPC</td>
<td>Summary of Product Characteristics</td>
</tr>
<tr>
<td>MedDRA</td>
<td>Medical Dictionary for Regulatory Activities</td>
</tr>
<tr>
<td>SOC</td>
<td>System Organ Class</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

1. Introduction ... 4
 1.1 Study medication ... 5
 1.2 Protocol safety parameters ... 6
2. Protocol amendments .. 6
3. Serious Adverse Events cases information ... 7
 3.1 SAE cases nullification .. 7
 3.2 SAE cases characteristics .. 7
 3.3 Subject’s characteristics .. 8
4. Summary of the serious adverse reactions ... 9
 4.1 Induction phase: Summary of the serious adverse reactions by SOC ... 9
 4.2 Maintenance phase: Summary of the serious adverse reactions by SOC 12
 4.3 Fatal cases ... 14
 4.4 Suspected Unexpected Serious Adverse Reactions (SUSARs) ... 16
5. Overview .. 26
6. Conclusion ... 29
7. Line-listings ... 29
8. DSMC ... 29
1. Introduction

This document is a safety report for CORAL study, covering the period between 03 July 2003 and 02 July 2011 (96 months).

This study is sponsored by GELA and was registered by the French Health Authority (AFSSaPS) on 03 July 2003.

The first subject was included to the study on July 24, 2003. The last included patient has completed his study treatment in November 2009. All the patients are now in the post-treatment follow up period.

The study is conducting in 8 European countries (Austria, Belgium, Czech Republic, Germany, France, Sweden, United Kingdom, Ireland) and 5 other countries (Australia, New Zealand, USA, Israel, Switzerland).

The objectives of the study

Part I, induction therapy: To evaluate the efficacy and the safety of ICE plus rituximab (R-ICE) in comparison with DHAP plus rituximab (R-DHAP) in previously-treated patients with CD20-positive large B-cell lymphoma eligible for autologous transplantation.

Part II, maintenance therapy: To evaluate the efficacy and safety of rituximab maintenance therapy after transplantation.

The primary endpoint of the study

Part I, induction therapy: Overall response rate (ORR) (Complete Response CR and Partial Response PR) adjusted with successful mobilization at the end of 3 cycles of induction chemotherapy treatment before high-dose chemotherapy and autologous transplantation.

Part II, maintenance therapy: Event free survival (EFS) at 2 years post transplantation: events being death from any cause, relapse for complete responders and unconfirmed complete responders, progression during and after treatment and changes of therapy.
1.1 Study medication

Induction phase:
There are 2 treatment arms: arm A (R-ICE) and arm B (R-DHAP). The patients are stratified by the investigator.

Arm A: 3 cycles of R-ICE in 3–weekly intervals.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Dosage</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-ICE</td>
<td></td>
</tr>
<tr>
<td>Rituximab</td>
<td>375 mg/m²</td>
</tr>
<tr>
<td>Etoposide</td>
<td>100 mg/m²</td>
</tr>
<tr>
<td>Carboplatin</td>
<td>AUC (5) max 800 mg</td>
</tr>
<tr>
<td>Ifosfamide + Mesna</td>
<td>5 g/m²</td>
</tr>
<tr>
<td>Lenograstim</td>
<td></td>
</tr>
</tbody>
</table>

Arm B: 3 cycles of R-DHAP in 3–weekly intervals.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Dosage</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-DHAP</td>
<td></td>
</tr>
<tr>
<td>Rituximab</td>
<td>375 mg/m²</td>
</tr>
<tr>
<td>Cisplatin c.i.</td>
<td>100 mg/m²</td>
</tr>
<tr>
<td>Cytarabine</td>
<td>2000 mg/m²/12 h</td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>40 mg/m²</td>
</tr>
<tr>
<td>Lenograstim</td>
<td></td>
</tr>
</tbody>
</table>

Consolidation:
All patients in CR (complete response) or PR (partial response) will be submitted to consolidation treatment with BEAM and then the autologous stem cell transplantation (ASCT) will be performed.

BEAM

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Dosage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carmustine</td>
<td>300 mg/m²</td>
</tr>
<tr>
<td>Etoposide</td>
<td>200 mg/m²</td>
</tr>
<tr>
<td>Cytarabine</td>
<td>200 mg/m²</td>
</tr>
<tr>
<td>Melphalan</td>
<td>140 mg/m²</td>
</tr>
</tbody>
</table>

Maintenance: Randomization to Rituximab post transplant versus Observation after restaging at the end of induction remission treatment.

The investigational medicinal products in this study are the following:

- **Rituximab**: reference document for expectedness is SmPC
- **Carboplatin**: reference document for expectedness is SmPC
- **Ifosfamide**: reference document for expectedness is SmPC
- **Mesna**: reference document for expectedness is SmPC
- **Lenograstim**: reference document for expectedness is SmPC
- **Dexamethasone**: reference document for expectedness is SmPC
- **Cisplatin**: reference document for expectedness is SmPC
Carmustine: reference document for expectedness is SmPC
Etoposide: reference document for expectedness is SmPC
Cytarabine: reference document for expectedness is SmPC
Melphalan: reference document for expectedness is SmPC

Autologous stem cell transplantation (ASCT)

All events in this report are coded with MedDRA version 10.0.

1.2 **Protocol safety parameters**

Serious Adverse Events (SAEs) that occurred after the informed consent up to 30 days after the last study drug administration or last maintenance visit, whether or not ascribed to the study, are recorded in the SAE pages. A SAE that occurs after this time will be reported only if considered related to the study.

- SAE is not recorded if related to lymphoma progression.
- Severe hematologic toxicity is never to be declared as AE. Febrile neutropenia requiring hospitalization less than 8 days, nausea, vomiting and hair loss, are not to be reported as SAE but only as AE.
- Hospitalizations for previously planned procedure or convenience are not to be reported as SAE.

2. **Protocol amendments**

Amendment N°1 - June 20th, 2003
- Aracytine perfusion 200 mg/m²/12 h.

Amendment N°2 - January 16th, 2006
- Increase of the inclusion period of 24 months (January 2008).
- The investigators are allowed to mobilize and collect the patient after the 2nd and/or 3rd cycles of chemotherapy. It is a usual practice in the majority of centers.
- Collection of more data particularly on the relapse post transplantation: Addition of 2 pages at the Case Report Form.
- Collection of the number of transfusion episode in the CRF instead of units.
3. Serious Adverse Events cases information

A total of 309 SAE cases were received between July 03, 2003 and July 02, 2011.

3.1 SAE cases nullification

Out of 309 cases received, 47 SAE cases were cancelled as they did not meet the reporting criteria defined in the protocol. The cancellation reasons are summarized in the table below:

<table>
<thead>
<tr>
<th>Cancellation reason</th>
<th>Nb of SAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease progression</td>
<td>10</td>
</tr>
<tr>
<td>Duplicate</td>
<td>6</td>
</tr>
<tr>
<td>Reporting out of protocol</td>
<td>10</td>
</tr>
<tr>
<td>Adverse event (non serious) according to the protocol</td>
<td>19</td>
</tr>
<tr>
<td>Patient not randomized</td>
<td>1</td>
</tr>
<tr>
<td>Existing at inclusion condition</td>
<td>1</td>
</tr>
</tbody>
</table>

A total of 262 SAE cases were captured in the Gelarc Pharmacovigilance database.

3.2 SAE cases characteristics

Out of 262, 230 SAE cases were assessed by the investigator and/or by the sponsor as related to the study.

Of them, 198 events were listed and 32 events have not been listed yet in the reference documents, current version at the moment of the SAE reporting. The related and unexpected SAEs have been notified to the Health Authorities and Ethics Committees as Suspected Unexpected Serious Adverse Reactions (SUSARs) and are described in Section 4.4.

<table>
<thead>
<tr>
<th>Causality by the investigator or by the sponsor</th>
<th>Listed in the reference document</th>
<th>Unlisted in the reference document</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Related</td>
<td>198</td>
<td>32</td>
<td>230</td>
</tr>
<tr>
<td>Unrelated</td>
<td>NA</td>
<td>NA</td>
<td>32</td>
</tr>
</tbody>
</table>
A total of **22 related to the study** cases that referred to 21 subjects, were received with fatal outcome and they are described in Section 4.3.

A total of 230 cases assessed as related to the study (by the investigator or/sponsor) have been analyzed in the current document. These related cases will be further mentioned as SAR (Serious Adverse Reaction).

179 SAR cases were reported from induction phase and 51 - from maintenance phase.

32 cases were considered as unrelated to the study, they are summarized in the line listing of unrelated cases (cf Appendix 4). 7 of them were reported with fatal outcome.

None pregnancy case was received during the 8-years reference period.

3.3 Subject’s characteristics

A total of **481** subjects have been included to the CORAL study (246 and 235 in the R-ICE arm and in the R-DHAP arm respectively), **245** subjects have been randomized to the maintenance phase since February, 04 2004.

A total of **153** subjects experienced serious adverse events (SAE) during the period between July 03, 2003 and July 02, 2011.

Of them, a total of **141** subjects experienced serious adverse reactions (SAR). Subject’s age was ranged between 19 and 67-year-old with a mean age of 56-year-old. There were 85 male and 56 female patients.

During induction, 116 of 481 included patients experienced SAR.

<table>
<thead>
<tr>
<th>Regimen</th>
<th>Total Number of subjects included</th>
<th>Nb SAR reports</th>
<th>Nb of patients Involved (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-ICE +/− BEAM</td>
<td>246</td>
<td>75</td>
<td>49 patients (19.9%)</td>
</tr>
<tr>
<td>R-DHAP +/− BEAM</td>
<td>235</td>
<td>104</td>
<td>67 patients (28.5%)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>481</td>
<td>179</td>
<td>116</td>
</tr>
</tbody>
</table>

Table I: SARs and number of patients involved during induction
During maintenance phase, 35 patients of 245 randomized, developed at least one SAR

<table>
<thead>
<tr>
<th>Regimen</th>
<th>Total Number of subjects included</th>
<th>Nb SAE reports</th>
<th>Nb of patients involved (% of randomized to the arm subjects)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rituximab</td>
<td>124</td>
<td>35</td>
<td>23 subjects (18.5%)</td>
</tr>
<tr>
<td>Observation</td>
<td>121</td>
<td>16</td>
<td>12 subjects (13.2%)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>245</td>
<td>51</td>
<td>35</td>
</tr>
</tbody>
</table>

Table II: SARs and number of patients involved during maintenance

4. **Summary of the serious adverse reactions**

4.1 **Induction phase: Summary of the serious adverse reactions by SOC**

R-ICE versus R-DHAP

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Arm R-ICE +/- BEAM, ASCT</th>
<th>Arm R-DHAP +/- BEAM, ASCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total of patients included</td>
<td>246</td>
<td>235</td>
<td></td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Febrile neutropenia b)</td>
<td>21</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>-</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Pancytopenia</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bicytopenia</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Hematotoxicity</td>
<td>-</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td>11</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Atrial fibrillation a)b)</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cardiac insufficiency a)b)</td>
<td>-</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Cardiac failure</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cardiac arrest a)b)</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cardiac ischemia</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bradycardia</td>
<td>-</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ear and labyrinth disorders</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Tinnitus</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>20</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>Bowel obstruction</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Colitis hemorrhagic</td>
<td>-</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Diarrhea</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Esophageal haemorrhage</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Gastric ulcer haemorrhage</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal haemorrhage</td>
<td>1</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>-</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Nausea and vomiting</td>
<td>-</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

GELARC – Annual Safety Report-Coral–09August 2011 – Pharmacovigilance@gela.org
<table>
<thead>
<tr>
<th>Condition</th>
<th>Total</th>
<th>Arm R-ICE BEAM, ASCT</th>
<th>Arm R-DHAP+/- BEAM, ASCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perforation large intestine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vomiting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perforated bowel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>8</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Asthenia</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fever</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mucositis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatobiliary disorders</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hepatitis</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute cholecystitis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immune system disorders</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Drug hypersensitivity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infections and infestations</td>
<td>69</td>
<td>34</td>
<td>35</td>
</tr>
<tr>
<td>Aspergillosis</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central line infection</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cellulitis</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMV Infection (c)</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dental abscess</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diarrhea Clostridium difficile</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enterobacter septicemia</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escherichia Coli Infection</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal candidiasis</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herpes zoster</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klebsiella pneumoniae infection</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klebsiella sepsis</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infection</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infectious diarrhea</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower respiratory tract infection</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neutropenic infection</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neutropenic sepsis (d)</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pneumonia (d)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pneumonia streptococcal (d)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudomonas infection</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudomonal sepsis</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sepsis (d)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sinusitis aspergillus</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Septic shock (d)</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Septicemia</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Septicemia candida (d)</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Septicemia gram negative (d)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Septicemia gram positive</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staphylococcal sepsis</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urinary tract infection</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper respiratory tract infection</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Category</td>
<td>Total</td>
<td>Arm R-ICE +/- BEAM, ASCT</td>
<td>Arm R-DHAP +/- BEAM, ASCT</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>--------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Injury, poisoning and procedural complications</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Subdural hematoma</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>8</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Dehydration</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Exsiccosis</td>
<td>-</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Hyperglycemia</td>
<td>-</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Hyponatremia</td>
<td>-</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Bone pain</td>
<td>-</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>12</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Aphasia</td>
<td>-</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Drug-induced encephalopathy</td>
<td>1</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Embolic cerebral infarction</td>
<td>-</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Epileptic seizure</td>
<td>-</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Ischaemic stroke</td>
<td>-</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Leukoencephalopathy</td>
<td>1</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Neurotoxicity</td>
<td>-</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Stroke</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Vagal reaction</td>
<td>-</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Psychiatric disorders</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Confusion</td>
<td>1</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Renal and urinary disorders</td>
<td>10</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Renal failure</td>
<td>-</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Acute renal failure</td>
<td>2</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td>8</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Respiratory failure</td>
<td>-</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Respiratory insufficiency</td>
<td>-</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Pulmonary embolism</td>
<td>3</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Vascular disorders</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Thrombosis</td>
<td>-</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Hypotension</td>
<td>2</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Collapse</td>
<td>-</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Venoocclusive disease</td>
<td>1</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>179</td>
<td>75</td>
<td>104</td>
</tr>
</tbody>
</table>

*a some events have been associated with fatal outcomes
*b some events have been declared as suspected unexpected serious adverse reaction
Summary of the induction SARs by SOC and by arm

<table>
<thead>
<tr>
<th>Arm R-ICE</th>
<th>Arm R-DHAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event's number</td>
<td>% of all subjects in arm (N=246)</td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>8</td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td>5</td>
</tr>
<tr>
<td>Ear and labyrinth disorders</td>
<td>-</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>7</td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>5</td>
</tr>
<tr>
<td>Hepatobiliary disorders</td>
<td>1</td>
</tr>
<tr>
<td>Immune system disorders</td>
<td>-</td>
</tr>
<tr>
<td>Infections and infestations</td>
<td>34</td>
</tr>
<tr>
<td>Injury, poisoning and procedural complications</td>
<td>1</td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>2</td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td>-</td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>3</td>
</tr>
<tr>
<td>Psychiatric disorders</td>
<td>1</td>
</tr>
<tr>
<td>Renal and urinary disorders</td>
<td>2</td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td>3</td>
</tr>
<tr>
<td>Vascular disorders</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>75</td>
</tr>
</tbody>
</table>

4.2 Maintenance phase: Summary of the serious adverse reactions by SOC

In order to compare the 2 maintenance arms: with rituximab and without rituximab, all SAE cases from the maintenance either related or unrelated to the study are summarized in the table below. 11 additional cases from the maintenance phase were assessed as unrelated (*) to the study, 6 from observation arm, and 5 from rituximab arm.

<table>
<thead>
<tr>
<th>Total of patients included</th>
<th>Total</th>
<th>Arm Rituximab</th>
<th>Arm Observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Anemia</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Medical Condition</td>
<td>Total</td>
<td>Arm Rituximab</td>
<td>Arm Observation</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>---------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myocarditis</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Ear and labyrinth disorders</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Hearing Loss</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>7</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Constipation</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dental caries</td>
<td>-</td>
<td>1*</td>
<td></td>
</tr>
<tr>
<td>Diarrhea</td>
<td>-</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Faecaloma</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal bleeding</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Nausea</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Nausea and vomiting</td>
<td>-</td>
<td>1*</td>
<td></td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Catheter related complication</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Mucositis</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatobiliary disorders</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Hepatitis</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Infections and infestations</td>
<td>27</td>
<td>22</td>
<td>5</td>
</tr>
<tr>
<td>Acute bronchopneumonia</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bacteraemia</td>
<td>-</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bacterial Pneumonia Unspecified</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bronchitis Pneumococcal</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bronchopneumonary infection</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Catheter sepsis</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Chest infection</td>
<td>1</td>
<td>-</td>
<td>1*</td>
</tr>
<tr>
<td>Clostridium difficile infection</td>
<td>-</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CMV infection</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haemophilus influenzae infection</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Herpes zoster</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Infection</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Infection Bacillus Pyocyaneus</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Lower respiratory tract infection</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Neutropenic sepsis</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Pneumonia</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pneumocystis jiroveci pneumonia</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Pulmonary Aspergillosis</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Respiratory tract infection</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Septic shock</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Septicemia</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Septicemia streptococcal</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Staphylococcus Epidermidis Septicemia</td>
<td>-</td>
<td>1*</td>
<td></td>
</tr>
<tr>
<td>Varicella</td>
<td>-</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Investigation</td>
<td>Total</td>
<td>Arm Rituximab</td>
<td>Arm Observation</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>---------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Creatinine blood increase</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Rhabdomyolysis</td>
<td>1*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Neoplasms benign, malignant and unspecified (incl cysts and polyps)</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Acute leukemia a)</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hepatic adenocarcinoma</td>
<td>1*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Melanoma limited to extremity</td>
<td>1*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Myelodysplastic syndrome a)b)</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Urothelial carcinoma a)b)</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Leukoencephalopathy a)b)</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hypoesthesia</td>
<td>1*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Paresis</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Loss of consciousness</td>
<td>-</td>
<td>1*</td>
<td>-</td>
</tr>
<tr>
<td>Renal and urinary disorders</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Acute Renal failure</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Renal Acidosis Tubular b)</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nephropathy toxic</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Interstitial pneumonitis</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pulmonary infiltration</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pneumopathy</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Social circumstances</td>
<td>1</td>
<td>-</td>
<td>1*</td>
</tr>
<tr>
<td>Social stay hospitalization</td>
<td>-</td>
<td>-</td>
<td>1*</td>
</tr>
<tr>
<td>Total</td>
<td>62</td>
<td>40</td>
<td>22</td>
</tr>
</tbody>
</table>

*a some events have been associated with fatal outcomes
b some events have been declared as suspected unexpected serious adverse reaction
*unrelated cases

4.3 Fatal cases

A total of 22 related to the study cases were reported with fatal outcome, they involved 21 patients. Of them, 8 subjects were from R-DHAP arm, 6 from R-ICE arm and 7 cases involved the subjects who were randomized to the maintenance phase, 5 from the arm with rituximab and 2 - from the observation arm.
Table of Adverse Events

<table>
<thead>
<tr>
<th>SAE number</th>
<th>inclusion number</th>
<th>SAE occurrence</th>
<th>chemotherapy regimen</th>
<th>MedDRA reaction</th>
<th>LLT:</th>
</tr>
</thead>
<tbody>
<tr>
<td>002</td>
<td>5003101071002</td>
<td>Induction</td>
<td>R-DHAP</td>
<td>Septic shock</td>
<td></td>
</tr>
<tr>
<td>009</td>
<td>5003603201001</td>
<td>Induction</td>
<td>R-DHAP</td>
<td>Neutropenic sepsis</td>
<td></td>
</tr>
<tr>
<td>049</td>
<td>5003601601402</td>
<td>Induction</td>
<td>R-DHAP</td>
<td>Respiratory failure</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>5003607301622</td>
<td>Induction</td>
<td>R-DHAP</td>
<td>Septicemia Gram-Negative</td>
<td></td>
</tr>
<tr>
<td>173</td>
<td>5003619501010</td>
<td>Induction</td>
<td>R-DHAP</td>
<td>Respiratory failure</td>
<td></td>
</tr>
<tr>
<td>193</td>
<td>5003623501405</td>
<td>Induction</td>
<td>R-DHAP</td>
<td>Pneumonia</td>
<td></td>
</tr>
<tr>
<td>252</td>
<td>5003604701012</td>
<td>Induction</td>
<td>R-DHAP</td>
<td>Cardiac insufficiency</td>
<td></td>
</tr>
<tr>
<td>303 304</td>
<td>5003606301012</td>
<td>Induction</td>
<td>R-DHAP+BEAM</td>
<td>Septicemia candida CMV infection</td>
<td></td>
</tr>
<tr>
<td>013</td>
<td>5003605301601</td>
<td>Induction</td>
<td>R-ICE</td>
<td>Cardiac arrest</td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>5003619501013</td>
<td>Induction</td>
<td>R-ICE</td>
<td>Septic shock</td>
<td></td>
</tr>
<tr>
<td>082</td>
<td>5003101131030</td>
<td>Induction</td>
<td>R-ICE</td>
<td>Septic shock</td>
<td></td>
</tr>
<tr>
<td>083</td>
<td>5003603701004</td>
<td>Induction</td>
<td>R-ICE</td>
<td>Septic shock</td>
<td></td>
</tr>
<tr>
<td>159</td>
<td>5003616501005</td>
<td>Induction</td>
<td>R-ICE+BEAM</td>
<td>Sepsis</td>
<td></td>
</tr>
<tr>
<td>206</td>
<td>5003606301045</td>
<td>Induction</td>
<td>R-ICE+BEAM</td>
<td>Septic shock</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>5003601401602</td>
<td>Maintenance</td>
<td>Rituximab</td>
<td>Myocarditis</td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>5003616301615</td>
<td>Maintenance</td>
<td>Rituximab</td>
<td>Pneumonia</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>5003601401004</td>
<td>Maintenance</td>
<td>Rituximab</td>
<td>Leukoencephalopathy</td>
<td></td>
</tr>
<tr>
<td>261</td>
<td>5003601401002</td>
<td>Maintenance</td>
<td>Rituximab</td>
<td>Acute leukemia</td>
<td></td>
</tr>
<tr>
<td>282</td>
<td>5003604901603</td>
<td>Maintenance</td>
<td>Rituximab</td>
<td>Acute Bronchopneumonia</td>
<td></td>
</tr>
<tr>
<td>292</td>
<td>5003606301604</td>
<td>Maintenance</td>
<td>Observation</td>
<td>Myelodysplastic syndrome</td>
<td></td>
</tr>
<tr>
<td>293</td>
<td>5003606301207</td>
<td>Maintenance</td>
<td>Observation</td>
<td>Urothelial carcinoma</td>
<td></td>
</tr>
</tbody>
</table>

These fatal cases were assessed as SUSARs and are described in the Section 4.4.

In addition, 7 fatal SAEs were assessed as unrelated to the study (see line listing of unrelated cases, Appendix 4): 2 patients died after inclusion but before starting the study treatment, 2 other deaths occurred after the lymphoma progression and new chemotherapy regimen (SAE
cases 098, 101, 172, 197). One patient died during observation period of Septicemia, 3 months after the ASCT (SAE case 290)

2 patients died of esophagus (SAE case 274) and hepatic (SAE case 263) carcinoma. In the case 274, the patient completed the induction treatment with R-ICE on 17/12/2004, he was not randomized to the maintenance phase because of induction treatment failure. On 06/01/2005 he was diagnosed with esophageus carcinoma and died a month later of this event. The event of esophageus carcinoma was assessed as unrelated to the study.

In the case 263, the patient completed his induction phase with R-DHAP and then the maintenance phase with rituximab on 02/03/2005. He was diagnosed with hepatic adenocarcinoma on 24/04/2007 and died from this event one year later. The investigator assessed the event as unrelated to the study drugs.

4.4 Suspected Unexpected Serious Adverse Reactions (SUSARs)

32 SARs were assessed as being unexpected according to the study drugs reference documents. They involved twenty nine (29) SUSARs notifications, 2 of them were further re-evaluated by the investigator, and consequently nullified.

SUSARs occurred in the induction phase – R-ICE Regimen

SAE 013 (patient incl. N 5003605301601)

MedDRA LLT: CARDIAC ARREST
Outcome: Fatal
This case occurred in NEW-ZEALAND and referred to a 61-year-old male subject with a past medical history of aortic stenosis. The patient was included in the arm R-ICE of the study, he received 3 complete cycles of R-ICE between 05 April 2004 and 05 June 2004. On 20 June 2004, 15 days after the last study drugs administration, the patient died suddenly. The investigator presumed that the patient died of a myocardial event. The investigator assessed the event as unrelated to study drugs. No more details were reported.

SAE 053 (patient incl. N 5003602901002)

MedDRA LLT: PNEUMONIA STREPTOCOCCAL
Outcome: Recovered
This case occurred in ISRAEL and referred to a 64-year-old male subject. Patient received R-ICE regimen from 28 January 2005 to 07 February 2005. On 17 February 2005, the patient developed cavitating pneumonia associated with non-serious bilateral hearing loss, probably related to carboplatin. Following to the bronchoalveolar lavage, Streptococcus pneumoniae was identified in the sputum. The patient was prescribed intravenous ceftriaxon and recovered on 06 March 2005 from the cavitating pneumonia. The outcome of the ototoxicity is unknown, carboplatin was permanently stopped. The investigator assessed the event of cavitating pneumonia as related to the study.
SAE 082 (patient incl. N 5003101131030)
MedDRA LLT: SEPTIC SHOCK
Outcome: Fatal
The case was reported from France and involved a 48-year-old female patient with a history of irregular tachycardia and cardiac standstill. The patient had received R-ICE regimen between 22 June and 04 August 2005. Twelve days after the second cycle of R-ICE treatment, on 16 August 2005, she died of septic shock probably due to bone marrow aplasia, not documented. The investigator assessed the event as related to the study drugs.

SAE 083 (patient incl. N 5003603701004)
MedDRA LLT: SEPTIC SHOCK
Outcome: Fatal
The case reported from Switzerland and involved a 64-year-old male patient. He started R-ICE regimen on 12 August 2005. On 18 August 2005, 6 days after the last R-ICE administration, he experienced status febrile and progression of neutropenia. He was hospitalized and prescribed antibiotics. The patient’s status gradually decreased and he died on 01 September 2005 of multiorgan failure due to septic shock in febrile neutropenia, two weeks after the onset. The investigator assessed the event as definitely related to the study treatment.

SAE 162 (patient incl. N 5003604801014)
MedDRA LLT: LEUKOENCEPHALOPATHY
Outcome: Recovered
This case occurred in Republic Czech and referred to a 63-year-old male subject. Past medical history included hypertension and mild renal failure of prerenal etiology. The patient was included in the R-ICE arm of the study. On 19 February 2007, the patient completed his first cycle of chemotherapy. On 21 February 2007, reported as day 3 of treatment, the subject developed life threatening leukoencephalopathy and cardiac arrhythmia. Treatment with rituximab, carboplatin, ifosfamide and etoposide was permanently discontinued. The patient was considered recovered with completely restored neurological and renal functions, normal EF, he was discharged on 12 April 2007. The investigator assessed the event as related to the study drugs.

SAE 175 (patient incl. N 5003102161413)
MedDRA LLT: SEPTIC SHOCK
Outcome: Fatal
This SAE was reported from France and involved a 49-year-old male patient experienced septic shock 5 days after the first cycle of R-ICE. He died on 05 November 2006, two days after the onset. No more details given. The investigator assessed the event as related to study drugs.

SUSARs occurred in the induction phase – R-ICE Regimen + BEAM

SAE 159 (patient incl. N 5003616501005)
MedDRA LLT: SEPSIS
Outcome: Fatal
This case was reported from United Kingdom and referring to a 59-year-old female subject. Past medical history included diffuse large B-cell lymphoma. The patient was included in the arm R-ICE of the Coral study and received 3 cycles of rituximab, etoposide, carboplatine, ifosfamide and G-CSF from 03 November 2006 to 20 December 2006 that were well tolerated. On 11 February 2007 the subject has received a consolidation treatment with BEAM (BCNU, etoposide, cytarabine and melphalan) and underwent autologous stem cell
transplantation (ASCT) on 14 February 2007 that was complicated with severe neutropenia. On 16 February 2007, patient presented with fever at 38.8°C, Hb was 6.4 g/dl, leucocytes 0 and platelets 9 Giga/l. The patient developed acidosis and acute renal failure. Despite the intensive care with intravenous antibiotics and hydration, the patient expired on 21 February 2007 due to sepsis and multi-organ failure (intestinal, marrow, cardiac and renal failure). The investigator assessed the relationship of these events as unrelated to the study drugs.

SAE 206 (patient incl. N 5003607201045)

MedDRA LLT: SEPTIC SHOCK
Outcome: Fatal
This case occurred in Germany and referred to a 48-year-old male subject. Past medical history included diffuse large B-cell lymphoma, sleep apnoea syndrome, chronic obstructive pulmonary disease, Hepatitis B reactivation. The patient was included to the arm R-ICE on 07 May 2007.
On 03 August 2007, patient was hospitalized for receiving the consolidation treatment with BEAM and a graft. On 13 August 2007, he presented with fever and diarrhea in a context of neutropenia, following by septic shock and was transferred to the intensive care unit. Then, he developed a bladder tamponade associated with hemorrhagic cystitis and anuria, so a catheter was placed. The patient’s health status progressively deteriorated and he was put under artificial respiration. He presented a circulatory failure with a supraventricular tachycardia. The patient died on 18 August 2007 of multiple organ failure in a context of pancytopenia.
The investigator assessed the relationship of these events as possibly related to the study.

SAE 254 (patient incl. N 5003610501031)

MedDRA LLT: VENOOCCLUSIVE DISEASE
Outcome: Recovered/resolved with sequelae
This case was reported from IRELAND and referred to a 54-year-old male subject. Past medical history was diffuse large B-cell lymphoma. The patient was included in the arm R-ICE of the Coral study and received 3 cycles of rituximab, etoposide, carboplatine, ifosfamide and G-CSF from March 2008 and April 2008. On 27th June 2008, the patient was admitted at the hospital for suspicion of venoocclusive disease. The investigator assessed the relationship of this event as being related with the study drugs. Follow up information has been received from the site on 05 September 2008. The patient received a consolidation cycle with BEAM (carmustine, etoposide, cytarabine, melphalan) from 5 to 11 June 2008 and underwent the autologous stem cell transplantation on 11 June 2008. On 26 June 2008, he had elevated liver function tests (LFTs) especially elevated bilirubin, distended abdomen and tender hepatomegaly, he also developed concurrent sepsis of unknown origin that was managed by antibiotics. Abdominal ultrasound and liver Doppler revealed hepatomegaly, ascite, portal vein patent with no flow reversal in hepatic veins. On 30 June 2008, the probable multifactorial liver damage secondary to sepsis, drugs or venoocclusive disease (VOD) was suspected. The corrective treatments included supportive care, fluid balance management, and diuretic therapy. On 30 June, LFTs were improving; bilirubin was stabilized (40-50) on 20 July, patient’s weight back to baseline on 10 July, diuretics and antibiotics were discontinued on 15 and 25 July respectively. The patient was considered recovered from VOD with sequelae on 20 July 2008, although his LFTs were persistently abnormal. On 29 July 2008, the PET scan showed progressive lymphoma disease. Despite further chemotherapy with gemcitabine, vinorelbine the patient’s lymphoma continued progressing. The patient expired on 01st of September 2008 of progressive disease. The follow up information regarding study drugs dosing and concomitant treatment has been received from the investigator on 10th of September 2008: Study drugs dosing regimen was: Rituximab, 780 mg, intravenous: 1st dose was administered on 21 March 2008, 2nd dose – on 23 March 2008, 3rd – 10 April 2008, and 4th – 01 May 2008. Rituximab was given as part of R-ICE regimen, 3 cycles 3 weekly,
includes etoposide, carboplatin, ifosfamid/mesna. Patient had rituximab previously, pre trial as part of R-CHOP regimen – rituximab 375 mg/m², cyclophosphamide, doxorubicin, vincristine and prednisolone, commenced on 28 February 2008. BEAM consolidation – from 5 to 11 June 2008. Reinfusion of stem cells 11th -12th June 2008.

SUSARs occurred in the induction phase – R-DHAP Regimen

SAE 002 (patient incl. N 5003101071002)
MedDRA LLT: SEPTIC SHOCK
Outcome: Fatal
This SAE was reported from France and involved a 64-year-old male patient. He was included to R-DHAP arm on 16 October 2003 and developed pancytopenia ten days after the first cycle of the R-DHAP. He died of septic shock of non-identified origin 23 days after the onset of the event. The investigator assessed the event as related to the study treatment.

SAE 009 (patient incl. N 5003603201001)
MedDRA LLT: NEUTROPENIC SEPSIS
Outcome: Fatal
This SAE was reported from Germany and involved a 51-year-old male patient with no relevant medical history. He was included to the R-DHAP arm and received study drugs from 14 March to 11 May 2004. On 11 May 2004 he experienced colitis, peritonitis and sepsis secondary to neutropenia. He died of hypovolemic shock two days after the onset, on 13th of May 2004. The investigator assessed the event as related to the study treatment.

SAE 049 (patient incl. N 5003601601402)
MedDRA LLT: RESPIRATORY FAILURE
Outcome: Fatal
This case occurred in USA and referred to a 65-year-old female subject. The patient was included in the arm R-DHAP of the study. Past medical history included stage 4 diffuse large B-cell lymphoma. She received her third cycle of R-DHAP on 17 December 2004 and was undergoing stem cell harvesting and high dose GCSF. On January 3, 2005, during stem cell pheresis, she developed electrolyte abnormalities and dyspnea. She was transferred to ICU. On the next day, respiratory failure progressed, she was intubated. Chest CT showed bilateral infiltrates and pleural effusion, cardiac echo revealed ejection fraction of 50%. Right-side thoracocentesis removed of 1L of fluids. The patient experienced recurrent respiratory failure on 08 January 2005. She refused any further treatment and life-saving intervention. She expired ten days after the onset, on 13 January 2005. The investigator assessed the event as unrelated to study drugs.

SAE 160 (patient incl. N 5003607301622)
MedDRA LLT: SEPTICEMIA GRAM-NEGATIVE
Outcome: Fatal
This SAE was reported from New Zealand and involved a 65-year-old female patient who was included to R-DHAP arm on 11 December 2006. Following to the second cycle of the R-DHAP, which was delayed because of neutropenia, she experienced a severe headache and mild renal dysfunction with blood creatinine of 0.2. She also had experienced renal failure and headache after the first cycle but her status returned to normal by the second cycle. Seven days after the second cycle she developed septic shock secondary to gram negative septicemia. Her clinical condition continued to deteriorate and she died the day after the onset, on 26 January 2007. The investigator assessed the event as related to the study drugs.
SAE 173 (patient incl. N 5003619501010)
MedDRA LLT: RESPIRATORY FAILURE
Outcome: Fatal
This case was reported from United Kingdom and referring to a 45-year-old female subject. The subject received her 2nd cycle of R-DHAP regimen on March 15, 2007. On April 4, 2007 she suffered from respiratory arrest due to chest sepsis. Chest X-ray showed ongoing basal atelectasis. She was intubated and ventilated and prescribed antibiotics. The next day she was not improving requiring increasing amounts of noradrenalin. She died on 6 April 2007. The investigator assessed the event as unrelated to study drugs.

The next 4 SAEs describe serious adverse reactions in the same patient occurred at the same period of time and linked by the final fatal outcome (patient incl. N 5003604701012).

SAE 178
MedDRA LLT: FEBRILE NEUTROPENIA
Outcome: Not yet recovered at death
SAE 250
MedDRA LLT: RESPIRATORY INSUFFICIENCY
Outcome: Not yet recovered at death
SAE 251
MedDRA LLT: EMBOLIC CEREBRAL INFARCTION
Outcome: Not yet recovered at death
SAE 252
MedDRA LLT: CARDIAC INSUFFICIENCY
Outcome: Fatal
This case was reported from Switzerland and involved a 62-year-old male patient who experienced severe febrile neutropenia on 30 April 2007, 5 days after the first cycle of the R-DHAP. He was admitted to the intensive care unit. Secondary to febrile neutropenia he also experienced respiratory and cardiac insufficiency, tachycardia, atrial fibrillation and thromboembolic cerebral infarction. There was no evidence of a source of infection. He died on 04 May 2007, 4 days after the onset of cardiac insufficiency. The investigator assessed the events as definitely related to the study treatment.

SAE 193 (patient incl. N 5003623501405).
MedDRA LLT: PEUMONIA
Outcome: Fatal
This case occurred in UNITED KINGDOM and referred to a 58-year-old male subject. Past medical history included diffuse large B-cell lymphoma. The patient was included in the arm R-DHAP of the study on 05 July 2007 and received his first cycle on 07 July 2007. On 26 July 2007 he was found dead at home. As per autopsy, the cause of the death was lobar pneumonia (left upper lobe) due to or as a consequence of lymphoma: “the immediate cause of death appears to be lobar pneumonia. Predisposing factors for pneumonia would include neutropenia (which may be induced either by the lymphoma itself or by the chemotherapy) and infiltration of the liver by lymphoma”. The investigator did not report the relationship of the death with study drugs.

SUSARs occurred in induction phase – Regimen R-DHAP + BEAM

The 3 cases above occurred in the same time. They were all deemed as the reason of the death (patient incl. N 5003606301012).
SAE 228
MedDRA PT: CARDIAC ARREST
Outcome: Ongoing at death
SAE 303
MedDRA PT: CANDIDA SEPTICEMIA
Outcome: Fatal
SAE 304
MedDRA PT: CMV INFECTION
Outcome: Fatal
This case was reported from Australia and referring to a 64-year-old female subject. Past medical history included diffuse large B-cell lymphoma since March 2007. The patient achieved a brief remission with chemotherapy but relapsed on October 2007. The patient was included in the arm R-DHAP of the Coral study on 11 October 2007. She underwent autologous stem cell transplant (ASCT) on 17 January 2008. The patient developed anemia and neutropenia and an episode of nausea and vomiting associated with diarrhea after the stem transplant. The patient collapsed and developed hypoxic cardiac arrest on 21 January 2008 following to the aspiration of vomitus. She was resuscitated and admitted to the Intensive Care Unit. She showed some signs of recovery initially but that was followed by the gradual deterioration of her condition. Subsequently she developed acute renal failure, CMV enterocolitis, pulmonary infection, candida septicemia; she died on 12 February 2008. The investigator assessed the relationship of these events as related to study drugs.

SAE 285 (patient incl. N 5003101071643)
MedDRA LLT: HYPONATREMIA
Outcome: Recovered
The case reported from France and involved a 58-year-old female patient. No past/ongoing medical history was reported. On 01 November 2007, the patient started treatment with rituximab, dexamethasone and cisplatin. On day 1 of cycle 1, the patient received 550 mg rituximab, cisplatin 146 mg and dexamethasone 40 mg. On day 2 of cycle 1, the patient received rituximab 548 mg cytarabine 5840 mg and dexamethasone 40 mg. From day 6- day 13 the patient started with G-CSF (dosing unknown). On 20 November 2007, the patient started the second cycle with rituximab 550 mg, dexamethasone 40 mg and cisplatin 146 mg on day 1. On day 2 of cycle 2, the patient received cytarabine 5840 mg and dexamethasone 40 mg. From day 6- day 13 the patient started with G-CSF 526 ug per day. On 11 December 2007, the patient started the third cycle with rituximab 563 mg, dexamethasone 40 mg and cisplatin 150 mg. On day 2 of cycle 2, the patient received cytarabine 6000 mg and dexamethasone 40 mg. On day 3 and day 4 for all the three cycles, the patient received 40 mg dexamethasone. From day 6 day 13, the patient received G-CSF 263 ug per day. On 03 December 2007, 7.50 x 10^6 stem cells from peripheral blood were collected. On 06 December 2007, the patient experienced cutaneous reaction subclavicular left resulting in hospitalisation. Lab tests performed showed hemoglobin 8.8 g/dl, leukocyte 8.8 giga/l and platelets 91 giga/l. In response to the event, the patient received a corrective treatment of pristinamycine. On 08 December 2007, the event of cutaneous reaction subclavicular left resolved and the patient was discharged from the hospital. On 21 February 2008, the patient carried out a consolidation treatment with BCNU 455 mg, etoposide 12220 mg, cytarabine 2440 mg and melphalan 213 mg. On the following day, the patient experienced hyponatremia which was medically significant. Hemoglobin was 14 g/dl, leukocytes were 13.3 giga/l and platelets were 461 giga/l. In response to the event the patient received furosemide as a corrective therapy. Three days later, the event of hyponatremia resolved. On 27 February 2008, the patient had 7.50 x 10^6/ kg cd3+ cells infused. On 29 February 2008, the patient experienced mucositis grade 3 resulting in hospitalisation. Lab tests performed showed haemoglobin as 10.3 g/dl, leukocyte 0.4 giga/l and platelet 92 giga/l. In response to the event, the patient received a corrective therapy with morphine sulphate and local
treatment. On 02 March 2008, the patient experienced renal failure which was considered to be medically significant. Lab tests showed haemoglobin as 9.9 g/dl, leukocyte 0.1 giga/l and platelet 17 giga/l. In response to the event, the patient received a corrective therapy with furosemide. On 07 March 2008, neutrophils > 500 giga/l were transplanted. On the following day, neutrophils > 1000 giga/l were transplanted. On the same day, the patient experienced pulmonary embolism resulting in prolonged hospitalisation. Hemoglobin was 8.4 g/dl, leukocyte 9 giga/l and platelets 19 giga/l. In response to this event, the patient received heparine and 6 utp. On 13 March 2008, platelets > 20,000 giga/l were transplanted. On 20 March 2008, the events of pulmonary embolism and renal failure resolved. On 31 March 2008, the event of mucositis resolved and the patient was discharged from the hospital. The events cutaneus reaction subclavicular left, mucositis, pulmonary embolism, hyponatremia and renal failure had resolved. The investigator assessed the events of mucositis and hyponatremia to be related to the study drugs - rituximab, dexamethasone, cisplatine, cytarabine and G-CSF.

SUSARs occurred in the maintenance phase – Rituximab Regimen

The DSMC that met in August 2007 (see appendix 5) assessed the 2 following cases as non-related to the study. Nevertheless these cases were assessed by the investigators as related with the study so that will be maintained by the Gelarc Pharmacovigilance as SUSARs.

SAE 126 (patient incl. N 5003601401604)
MedDRA LLT: PNEUMOCYSTIS JIROVECI PNEUMONIA
Outcome: Recovered
This case was reported from Sweden and referring to a 62-year-old female subject. The patient was included in the arm R-DHAP of the study on 28 October 2005. She has completed 3 cycles of R-DHAP and had autologous stem cell transplantation on 19 January 2006 with high doses of chemotherapy, then she was randomized to the rituximab maintenance arm. Last rituximab administration was done on June 14, 2006. On June 20, 2006 she developed fever and cough. She was hospitalized on July 17, 2006, the bronchoalveolar lavage revealed *Pneumocystis jiroveci*. She was prescribed sulfamethoxazol and trimetoprim. Treatment with rituximab was remained ongoing. She recovered on 05 August 2006. The investigator assessed the event as related to the study drugs.

SAE 127 (patient incl. N 5003601401602)
MedDRA PT: MYOCARDITIS
Outcome: Fatal
This case was reported from SWEDEN and referred to a 43-year-old male subject. Past medical history included diffuse large B-cell lymphoma with tonsil localization. From December 2000 to May 2001, he received 8 cycles of CHOP and local radiotherapy and reached a complete remission. Progression was documented in July 2004 with tonsil, cervical node, PS 0, LDH elevated, FEVG normal. He was included to the Coral study on 04 August 2004 in the arm R-ICE and has completed his induction therapies: 1st cycle on 09 August 2004, 2nd 30 August 2004, 3rd 24 September 2004 at the same dose. Each cycle complicated with an hematotoxicity of grade 3. He was in incomplete remission at the restaging in October 2004. BEAM regimen delivered at full dose with stem cells transplant on 01 November 2004. Time to recovery was 11 days with infection Grade 4 life threatening with ICU for 3 days and recovery. Randomisation rituximab: 1st cycle was done on 14 December 2004, cycle 6, the last dose of rituximab, - on 11 October 2005 with one report of adverse
event on February 2005- transient neutropenia. He was in complete remission, well being full time working. Several episodes of infection in the follow up were treated with antibiotics, the last one in June 2006 due to low level of IgM, IgG. No gamma globulins prophylaxis were given. Sudden death occurred on 06 August 2006, 10 months after the last rituximab dose, he was found dead in this bed. Autopsy report: **myocarditis** with acute inflammation of the myocardium, cardiac insufficiency. The investigator is concerned by the possible relation with hypogamma globulinemia, related to rituximab and the myocarditis almost one year after last dose.

SAE 129 (patient incl. N 5003616301615)
MedDRA PT: PNEUMONIA
Outcome: Fatal
This case reported from Australia and involved a 64-year-old male subject with a history of lobectomy due to lung cancer on 1991. He was included to the arm R-ICE on 29 September 2005. The patient completed his cycles of R-ICE, a consolidation with BEAM and underwent autologous stem cells transplantation on 15 December 2005. The last dose of rituximab was given on 17 May 2006. On the 8th month of maintenance therapy with rituximab, on 15 August 2006 he developed **pneumonia** due to pneumocystis carinii. He died 20 days after the onset. The investigator assessed this event as related to the study.

SAE 153 (patient incl. N 5003610501402)
MedDRA PT: RENAL ACIDOSIS TUBULAR
Outcome: Recovered with sequelae
This case was reported from Ireland and referring to a 59-year-old male subject with a history of hypertension and asthma. No allergies were reported. Concomitant medications included allopurinol, sulfamethoxanolen trimethoprim, valacyclovir, lansoprazole, fluconazole, erindoprime, amloidipine besylate, acetaminophen, piperacillin sodium, tazobactam sodium, furosemide, cyclizine, gentamycine sulfate, meropenem, amphotericin B and amikacin. The patient received 3 cycles of R-DHAP as induction therapy and consolidation therapy with BEAM and autologous stem cell transplantation on 14 December 2006. On 28 December 2006 he was randomized to the rituximab maintenance arm. On January 5, 2007 the subject developed **type IV renal tubular acidosis** causing refractory grade 2 hyperkalemia. Treatment included calcium sulfonate, sodium bicarbonate and levoglutamide. The event resolved with sequelae on January 11, 2007. Sequelae were not specified. The investigator assessed the event as related to study drugs.

SAE 190 (patient incl. N 5003601401004)
MedDRA PT: LEUKOENCEPHALOPATHY
Outcome: Fatal
This case occurred in Sweden and referred to a 63-year-old female subject. Past medical history included diffuse large B-cell lymphoma. The patient was included in the arm R-DHAP of the study on 27 September 2006. The third and the last dose of rituximab, prior to onset of the event, was done on 03 May 2007. On 26 June 2007, the subject developed fever, mental disturbances (mental disorder), varicella lesions on the skin and varicella zoster virus seen in blisters. The event was assessed as life threatening. The patient received antiviral therapy. The treatment with rituximab was permanently discontinued. Relevant laboratory values included hemoglobin 10.5 g/dl, leukocytes 11.1 giga/l, and platelets 162 giga/l. A brain CT scan on 01 July 2007 that was "without remarks". The subject's spinal fluid showed no varicella or malignant cells. On 17 July 2007, the subject was still unconscious and the event was not resolved. The initial diagnosis encephalitis was changed to varicella zoster vasculopathy with associated demyelination. The patient died on 26 August 2007 of vasculopathy due to varicella zoster infection. The results of the autopsy showed neither signs of lymphoma in the brain nor in the body. In the brain perivascular demyelination was...
found in the Pons consistent with leukoencephalopathy. The investigator assessed the event as definitely related to study drugs.

SAE 261 (patient incl. N 5003601401002)
MedDRA PT: ACUTE LEUKEMIA
Outcome: Fatal
This case was reported from Sweden and referring to a 58-year-old male subject. Past medical history: Diffuse large B-cell lymphoma since November 2003 and Gastritis since March 2004 treated by lansoprazol and fluconazol as prophylaxis. The patient achieved a partial response after 6 courses chemotherapy and relapsed on April 2004. The patient was included in the arm R-ICE of the Coral study on 15 April 2004. He underwent autologous stem cell transplantation on 06 July 2004 then he was randomized in the rituximab maintenance arm on 22 July 2004. The patient developed non serious isolated neutropenia on August 2004 and pneumonia on January 2005. On December 2005, the patient experienced bronchitis possibly due to hypogammaglobulinemia which was assessed by the investigator as related to rituximab. The last dose of rituximab was given on the 09 June 2005. The patient was diagnosed with Acute Non-Lymphocytic Leukemia on 15 June 2006 (25 months post transplantation or 1 year after the last rituximab dose administered). At this moment he was on unconfirmed complete response of lymphoma. He was prescribed with antileukemic treatment but died on 09 July 2006. The investigator assessed the relationship of this event as related to study drugs.

SAE 282 (patient incl. N 5003604901603)
MedDRA LLT: ACUTE BRONCHOPNEUMONIA
Outcome: Fatal
This case was reported from Israel and referring to a 62-year-old female. Past medical history: Diffuse large B-cell lymphoma, asthma since 1979 treated by ventolin and symbicort turbuhaler. The patient was included in the arm R-DHAP of the Coral study on 03 March 2008. The patient developed acute renal failure on April 2008. She received the consolidation treatment on the 12 June 2008 and underwent autologous stem cell transplantation on 18 June 2008 then she was randomized in the rituximab maintenance arm on 19 June 2008. The patient experienced CMV infection treated by ganciclovir and superficial bleeding after removal porthacat on July 2008. Then she had thrombocytopenia on August 2008 required platelets transfusion. On 04th of September, 2008 the patient was found in a comatous state with no response to stimuli, Babinski sign was positive with decerebration signs, brain CT scanner did not show haemorrhage or infarct. On the 07 September 2008 no change in the neurological status was observed and oxygen desaturation. The patient was intubated and respirated. The patient was treated by antibiotics, repeated plasmapheresis but no change in the neurological status was observed. The patient status deteriorated and she died on 13th of September, 2008.

Post mortem examination was performed. The autopsy report summary stated that the most prominent and severe changes are related to the lungs and are manifested in diffuse alveolar damage, which is most probably a result of chemotherapy and a CMV infection. In addition, changes of a very severe and chronic localized bronchopneumonia, areas of haemorrhagic and thrombotic necrosis in a few small blood vessels were observed. Extensive hypoxia changes were observed in various organs (areas of fatty and parenchymatic necrosis in the pancreas, extensive infarction in the brain, a centrolobular necrosis in the liver and a tubular necrosis in both kidneys). No signs of lymphoma involvement were noted in any of organs examined, in the lymph nodes or in the bone marrow. The final diagnosis is acute bronchopneumonia, extensive diffuse alveolar damage. Hypoxia is a part of diagnosis.
SUSARs occurred in the maintenance phase – Observation

SAE 292 (patient incl. N 5003606301604)
Reaction / Event (MedDRA LLT): Myelodysplastic syndrome
Outcome of Reaction: Fatal
This case was reported from Australia and is referring to a 65-year-old male subject. Past medical history: Asthma since 1950 and gout since 1975. Diffuse large B-cell lymphoma with initial involvement of the right orbital area with mixed lymphoid infiltrate since 2002. The patient received CHOP-like as initial treatment from November 2002 to January 2003 followed by the radiotherapy with 30 Gy. He remained on partial response after the first line treatment until a relapse on 21th May 2004 with right cervical and supraventricular lymph node involvement. The patient was included in the arm R-DHAP (rituximab, cisplatin, cytarabine, dexamethasone and lenograstime) of the Coral study on 1st June 2004 and received his 3 cycles of chemotherapy between 18th June 2004 and 03rd August 2004. The patient developed upper respiratory tract infection on 26 July 2004 and recovered 2 days later. He received the consolidation treatment with BEAM (carmustine, etoposide, melphalan and cytarabine) on the 15 September 2004, and he underwent the autologous stem cell transplantation on 21 September 2004. On the next day he was randomized into the observation maintenance arm. The patient had neutropenia and diarrhea 3 days after the transplantation that lasted 10 days. On 14 October 2004 he developed acute renal failure and nephrotoxicity with creatinine level elevated until May 2005. On 05th of February 2008 the patient developed myelodysplastic syndrome with a severe marrow failure. Severe anaemia and thrombocytopenia required a huge transfusion support. The patient status deteriorated and he died on 22th of June, 2009. The investigator assessed the relationship of myelodysplastic syndrome as related to the Coral study drugs.

SAE 293 (patient incl. N 5003606301207)
Reaction / Event (MedDRA llt): Urothelial carcinoma
Outcome of Reaction: Fatal
This case was reported from Australia and referring to a 41-year-old male subject. Past medical history: Hypertension since 2000 and dental decay over many years. Diffuse large B-cell lymphoma with initial gastric involvement. The patient received 2 cycles of CHOP-like as initial treatment from July 2004 to August 2004. He progressed after the second cycle on the 26th of August, 2004 with inguinal, mediastinal, para-aortic, mesenteric nodes involvement and pleural effusion, stomach and duodenal involvement. The patient was included in the arm R-ICE (Rituximab, Etoposide, Carboplatine, Ifosfamide, Lenograstim) of the Coral study on 27th of August, 2004 and received his 3 cycles of chemotherapy between 30th of August, 2004 and 14th of October, 2004. He received the consolidation treatment with BEAM (carmustine, etoposide, melphalan and cytarabine) on the 17th November 2004 and underwent the autologous stem cell transplantation (ASCT) on 23 November 2004. On 02nd of December he was randomized into the observation maintenance arm. During the study, in December 2004 and February 2005 the patient had dental abscess and dental caries requiring full upper dental clearance. On the 20th of March 2008, 3.5 years after the ASCT, the patient was diagnosed with high grade urothelial carcinoma, he was treated with 4 cycles of cisplatin and gemcitabine. CT Scanner was performed on 13th of May, 2009 and revealed a reoccurrence of urothelial carcinoma. The patient died on 09 October 2009. The investigator assessed the relationship of urothelial carcinoma as related to the Coral study drugs.
2 SAE cases were initially reported as SUSARs but according to the follow-up information, they were reassessed as related and expected for the case 043 and as unrelated to the study for the case 098.

SAE 043 (patient incl. N 5003631201611), **NEUTROPENIC SEPSIS**
This SAE reported from Germany and involved a 61-year-old female patient who developed sepsis with neutropenia, tachyarrhythmia and acidosis on 21 December 2004, 16 days after the first cycle of the R-DHAP. Sepsis symptoms decreased four days after the onset but the patient died on 29 December 2004, five days after the onset probably of lymphoma progression. LDH were elevated from 800 to 2000 UI/L. The investigator assessed the event as related to the study drugs. Cause of death both neutropenic sepsis and lymphoma progression according to the investigator.
Additional information given by the investigator on 16 July 2007: the patient was considered as recovered from sepsis on 27 December 2004 but she died of lymphoma progression on 29 December 2004. Following this additional information the sponsor reevaluated the case as related and expected.

SAE 098 (patient incl. N 5003610201612), **PULMONARY ASPERGILLOSIS**
This case was reported from Germany and involved a 57-year-old female subject. The patient was included in the R-ICE of the study and received his first cycle of R-ICE on 13 April 2005. On 09 July 2005, she received the consolidation treatment with BEAM. On 13 July 2005, the patient developed fever and neutropenia. Further investigations evidenced pulmonary infiltrates and an aspergillosis was diagnosed. The patient’s status gradually decreased and she died on 23 July 2005.
According to the follow up information, this event occurred after the subject’s premature withdrawal from the study. The patient received the consolidation treatment with BEAM in the frame of a progression treatment.

5. Overview

A total of 141 patients (29.3% of 481 included patients), presented at least one SAR, 116 (24.1%) - during the induction phase and 35 (14.3% of 245 randomized patients) - during the maintenance phase.

Induction phase – R-ICE regimen
A total of 246 patients were included, 19.9% of all included patients experienced SARs. A total of 75 SARs were received from this arm.

SOC reported serious adverse reactions occurred in more than 5% of patients included in R-ICE:
- Infections and infestations – 13.8%
SOC reported serious adverse reactions occurred in more than 1 % of patients included in R-ICE:

- Blood and lymphatic system disorders – 3.3%
- Gastrointestinal disorders – 2.8%
- General disorders and site administrations-2%
- Cardiac disorders – 2.0%
- Vascular disorders – 1.2%
- Respiratory, thoracic and mediastinal disorders – 1.2%
- Nervous system disorders – 1.2%

Induction phase – R-DHAP regimen

A total of 235 patients were included, 28.5% of included patients experienced serious adverse reaction. A total of 104 SARs were reported from this arm.

SOC reported serious adverse reactions occurred in more than 5 % of patients included in R-DHAP:

- Infections and infestations – 14.4%
- Gastrointestinal disorders – 5.5%
- Blood and lymphatic system disorders – 5.5%

SOC reported serious adverse reactions occurred in more than 1 % of patients included in R-DHAP:

- Nervous system disorders – 3.8%
- Renal and urinary disorders – 3.4%
- Cardiac disorders – 2.6%
- Metabolism and nutrition disorders – 2.6%
- Respiratory, thoracic and mediastinal disorders – 2.1%
- General disorders and administration site conditions – 1.3%

Maintenance phase – Rituximab regimen

A total of 124 subjects were randomized to the rituximab arm, 18.5% of them experienced serious adverse reactions. A total of 40 serious adverse events, either related or unrelated to the study, were received in this arm. The events are summarized in Section 4.2.

Of 40, 22 SAE were reported in Infections and infestations SOC.

Six cases were reported with fatal outcome: SAE N 127, 129, 190, 261, 282 and 263 (unrelated case), and they are described in Section 4.3 and 4.4.

Maintenance phase – Observation

A total of 121 subjects were randomized to the arm without rituximab, 13.2% of them experienced serious adverse reaction. 22 serious adverse events, either related or unrelated to the study, were received in this arm. The events are summarized in Section 4.2.
2 cases were reported with fatal outcome: SAE N 292 and 293. Both of them were considered by the investigator as a secondary malignancy, the cases are described in Section 4.3 and 4.4.

Infections
Infections and infestations is the SOC that contains the highest number of Serious Adverse Reactions (SAR) independently of the arm and the chemotherapy regimen. Infection was the reason of 12 subject’s deaths out of 21.
During the maintenance phase, 22 SARs were reported from the arm with rituximab and 3 - from the observational arm.

Haematological events
The reporting rules of the protocol required that severe haematological toxicity and febrile neutropenia with a hospitalization for less than 8 days have not to be considered as serious adverse events. Haematological toxicity is a well known adverse reaction following the chemotherapy regimen.

Respiratory events
3 pulmonary embolism reported from R-ICE arm versus two from R-DHAP arm. 3 cases of respiratory insufficiency or respiratory failure reported in the R-DHAP arm, two of them were fatal.
In the rituximab maintenance arm, 2 SAR occurred, pulmonary infiltration and interstitial pneumonitis, both are of infectious origin.

Gastro-intestinal events
During induction, 7 digestive haemorrhages were reported, 3 from R-ICE arm and 4 in R-DHAP arm.
In the rituximab maintenance phase, 3 gastrointestinal events reported: faecaloma, gastrointestinal bleeding and nausea.
None fatal event occurred in this SOC.

Nervous system disorders
9 neurological events have been reported from R-DHAP arm versus 3 from R-ICE arm.
In the maintenance phase, 2 neurological events were reported in each of 2 arms. A case of leukoencephalopathy with a fatal outcome reported from rituximab arm, SAE N 190. A 63-year-old patient developed neurological disturbance and varicella lesions approximately 1.5
month after the third maintenance rituximab administration. He died of leucoencephalopathy 2 months after the onset.

The second case of leucoencephalopathy was reported from the induction phase (SAE N 162), developed 3 days after the first cycle of R-ICE, the patient recovered from this event. Both cases are described in Section 4.4.

Renal and urinary disorders

8 cases of renal failure were reported from R-DHAP regimen versus 2 from R-ICE that probably could be explained by the cisplatine known renal toxicity.

Neoplasms

3 fatal SAR of secondary malignancy were reported during maintenance phase, 2 of them were reported from the observation arm and related to induction phase treatment (SAEs N 292 & 293)

The third one (SAE N 261), occurred in 58-year-old patient, who started to receive a chemotherapy treatment for his lymphoma in November 2003, he was included to R-ICE arm in April 2004 and then was randomized to rituximab maintenance in July 2004. One year after the last study rituximab, in June 2006, he was diagnosed with *acute non-lymphocytic* leukemia. He expired from this disease in July 2006.

The cases are described in Section 4.4.

6. **Conclusion**

Based on the presented data, no changes to the conduct of this study are warranted.

7. **Line-listings**

The line listings are enclosed:

- **Appendix 1**: Synopsis
- **Appendix 2**: Serious Adverse Reactions from induction phase
- **Appendix 3**: Serious Adverse Reactions from maintenance phase
- **Appendix 4**: Unrelated Serious Adverse Events

8. **DSMC**

- **Appendix 5**: DSMC recommendations dated 10 August 2007.
- **Appendix 6**: DSMC recommendations dated 03 March 2010.
Title

CORAL study: **RANDOMIZED STUDY OF ICE PLUS RITUXIMAB (R-ICE) VERSUS DHAP PLUS RITUXIMAB (R-DHAP) IN PREVIOUSLY TREATED PATIENTS WITH CD 20 POSITIVE DIFFUSE LARGE B-CELL LYMPHOMA, ELIGIBLE FOR TRANSPLANTATION FOLLOWED BY RANDOMIZED MAINTENANCE TREATMENT WITH RITUXIMAB**

Sponsor: GELARC, CORAL group

Lymphoma groups of each country: GELA; DSHNHL; ILL, NCRI, ALLG, SAKK, MSKCC, CLSG, ISH, Nordics centers

Principal Investigator

Prof. Christian Gisselbrecht

Centres

Participating centres of study groups which have been registered according to local government rules

Objectives

Part I, induction therapy: To evaluate the efficacy and safety of ICE plus rituximab (R-ICE) in comparison with DHAP plus rituximab (R-DHAP) in previously-treated patients with CD20-positive large B-cell lymphoma eligible for autologous transplantation.

Part II, maintenance therapy: To evaluate the efficacy and safety of **Mabthera** maintenance therapy after transplantation.

Primary endpoints

Part I, induction therapy: Overall response rate (ORR) (Complete Response CR and Partial Response PR) **adjusted with successful mobilization** at the end of 2 and/or 3 cycles of induction chemotherapy treatment before high-dose chemotherapy and autologous transplantation.

Part II, maintenance therapy: Event free survival (EFS) at 2 years post transplantation: events being death from any cause, relapse for complete responders and unconfirmed complete responders, progression during and after treatment and changes of therapy

- Eligibility for transplant, toxicities with R-ICE and R-DHAP, time to progression or relapse, disease-free survival for complete responders, overall survival.

Secondary endpoints

- Eligibility for transplant, toxicities with R-ICE and R-DHAP, time to progression or relapse, disease-free survival for complete responders, overall survival.

Study design

Phase III, multicentric, open-label, randomized study

Number of subjects

480 patients n=240/arm

Study Population

- **Inclusion criteria**
 - Patient with histologically proven, CD 20+ diffuse large B cell lymphoma in 1st relapse after CR, less than PR or partial response to first line treatment
 - Aged from 18 to 65 years inclusive
 - Eligible for transplant
 - Previously treated with chemotherapy regimen containing anthracyclines with or without rituximab
 - ECOG performance status ≤ 2
 - With a minimum life expectancy of 3 months
 - Signed informed consent form prior to randomization
- **Exclusion criteria**
 - Burkitt, mantle cell, T-cell lymphoma.
 - CD 20-negative NHL
 - Documented infection with HIV or HBV disease (in the absence of vaccination).
 - Central nervous system or meningeal involvement by lymphoma.
 - Not previously treated with anthracycline-containing regimens.
 - Prior transplantation
 - Contraindication to any drug contained in the chemotherapy regimens.
 - Any serious active disease or co-morbid medical condition (according to the investigator’s decision).
 - Poor renal function (creatinin level>150μmol/l), poor hepatic function (total bilirubin level>30mmol/l, transaminases>2.5 maximum normal level) unless these abnormalities are related to the lymphoma.
 - Poor bone marrow reserve as defined by neutrophils<1.5G/l or platelets<100G/l, unless related to bone marrow infiltration.
 - Any history of cancer during the last 5 years, with the exception of non-melanoma skin tumors or stage 0 (in situ) cervical carcinoma.
 - Pregnant woman
 - Treatment with any investigational drug within 30 days before planned first cycle of chemotherapy and during the study.
 - Adult patient unable to give informed consent because of intellectual impairment

Appendix 1: synopsis
Statistical analysis
- **Primary endpoints**
 - Part I induction: Mobilization adjusted response rate will be analyzed using chi-square test and a logistic regression to adjust for prognostic factors.

- **Secondary endpoints**
 - Part II maintenance: Event-free survival post transplant, using a stratified log-rank test. A Kaplan-Meier plot of time to first event for each treatment group will also be produced. Time to progression, overall survival and duration of response or disease free survival will be analyzed using the log rank test.

Treatment

Induction:
Central randomization to one of the two treatment arms: arm A (R-ICE) and arm B (R-DHAP). Patients will be stratified according to the center, prior treatment with Rituximab, refractory disease (PR+ less than PR) and relapse < 12 months.

A arm
- **Induction:** 3 cycles of RICE in 3-weekly intervals.

<table>
<thead>
<tr>
<th>RICE</th>
<th>Dose</th>
<th>D-2</th>
<th>D-1</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
<th>D5</th>
<th>D6 to D13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rituximab</td>
<td>375 mg/m²</td>
<td>(X)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Etoposide</td>
<td>100 mg/m²</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carboplatine</td>
<td>AUC (5) max 800mg</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ifosfamide + Mesna</td>
<td>5 g/m²</td>
<td>X →</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Continuous infusion 24 h)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G-CSF (SC)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rituximab D-2</td>
<td>first cycle only</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B arm
- **Induction:** 3 cycles of R-DHAP, 3 weeks interval.

<table>
<thead>
<tr>
<th>R-DHAP</th>
<th>Dose</th>
<th>D-2</th>
<th>D-1</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
<th>D5</th>
<th>D6 to D13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rituximab</td>
<td>375 mg/m²</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cisplatin c.i.</td>
<td>100 mg/m²</td>
<td>X →</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cytosine Arabinoside</td>
<td>2000 mg/m²/12 h</td>
<td>XX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>40 mg</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G-CSF (sc)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rituximab D-2</td>
<td>first cycle only</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mobilization
After the two and/or third chemotherapy cycle patients will be mobilized with G-CSF for peripheral blood stem cell collection at the time of recovery. The minimum amount of stem cells required is: 2 x 10^6 CD 34+/kg.

Consolidation
All patient in CR, CRu or PR will be submitted to consolidation with R-Beam.

<table>
<thead>
<tr>
<th>BEAM</th>
<th>Dose</th>
<th>D-6</th>
<th>D-5</th>
<th>D-4</th>
<th>D-3</th>
<th>D-2</th>
<th>D-1</th>
<th>D0</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCNU</td>
<td>300mg/m²</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Etoposide</td>
<td>200 mg/m²</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cytarabine twice daily</td>
<td>200 mg/m²/12 h</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
</tr>
<tr>
<td>Melphalan</td>
<td>140 mg/m²</td>
<td>X</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Maintenance
Prior to ASCT, patients will undergo a central randomization to Rituximab maintenance therapy (1) or observation (2) (A1, A2, B1, B2). Schedule for Rituximab maintenance is 375 mg/m² every eight weeks starting at day 28 after ASCT for a maximum of 6 doses.

Planned start/end of recruitment
The trial will start in January 2003. The trial will start in January 2003. 480 patients will be randomized within a period of approx. five years, end of recruitment is therefore to by expected by mid/end of 2008. The minimum follow-up time after the end of the recruitment period will be 2 years, with a total study period of 7 years. Interim analysis is planned after 200 patients in year 2006.
CD20+ relapsed/refractory DLCL

R1

R-DHAP

R-DHAP

R-ICE

R-ICE

Clinical evaluation

PBPC

Evaluation

CR / PR

PD / SD

BEAM

OFF

R2

Mabthera 375 mgm²/8 weeks/12 months

Observation
Induction Phase

Blood and lymphatic system disorders

<table>
<thead>
<tr>
<th>Country</th>
<th>Inclusion number</th>
<th>SAE number</th>
<th>Gender</th>
<th>Age</th>
<th>Induction Arm</th>
<th>MedDRA LLT</th>
<th>Onset Date</th>
<th>Latency last administration (D)</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWITZERLAND</td>
<td>5003603701001</td>
<td>50</td>
<td>MALE</td>
<td>64</td>
<td>R-DHAP</td>
<td>BICYTOPENIA</td>
<td>28/01/2005</td>
<td>0</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>GERMANY</td>
<td>50036302001055</td>
<td>295</td>
<td>FEMALE</td>
<td>62</td>
<td>R-ICE</td>
<td>BICYTOPENIA</td>
<td>17/04/2008</td>
<td>0</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>GERMANY</td>
<td>50036302001055</td>
<td>299</td>
<td>FEMALE</td>
<td>62</td>
<td>R-ICE</td>
<td>BICYTOPENIA</td>
<td>12/06/2008</td>
<td>0</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>SWITZERLAND</td>
<td>5003603701001</td>
<td>56</td>
<td>MALE</td>
<td>64</td>
<td>R-DHAP</td>
<td>FEBRILE NEUTROPENIA</td>
<td>22/03/2005</td>
<td>0</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>5003603301401</td>
<td>70</td>
<td>MALE</td>
<td>62</td>
<td>R-DHAP+ BEAM</td>
<td>FEBRILE NEUTROPENIA</td>
<td>14/12/2004</td>
<td>6</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>5003650301610</td>
<td>76</td>
<td>MALE</td>
<td>60</td>
<td>R-DHAP+ BEAM</td>
<td>FEBRILE NEUTROPENIA</td>
<td>28/02/2005</td>
<td>7</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>5003650301610</td>
<td>80</td>
<td>MALE</td>
<td>60</td>
<td>R-DHAP+ BEAM</td>
<td>FEBRILE NEUTROPENIA</td>
<td>14/03/2005</td>
<td>21</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>FRANCE</td>
<td>5003101251205</td>
<td>81</td>
<td>MALE</td>
<td>54</td>
<td>R-ICE+ BEAM</td>
<td>FEBRILE NEUTROPENIA</td>
<td>20/08/2004</td>
<td>5</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>CZECH REPUBLIC</td>
<td>5003604801006</td>
<td>115</td>
<td>MALE</td>
<td>53</td>
<td>R-DHAP+ BEAM</td>
<td>FEBRILE NEUTROPENIA</td>
<td>16/02/2006</td>
<td>71</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>CZECH REPUBLIC</td>
<td>5003630801203</td>
<td>132</td>
<td>FEMALE</td>
<td>53</td>
<td>R-ICE</td>
<td>FEBRILE NEUTROPENIA</td>
<td>09/12/2004</td>
<td>3</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>SWITZERLAND</td>
<td>500364701012</td>
<td>178</td>
<td>MALE</td>
<td>62</td>
<td>R-DHAP</td>
<td>FEBRILE NEUTROPENIA(*)</td>
<td>30/04/2007</td>
<td>5</td>
<td>Ongoing at death</td>
</tr>
<tr>
<td>UNITED KINGDOM</td>
<td>5003612501012</td>
<td>183</td>
<td>FEMALE</td>
<td>55</td>
<td>R-ICE</td>
<td>FEBRILE NEUTROPENIA</td>
<td>17/05/2007</td>
<td>8</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>BELGIUM</td>
<td>5003101621055</td>
<td>268</td>
<td>FEMALE</td>
<td>64</td>
<td>R-ICE+ BEAM</td>
<td>FEBRILE NEUTROPENIA</td>
<td>26/10/2006</td>
<td>1</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>UK</td>
<td>5003614501022</td>
<td>301</td>
<td>MALE</td>
<td>37</td>
<td>R-DHAP</td>
<td>FEBRILE NEUTROPENIA</td>
<td>17/12/2007</td>
<td>32</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>5003606301012</td>
<td>302</td>
<td>MALE</td>
<td>64</td>
<td>R-DHAP+ BEAM</td>
<td>FEBRILE NEUTROPENIA</td>
<td>16/01/2008</td>
<td>1</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>CZECH REPUBLIC</td>
<td>5003602801204</td>
<td>46</td>
<td>MALE</td>
<td>61</td>
<td>R-DHAP</td>
<td>HEMATOTOXICITY</td>
<td>12/01/2005</td>
<td>2</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>UNITED KINGDOM</td>
<td>5003620501002</td>
<td>174</td>
<td>FEMALE</td>
<td>60</td>
<td>R-DHAP</td>
<td>NEUTROPENIA</td>
<td>22/03/2007</td>
<td>10</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>UNITED KINGDOM</td>
<td>5003615501004</td>
<td>196</td>
<td>FEMALE</td>
<td>64</td>
<td>R-DHAP</td>
<td>NEUTROPENIA</td>
<td>20/11/2006</td>
<td>14</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>UNITED KINGDOM</td>
<td>5003612501011</td>
<td>170</td>
<td>FEMALE</td>
<td>41</td>
<td>R-ICE</td>
<td>PANCYTOPENIA</td>
<td>03/04/2007</td>
<td>13</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>UNITED KINGDOM</td>
<td>5003615501004</td>
<td>195</td>
<td>FEMALE</td>
<td>64</td>
<td>R-DHAP</td>
<td>THROMBOCYTOPENIA</td>
<td>23/10/2006</td>
<td>2</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>NEW ZEALAND</td>
<td>5003621301014</td>
<td>214</td>
<td>FEMALE</td>
<td>59</td>
<td>R-ICE</td>
<td>THROMBOCYTOPENIA</td>
<td>01/11/2007</td>
<td>5</td>
<td>Recovered without sequelae</td>
</tr>
</tbody>
</table>

Cardiac disorders

<table>
<thead>
<tr>
<th>Country</th>
<th>Inclusion number</th>
<th>SAE number</th>
<th>Gender</th>
<th>Age</th>
<th>Induction Arm</th>
<th>MedDRA LLT</th>
<th>Onset Date</th>
<th>Latency last administration (D)</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>BELGIUM</td>
<td>5003101281017</td>
<td>35</td>
<td>MALE</td>
<td>60</td>
<td>R-ICE</td>
<td>ATRIAL FIBRILLATION</td>
<td>25/11/2004</td>
<td>1</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>FRANCE</td>
<td>5003102411054</td>
<td>142</td>
<td>MALE</td>
<td>64</td>
<td>R-DHAP</td>
<td>ATRIAL FIBRILLATION</td>
<td>26/10/2006</td>
<td>10</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>5003613301404</td>
<td>147</td>
<td>FEMALE</td>
<td>60</td>
<td>R-DHAP</td>
<td>BRADYCARDIA</td>
<td>19/11/2006</td>
<td>0</td>
<td>Unknown</td>
</tr>
<tr>
<td>NEW ZEALAND</td>
<td>5003605301601</td>
<td>13</td>
<td>MALE</td>
<td>61</td>
<td>R-ICE</td>
<td>CARDIAC ARREST(*)</td>
<td>20/06/2004</td>
<td>15</td>
<td>Died</td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>5003606301012</td>
<td>228</td>
<td>FEMALE</td>
<td>64</td>
<td>R-DHAP+ BEAM</td>
<td>CARDIAC ARREST(*)</td>
<td>21/01/2008</td>
<td>6</td>
<td>Ongoing at death</td>
</tr>
<tr>
<td>BELGIUM</td>
<td>5003101601404</td>
<td>84</td>
<td>FEMALE</td>
<td>66</td>
<td>R-ICE</td>
<td>CARDIAC FAILURE</td>
<td>30/07/2005</td>
<td>0</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>FRANCE</td>
<td>5003101161028</td>
<td>262</td>
<td>MALE</td>
<td>59</td>
<td>R-DHAP</td>
<td>CARDIAC FAILURE</td>
<td>22/08/2005</td>
<td>14</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>FRANCE</td>
<td>5003101141402</td>
<td>86</td>
<td>MALE</td>
<td>63</td>
<td>R-DHAP</td>
<td>CARDIAC INSUFFICIENCY</td>
<td>21/06/2005</td>
<td>9</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>SWITZERLAND</td>
<td>500364701012</td>
<td>252</td>
<td>MALE</td>
<td>62</td>
<td>R-DHAP</td>
<td>CARDIAC INSUFFICIENCY(*)</td>
<td>30/04/2007</td>
<td>5</td>
<td>Died</td>
</tr>
<tr>
<td>GERMANY</td>
<td>5003622021010</td>
<td>114</td>
<td>MALE</td>
<td>54</td>
<td>R-ICE</td>
<td>CARDIAC ISCHEMIA</td>
<td>08/03/2006</td>
<td>3</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>FRANCE</td>
<td>5003101051612</td>
<td>14</td>
<td>MALE</td>
<td>37</td>
<td>R-ICE+ BEAM</td>
<td>MYOCARDIAL INFARCTION</td>
<td>28/06/2004</td>
<td>1</td>
<td>Recovered without sequelae</td>
</tr>
</tbody>
</table>

Ear and labyrinth disorders

<table>
<thead>
<tr>
<th>Country</th>
<th>Inclusion number</th>
<th>SAE number</th>
<th>Gender</th>
<th>Age</th>
<th>Induction Arm</th>
<th>MedDRA LLT</th>
<th>Onset Date</th>
<th>Latency last administration (D)</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>BELGIUM</td>
<td>5003101641047</td>
<td>119</td>
<td>MALE</td>
<td>45</td>
<td>R-DHAP</td>
<td>TINNITUS</td>
<td>04/05/2006</td>
<td>1</td>
<td>Recovered without sequelae</td>
</tr>
</tbody>
</table>

(*) Suspected Unexpected Serious Adverse Reaction
Induction Phase

Gastrointestinal disorders

<table>
<thead>
<tr>
<th>Country</th>
<th>Inclusion number</th>
<th>SAE number</th>
<th>Gender</th>
<th>Age</th>
<th>Induction Arm</th>
<th>MedDRA LLT</th>
<th>Onset Date</th>
<th>Latency last administration (D)</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEW ZEALAND</td>
<td>5003650301010</td>
<td>209</td>
<td>MALE</td>
<td>55</td>
<td>R-ICE</td>
<td>BOWEL OBSTRUCTION</td>
<td>24/09/2007</td>
<td>8</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>CZECH REPUBLIC</td>
<td>5003601801607</td>
<td>239</td>
<td>FEMALE</td>
<td>40</td>
<td>R-ICE + BEAM</td>
<td>COLITIS HEMORRHAGIC</td>
<td>14/03/2008</td>
<td>4</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>UNITED KINGDOM</td>
<td>5003612501012</td>
<td>168</td>
<td>FEMALE</td>
<td>55</td>
<td>R-ICE</td>
<td>DIARRHEA</td>
<td>27/03/2007</td>
<td>2</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>UNITED KINGDOM</td>
<td>5003612501019</td>
<td>212</td>
<td>FEMALE</td>
<td>51</td>
<td>R-ICE</td>
<td>DIARRHEA</td>
<td>10/10/2007</td>
<td>0</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>SWEDEN</td>
<td>5003601401602</td>
<td>272</td>
<td>MALE</td>
<td>42</td>
<td>R-ICE + BEAM</td>
<td>DIARRHEA</td>
<td>04/11/2004</td>
<td>28</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>BELGIUM</td>
<td>5003102491616</td>
<td>15</td>
<td>MALE</td>
<td>46</td>
<td>R-ICE</td>
<td>ESOPHAGEAL HEMORRHAGE</td>
<td>02/07/2004</td>
<td>0</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>SWEDEN</td>
<td>5003601401605</td>
<td>184</td>
<td>FEMALE</td>
<td>57</td>
<td>R-ICE</td>
<td>GASTRIC ULCE PHAEMORRHAGE</td>
<td>10/10/2006</td>
<td>7</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>BELGIUM</td>
<td>5003101281017</td>
<td>37</td>
<td>MALE</td>
<td>60</td>
<td>R-ICE</td>
<td>GASTROINTESTINAL BLEEDING</td>
<td>25/11/2004</td>
<td>1</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>USA</td>
<td>5003601601402</td>
<td>34</td>
<td>FEMALE</td>
<td>65</td>
<td>R-ICE</td>
<td>GASTROINTESTINAL DISORDER</td>
<td>26/11/2004</td>
<td>0</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>FRANCE</td>
<td>5003101071417</td>
<td>169</td>
<td>FEMALE</td>
<td>56</td>
<td>R-ICE</td>
<td>GASTROINTESTINAL HEMORRHAGE</td>
<td>30/03/2007</td>
<td>9</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>NEW ZEALAND</td>
<td>5003607301603</td>
<td>39</td>
<td>MALE</td>
<td>65</td>
<td>R-ICE + BEAM</td>
<td>GASTROINTESTINAL HEMORRHAGE</td>
<td>12/09/2004</td>
<td>4</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>CZECH REPUBLIC</td>
<td>5003601801603</td>
<td>58</td>
<td>MALE</td>
<td>41</td>
<td>R-ICE</td>
<td>GASTROINTESTINAL HEMORRHAGE</td>
<td>15/02/2005</td>
<td>1</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>SWITZERLAND</td>
<td>5003603701001</td>
<td>55</td>
<td>MALE</td>
<td>64</td>
<td>R-ICE</td>
<td>NAUSEA AND VOMITING</td>
<td>08/03/2005</td>
<td>5</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>5003617301616</td>
<td>109</td>
<td>MALE</td>
<td>44</td>
<td>R-ICE</td>
<td>NAUSEA AND VOMITING</td>
<td>06/03/2006</td>
<td>4</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>GERMANY</td>
<td>5003603201050</td>
<td>216</td>
<td>MALE</td>
<td>61</td>
<td>R-ICE</td>
<td>NAUSEA AND VOMITING</td>
<td>24/09/2007</td>
<td>12</td>
<td>Recovered with sequelae</td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>5003603301401</td>
<td>69</td>
<td>MALE</td>
<td>62</td>
<td>R-ICE + BEAM</td>
<td>OBSTRUCTION BOWEL</td>
<td>21/12/2004</td>
<td>13</td>
<td>Recovered with sequelae</td>
</tr>
<tr>
<td>USA</td>
<td>5003601601602</td>
<td>221</td>
<td>MALE</td>
<td>45</td>
<td>R-ICE</td>
<td>PERFORATED BOWEL</td>
<td>11/12/2007</td>
<td>0</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>GERMANY</td>
<td>5003606201065</td>
<td>27</td>
<td>MALE</td>
<td>42</td>
<td>R-ICE</td>
<td>PERFORATION LARGE INTESTINE</td>
<td>16/06/2004</td>
<td>12</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>FRANCE</td>
<td>5003102181031</td>
<td>133</td>
<td>MALE</td>
<td>63</td>
<td>R-ICE</td>
<td>VOMITING</td>
<td>27/06/2005</td>
<td>2</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>BELGIUM</td>
<td>5003101641623</td>
<td>145</td>
<td>FEMALE</td>
<td>62</td>
<td>R-ICE</td>
<td>VOMITING</td>
<td>24/05/2005</td>
<td>11</td>
<td>Recovered without sequelae</td>
</tr>
</tbody>
</table>

General disorders and administration site conditions

<table>
<thead>
<tr>
<th>Country</th>
<th>Inclusion number</th>
<th>SAE number</th>
<th>Gender</th>
<th>Age</th>
<th>Induction Arm</th>
<th>MedDRA LLT</th>
<th>Onset Date</th>
<th>Latency last administration (D)</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWITZERLAND</td>
<td>5003607701405</td>
<td>242</td>
<td>MALE</td>
<td>49</td>
<td>R-ICE</td>
<td>ASTHÉNIA</td>
<td>06/05/2008</td>
<td>2</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>SWEDEN</td>
<td>5003601401601</td>
<td>5</td>
<td>MALE</td>
<td>58</td>
<td>R-ICE</td>
<td>FEVER</td>
<td>13/01/2004</td>
<td>8</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>5003609301608</td>
<td>41</td>
<td>MALE</td>
<td>43</td>
<td>R-ICE</td>
<td>FEVER</td>
<td>26/12/2004</td>
<td>1</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>UNITED KINGDOM</td>
<td>5003615501018</td>
<td>203</td>
<td>FEMALE</td>
<td>49</td>
<td>R-ICE</td>
<td>FEVER</td>
<td>10/09/2007</td>
<td>6</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>500362030111</td>
<td>210</td>
<td>MALE</td>
<td>42</td>
<td>R-ICE</td>
<td>FEVER</td>
<td>15/10/2007</td>
<td>22</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>FRANCE</td>
<td>5003101251205</td>
<td>18</td>
<td>MALE</td>
<td>54</td>
<td>R-ICE</td>
<td>HYPERThERmIA</td>
<td>15/07/2004</td>
<td>4</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>5003603301401</td>
<td>72</td>
<td>MALE</td>
<td>62</td>
<td>R-ICE + BEAM</td>
<td>MUCOSITIS</td>
<td>11/12/2004</td>
<td>3</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>FRANCE</td>
<td>5003101071463</td>
<td>286</td>
<td>FEMALE</td>
<td>59</td>
<td>R-ICE + BEAM</td>
<td>MUCOSITIS</td>
<td>29/02/2008</td>
<td>2</td>
<td>Recovered without sequelae</td>
</tr>
</tbody>
</table>

Hepatobiliary disorders

<table>
<thead>
<tr>
<th>Country</th>
<th>Inclusion number</th>
<th>SAE number</th>
<th>Gender</th>
<th>Age</th>
<th>Induction Arm</th>
<th>MedDRA LLT</th>
<th>Onset Date</th>
<th>Latency last administration (D)</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>BELGIUM</td>
<td>5003102541016</td>
<td>31</td>
<td>MALE</td>
<td>54</td>
<td>R-ICE</td>
<td>ACUTE CHOLECYSTITIS</td>
<td>07/11/2004</td>
<td>3</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>BELGIUM</td>
<td>5003102541625</td>
<td>96</td>
<td>MALE</td>
<td>25</td>
<td>R-ICE</td>
<td>HEPATITIS</td>
<td>31/07/2005</td>
<td>15</td>
<td>Recovered with sequelae</td>
</tr>
</tbody>
</table>

Immune system disorders

<table>
<thead>
<tr>
<th>Country</th>
<th>Inclusion number</th>
<th>SAE number</th>
<th>Gender</th>
<th>Age</th>
<th>Induction Arm</th>
<th>MedDRA LLT</th>
<th>Onset Date</th>
<th>Latency last administration (D)</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>GERMANY</td>
<td>5003604201028</td>
<td>107</td>
<td>MALE</td>
<td>65</td>
<td>R-ICE</td>
<td>DRUG HYPERSensitivity</td>
<td>02/02/2006</td>
<td>1</td>
<td>Recovered without sequelae</td>
</tr>
</tbody>
</table>

(*) Suspected Unexpected Serious Adverse Reaction

Line-listing 03 July 2003 to 02 July 2011
EudraCT number: 2004-002103-32
Appendix 2: Related Serious Adverse Reactions

CORAL STUDY

09/08/2011

Induction Phase

Infections and infestations
Country

Inclusion number

SAE
number

Gender

Age

Induction Arm

MedDRA LLT

Onset Date

BELGIUM
AUSTRALIA
USA
UNITED KINGDOM
AUSTRALIA
IRELAND
ISRAEL
AUSTRALIA
AUSTRALIA
GERMANY
GERMANY
FRANCE
FRANCE
GERMANY
SWITZERLAND
GERMANY
NEW ZELAND
ISRAEL
SWEDEN
GERMANY
SWEDEN
UNITED KINGDOM
AUSTRALIA
AUSTRALIA
ISRAEL
UNITED KINGDOM
UK
GERMANY
UK
GERMANY
USA
GERMANY
NEW ZEALAND
UNITED KINGDOM
UNITED KINGDOM
UNITED KINGDOM
UNITED KINGDOM
UNITED KINGDOM
GERMANY
BELGIUM
ISRAEL
GERMANY
GERMANY
ISRAEL
BELGIUM
ISRAEL
UNITED KINGDOM
ISRAEL
GERMANY

5003101281017
5003609301608
5003601601005
5003624501017
5003620301017
5003610501031
5003604901004
5003606301012
5003606301207
5003603201034
5003603201034
5003101091025
5003101051068
5003630201055
5003605701601
5003602201601
5003605301010
5003605901003
5003601401002
5003603201034
5003601401006
5003623501408
5003604301607
5003617301619
5003602901401
5003620501602
5003618501025
5003630201055
5003620501602
5003603201001
5003601601401
5003631201011
5003604301618
5003612501011
5003623501408
5003617501026
5003614501032
5003614501002
5003630201055
5003101541415
5003602901201
5003603201001
5003601201201
5003602901002
5003102541034
5003604901004
5003623501405
5003602901002
5003603201205

36
33
232
198
235
248
099
304
60
277
279
131
270
296
61
68
202
79
137
280
275
308
22
106
42
187
225
297
306
9
20
43
112
180
219
224
245
289
298
278
8
10
28
52
95
141
193
53
67

MALE
MALE
FEMALE
MALE
MALE
MALE
FEMALE
FEMALE
MALE
MALE
MALE
FEMALE
MALE
FEMALE
FEMALE
FEMALE
MALE
FEMALE
MALE
MALE
FEMALE
MALE
MALE
FEMALE
MALE
FEMALE
MALE
FEMALE
FEMALE
MALE
MALE
FEMALE
MALE
FEMALE
MALE
FEMALE
MALE
MALE
FEMALE
MALE
FEMALE
MALE
FEMALE
MALE
MALE
FEMALE
MALE
MALE
MALE

60
43
53
52
59
54
53
64
37
33
33
61
64
62
62
56
55
48
56
33
62
53
62
19
60
60
59
62
59
50
59
61
55
41
53
59
53
27
62
54
31
50
32
64
27
52
58
64
59

R-ICE
R-ICE
R-ICE
R-ICE
R-ICE
R-ICE
R-DHAP + BEAM
R-DHAP + BEAM
R-ICE + BEAM
R-DHAP
R-DHAP
R-DHAP
R-ICE
R-ICE
R-ICE
R-ICE
R-ICE
R-ICE
R-ICE + BEAM
R-DHAP + BEAM
R-ICE
R-DHAP
R-DHAP
R-DHAP
R-ICE
R-DHAP
R-DHAP
R-ICE
R-DHAP + BEAM
R-DHAP
R-ICE
R-DHAP
R-ICE
R-ICE
R-DHAP
R-DHAP
R-DHAP
R-ICE
R-ICE
R-DHAP
R-ICE
R-DHAP
R-DHAP
R-ICE
R-DHAP
R-DHAP
R-DHAP
R-ICE
R-DHAP

ASPERGILLOSIS
CELLULITIS
CELLULITIS
CENTRAL LINE INFECTION
CENTRAL LINE INFECTION
CENTRAL LINE INFECTION
CATHETER SEPSIS
CMV INFECTION (*)
DENTAL ABSCESS
DIARRHEA, CLOSTRIDIUM DIFFICILE
DIARRHEA, CLOSTRIDIUM DIFFICILE
ENTEROBACTER SEPTICEMIA
ESCHERICHIA COLI INFECTION
GASTROINTESTINAL CANDIDIASIS
HERPES ZOSTER
HERPES ZOSTER
HERPES ZOSTER
INFECTION
INFECTION
INFECTIOUS DIARRHEA
KLEBSIELLA PNEUMONIAE INFECTION
KLEBSIELLA SEPSIS
LOWER RESPIRATORY TRACT INFECTION
LOWER RESPIRATORY TRACT INFECTION
NEUTROPENIC INFECTION
NEUTROPENIC INFECTION
NEUTROPENIC INFECTION
NEUTROPENIC INFECTION
NEUTROPENIC INFECTION
NEUTROPENIC SEPSIS (*)
NEUTROPENIC SEPSIS
STREPTOCOCCUS PNEUMONIAE PNEUMONIA
PNEUMONIA
PNEUMONIA
PNEUMONIA
PNEUMONIA
PNEUMONIA
PNEUMONIA
PNEUMONIA (*)
PNEUMONIA STREPTOCOCCAL (*)
PSEUDOMONAL SEPSIS

03/12/2004
19/11/2004
15/02/2008
19/08/2007
24/03/2008
02/05/2008
21/06/2006
21/01/2008
01/12/2004
01/09/2006
27/02/2007
04/07/2005
15/08/2007
27/04/2008
04/05/2005
09/05/2005
02/09/2007
17/06/2005
09/07/2004
08/03/2007
08/07/2007
25/01/2008
14/09/2004
16/02/2006
20/12/2004
28/05/2007
19/12/2007
27/04/2008
28/06/2007
11/05/2004
03/05/2004
23/12/2004
07/03/2006
20/04/2007
29/11/2007
19/12/2007
16/04/2008
25/09/2006
08/06/2008
14/07/2007
07/04/2004
19/04/2004
01/05/2004
05/02/2005
04/10/2005
08/01/2006
26/07/2007
17/02/2005
14/01/2005

(*) Suspected Unexpected Serious Adverse Reaction
Line-listing 03 July 2003 to 02 July 2011
Page 3/5

Latency last
administration
(D)
9
1
6
9
Not reported
0
33
6
10
8
145
6
40
0
10
5
9
53
3
154
24
7
0
2
0
77
2
0
1
0
0
11
0
0
13
8
6
10
0
122
1
8
0
0
23
12
5
10
32

Outcome
Recovered without sequelae
Not reported
Recovered without sequelae
Died
Recovered without sequelae
Died
Recovered without sequelae
Recovered with sequelae
Recovered without sequelae
Recovered without sequelae
Recovered without sequelae
Recovered without sequelae
Died
Recovered without sequelae
Recovered without sequelae


Induction Phase

<table>
<thead>
<tr>
<th>Country</th>
<th>Inclusion number</th>
<th>SAE number</th>
<th>Gender</th>
<th>Age</th>
<th>Induction Arm</th>
<th>MedDRA LLT</th>
<th>Onset Date</th>
<th>Latency last administration (D)</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRANCE</td>
<td>5003102181031</td>
<td>140</td>
<td>MALE</td>
<td>63</td>
<td>R-DHAP</td>
<td>PSEUDOMONAS INFECTION</td>
<td>04/08/2005</td>
<td>3</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>UNITED KINGDOM</td>
<td>5003616501005</td>
<td>159</td>
<td>FEMALE</td>
<td>59</td>
<td>R-ICE + BEAM</td>
<td>SEPSIS (*)</td>
<td>16/02/2007</td>
<td>2</td>
<td>Died</td>
</tr>
<tr>
<td>FRANCE</td>
<td>5003101071002</td>
<td>2</td>
<td>MALE</td>
<td>64</td>
<td>R-DHAP</td>
<td>SEPTIC SHOCK (*)</td>
<td>31/10/2003</td>
<td>10</td>
<td>Died</td>
</tr>
<tr>
<td>BELGIUM</td>
<td>5003602491616</td>
<td>17</td>
<td>MALE</td>
<td>46</td>
<td>R-ICE</td>
<td>SEPTIC SHOCK</td>
<td>17/07/2004</td>
<td>2</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>FRANCE</td>
<td>5003101131030</td>
<td>82</td>
<td>FEMALE</td>
<td>48</td>
<td>R-ICE</td>
<td>SEPTIC SHOCK (*)</td>
<td>16/08/2005</td>
<td>2</td>
<td>Died</td>
</tr>
<tr>
<td>SWITZERLAND</td>
<td>5003603701004</td>
<td>83</td>
<td>MALE</td>
<td>64</td>
<td>R-ICE</td>
<td>SEPTIC SHOCK (*)</td>
<td>21/08/2005</td>
<td>7</td>
<td>Died</td>
</tr>
<tr>
<td>FRANCE</td>
<td>5003102161413</td>
<td>175</td>
<td>MALE</td>
<td>49</td>
<td>R-ICE</td>
<td>SEPTIC SHOCK (*)</td>
<td>03/11/2006</td>
<td>7</td>
<td>Died</td>
</tr>
<tr>
<td>GERMANY</td>
<td>5003607201045</td>
<td>206</td>
<td>MALE</td>
<td>48</td>
<td>R-ICE + BEAM</td>
<td>SEPTIC SHOCK (*)</td>
<td>12/08/2007</td>
<td>40</td>
<td>Dead</td>
</tr>
<tr>
<td>FRANCE</td>
<td>5003101051068</td>
<td>269</td>
<td>MALE</td>
<td>64</td>
<td>R-ICE</td>
<td>SEPTIC SHOCK</td>
<td>05/09/2007</td>
<td>4</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>SWEDEN</td>
<td>500360141602</td>
<td>48</td>
<td>MALE</td>
<td>42</td>
<td>R-ICE + BEAM</td>
<td>SEPTICAEMIA</td>
<td>04/11/2004</td>
<td>5</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>5003603301041</td>
<td>71</td>
<td>MALE</td>
<td>62</td>
<td>R-DHAP + BEAM</td>
<td>SEPTICEMIA</td>
<td>13/12/2004</td>
<td>5</td>
<td>Recovered with sequelae</td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>5003606301012</td>
<td>303</td>
<td>FEMALE</td>
<td>49</td>
<td>R-DHAP + BEAM</td>
<td>SEPTICEMIA GRAM-NEGATIVE (*)</td>
<td>21/01/2006</td>
<td>6</td>
<td>Died</td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>5003603301201</td>
<td>16</td>
<td>FEMALE</td>
<td>49</td>
<td>R-ICE</td>
<td>SEPTICEMIA CANDIDA (*)</td>
<td>12/07/2004</td>
<td>51</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>NEW ZEALAND</td>
<td>5003607301622</td>
<td>160</td>
<td>FEMALE</td>
<td>65</td>
<td>R-ICE</td>
<td>SEPTICEMIA GRAM-NEGATIVE (*)</td>
<td>25/01/2007</td>
<td>36</td>
<td>Died</td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>5003603301401</td>
<td>23</td>
<td>MALE</td>
<td>61</td>
<td>R-DHAP</td>
<td>SEPTICEMIA GRAM-POSITIVE (*)</td>
<td>04/10/2004</td>
<td>0</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>GERMANY</td>
<td>5003631201012</td>
<td>240</td>
<td>FEMALE</td>
<td>59</td>
<td>R-DHAP</td>
<td>SINUSITIS ASPERGILLUS</td>
<td>24/05/2005</td>
<td>91</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>GERMANY</td>
<td>5003606301060</td>
<td>24</td>
<td>FEMALE</td>
<td>41</td>
<td>R-DHAP</td>
<td>STAPHYLOCOCCAL SEPSIS</td>
<td>04/09/2004</td>
<td>1</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>FRANCE</td>
<td>5003102411054</td>
<td>265</td>
<td>MALE</td>
<td>64</td>
<td>R-DHAP + BEAM</td>
<td>STAPHYLOCOCCAL SEPSIS</td>
<td>14/01/2007</td>
<td>17</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>GERMANY</td>
<td>5003606301604</td>
<td>19</td>
<td>MALE</td>
<td>61</td>
<td>R-DHAP</td>
<td>UPPER RESPIRATORY TRACT INFECTION</td>
<td>26/07/2004</td>
<td>13</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>GERMANY</td>
<td>5003601201201</td>
<td>29</td>
<td>FEMALE</td>
<td>32</td>
<td>R-DHAP</td>
<td>URINARY TRACT INFECTION</td>
<td>17/05/2004</td>
<td>0</td>
<td>Recovered without sequelae</td>
</tr>
</tbody>
</table>

Injury, poisoning and procedural complications

<table>
<thead>
<tr>
<th>Country</th>
<th>Inclusion number</th>
<th>SAE number</th>
<th>Gender</th>
<th>Age</th>
<th>Induction Arm</th>
<th>MedDRA LLT</th>
<th>Onset Date</th>
<th>Latency last administration (D)</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISRAEL</td>
<td>5003602901601</td>
<td>73</td>
<td>MALE</td>
<td>63</td>
<td>R-ICE</td>
<td>SUBDURAL HEMATOMA</td>
<td>17/01/2005</td>
<td>72</td>
<td>Recovered without sequelae</td>
</tr>
</tbody>
</table>

Metabolism and nutrition disorders

<table>
<thead>
<tr>
<th>Country</th>
<th>Inclusion number</th>
<th>SAE number</th>
<th>Gender</th>
<th>Age</th>
<th>Induction Arm</th>
<th>MedDRA LLT</th>
<th>Onset Date</th>
<th>Latency last administration (D)</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUSTRALIA</td>
<td>5003603031021</td>
<td>6</td>
<td>FEMALE</td>
<td>49</td>
<td>R-ICE</td>
<td>DEHYDRATION</td>
<td>17/04/2004</td>
<td>2</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>USA</td>
<td>5003601601402</td>
<td>32</td>
<td>FEMALE</td>
<td>65</td>
<td>R-DHAP</td>
<td>DEHYDRATION</td>
<td>08/11/2004</td>
<td>1</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>CZECH REPUBLIC</td>
<td>5003603801203</td>
<td>47</td>
<td>FEMALE</td>
<td>53</td>
<td>R-ICE</td>
<td>DEHYDRATION</td>
<td>09/12/2004</td>
<td>0</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>CZECH REPUBLIC</td>
<td>5003602801204</td>
<td>51</td>
<td>MALE</td>
<td>61</td>
<td>R-DHAP</td>
<td>DEHYDRATION</td>
<td>03/02/2005</td>
<td>3</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>GERMANY</td>
<td>5003602001050</td>
<td>215</td>
<td>MALE</td>
<td>61</td>
<td>R-DHAP</td>
<td>EXSICCOSIS</td>
<td>03/09/2007</td>
<td>0</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>USA</td>
<td>5003601601602</td>
<td>229</td>
<td>MALE</td>
<td>45</td>
<td>R-DHAP</td>
<td>HYPERGLYCEMIA</td>
<td>21/01/2008</td>
<td>0</td>
<td>Improved</td>
</tr>
<tr>
<td>FRANCE</td>
<td>5003102411054</td>
<td>264</td>
<td>MALE</td>
<td>64</td>
<td>R-DHAP</td>
<td>HYPERGLYCEMIA</td>
<td>06/11/2006</td>
<td>6</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>FRANCE</td>
<td>5003101071643</td>
<td>285</td>
<td>FEMALE</td>
<td>59</td>
<td>R-DHAP + BEAM</td>
<td>HYPONATREMIA (*)</td>
<td>22/02/2008</td>
<td>1</td>
<td>Recovered without sequelae</td>
</tr>
</tbody>
</table>

Musculoskeletal and connective tissue disorders

<table>
<thead>
<tr>
<th>Country</th>
<th>Inclusion number</th>
<th>SAE number</th>
<th>Gender</th>
<th>Age</th>
<th>Induction Arm</th>
<th>MedDRA LLT</th>
<th>Onset Date</th>
<th>Latency last administration (D)</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUSTRALIA</td>
<td>5003619301006</td>
<td>138</td>
<td>FEMALE</td>
<td>53</td>
<td>R-DHAP</td>
<td>BONE PAIN</td>
<td>12/06/2006</td>
<td>0</td>
<td>Recovered without sequelae</td>
</tr>
</tbody>
</table>

Nervous system disorders

<table>
<thead>
<tr>
<th>Country</th>
<th>Inclusion number</th>
<th>SAE number</th>
<th>Gender</th>
<th>Age</th>
<th>Induction Arm</th>
<th>MedDRA LLT</th>
<th>Onset Date</th>
<th>Latency last administration (D)</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRANCE</td>
<td>5003101431204</td>
<td>12</td>
<td>MALE</td>
<td>56</td>
<td>R-DHAP</td>
<td>APHASIA</td>
<td>13/02/2004</td>
<td>20</td>
<td>Recovered with sequelae</td>
</tr>
<tr>
<td>IRLAND</td>
<td>5003610501031</td>
<td>243</td>
<td>MALE</td>
<td>54</td>
<td>R-ICE</td>
<td>DRUG-INDUCED ENCEPHALOPATHY</td>
<td>04/05/2008</td>
<td>1</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>SWITZERLAND</td>
<td>5003604701012</td>
<td>251</td>
<td>MALE</td>
<td>62</td>
<td>R-DHAP</td>
<td>EMBOLIC CEREBRAL INFARCTION (*)</td>
<td>03/05/2007</td>
<td>8</td>
<td>Ongoing at death</td>
</tr>
</tbody>
</table>

(*) Suspected Unexpected Serious Adverse Reaction

Line-listing 03 July 2003 to 02 July 2011
Induction Phase

BELGIUM 5003101601610 11 MALE 49 R-DHAP + BEAM EPILEPTIC SEIZURE 24/05/2004 2 Recovered without sequelae
UNITED KINGDOM 5003615501007 154 FEMALE 52 R-DHAP ISCHAEMIC STROKE 19/01/2007 0 Recovered with sequelae
CZECH REPUBLIC 5003604801014 162 MALE 62 R-ICE LEUKOENCEPHALOPATHY (*) 21/02/2007 0 Recovered without sequelae
CZECH REPUBLIC 5003603160103 163 FEMALE 60 R-DHAP NEUROTOXICITY 23/01/2007 5 Recovered with sequelae
FRANCE 5003101431204 3 MALE 56 R-DHAP STROKE 29/12/2003 2 Recovered with sequelae
ISRAEL 5003602901401 54 MALE 60 R-ICE STROKE 20/12/2004 0 Recovered with sequelae
FRANCE 5003101391048 128 MALE 61 R-DHAP STROKE 12/08/2006 1 Recovered without sequelae
FRANCE 5003101031067 189 FEMALE 21 R-DHAP VAGAL REACTION 29/05/2007 4 Recovered without sequelae
UNITED KINGDOM 5003616501411 255 MALE 63 R-DHAP VASOVAGAL REACTION 07/07/2008 1 Recovered without sequelae

Psychiatric disorders

Country Inclusion number SAE number Gender Age Induction Arm MedDRA LLT Onset Date Latency last administration (D) Outcome
SWEDEN 5003601401605 136 FEMALE 57 R-ICE CONFUSION 25/09/2006 1 Recovered without sequelae

Renal and urinary disorders

Country Inclusion number SAE number Gender Age Induction Arm MedDRA LLT Onset Date Latency last administration (D) Outcome
FRANCE 5003101431627 91 MALE 65 R-DHAP ACUTE RENAL FAILURE 10/10/2005 7 Recovered without sequelae
GERMANY 5003622201625 149 MALE 59 R-DHAP ACUTE RENAL FAILURE 02/01/2007 6 Recovered without sequelae
AUSTRALIA 5003613301007 152 MALE 62 R-ICE ACUTE RENAL FAILURE 03/01/2007 not reported Recovered without sequelae
GERMANY 5003603201050 217 MALE 61 R-DHAP ACUTE RENAL FAILURE 26/10/2004 30 Recovered without sequelae
ISRAEL 5003604901603 241 FEMALE 62 R-DHAP ACUTE RENAL FAILURE 27/04/2008 2 Not reported
GERMANY 5003622201607 273 MALE 55 R-DHAP + BEAM ACUTE RENAL FAILURE 29/12/2004 6 Recovered without sequelae
FRANCE 5003101071607 4 MALE 59 R-DHAP RENAL FAILURE 16/01/2004 3 Recovered with sequelae
GERMANY 5003603101012 44 MALE 58 R-DHAP RENAL FAILURE 26/12/2004 7 Recovered without sequelae
FRANCE 5003101071643 287 FEMALE 59 R-DHAP + BEAM RENAL FAILURE 02/03/2008 4 Recovered without sequelae
NEW ZEALAND 5003621301014 260 FEMALE 59 R-ICE RENAL FAILURE ACUTE 01/11/2007 5 Recovered without sequelae

Respiratory, thoracic and mediastinal disorders

Country Inclusion number SAE number Gender Age Induction Arm MedDRA LLT Onset Date Latency last administration (D) Outcome
ISRAEL 5003602901201 7 FEMALE 31 R-ICE PULMONARY EMBOLISM 07/03/2004 0 Recovered without sequelae
AUSTRALIA 5003613301403 116 MALE 37 R-ICE PULMONARY EMBOLISM 07/04/2006 13 Recovered without sequelae
FRANCE 5003101391048 122 MALE 61 R-DHAP PULMONARY EMBOLISM 08/07/2006 1 Recovered without sequelae
UNITED KINGDOM 5003612501012 177 FEMALE 55 R-ICE PULMONARY EMBOLISM 24/04/2007 30 Recovered without sequelae
FRANCE 5003101071643 288 FEMALE 59 R-DHAP + BEAM PULMONARY EMBOLISM 08/03/2008 10 Recovered without sequelae
AMERICA 5003616501402 49 FEMALE 65 R-DHAP RESPIRATORY FAILURE (*) 04/01/2005 0 Died
UNITED KINGDOM 5003619501010 173 FEMALE 45 R-DHAP RESPIRATORY FAILURE (*) 06/04/2007 22 Died
SWITZERLAND 5003604701012 250 MALE 62 R-DHAP RESPIRATORY INSUFFICIENCY (*) 30/04/2007 5 Ongoing at death

Vascular disorders

Country Inclusion number SAE number Gender Age Induction Arm MedDRA LLT Onset Date Latency last administration (D) Outcome
FRANCE 5003103161206 111 FEMALE 35 R-DHAP + BEAM COLLAPSE 06/03/2006 0 Recovered without sequelae
AUSTRALIA 5003613301007 148 MALE 62 R-ICE HYPOTENSION 21/11/2006 not reported Unknown
SWEDEN 5003601401602 271 MALE 42 R-ICE + BEAM HYPOTENSION 04/11/2004 28 Recovered without sequelae
FRANCE 5003103161041 164 FEMALE 49 R-DHAP THROMBOSIS 27/03/2006 7 Recovered without sequelae
IRELAND 5003610501031 254 MALE 54 R-ICE + BEAM VENOOCCLUSIVE DISEASE (*) 27/06/2008 16 Recovered with sequelae

(*) Suspected Unexpected Serious Adverse Reaction

Line-listing 03 July 2003 to 02 July 2011
Related Serious Adverse Reactions

Maintenance phase

Blood and lymphatic system disorders

<table>
<thead>
<tr>
<th>Country</th>
<th>Inclusion number</th>
<th>SAE number</th>
<th>Gender</th>
<th>Age</th>
<th>Induction Arm</th>
<th>MedDRA LLT</th>
<th>Onset Date</th>
<th>Latency last administration (D)</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWITZERLAND</td>
<td>5003603701001</td>
<td>075</td>
<td>MALE</td>
<td>64</td>
<td>Observation</td>
<td>ANEMIA</td>
<td>13/06/2005</td>
<td>59</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>FRANCE</td>
<td>5003603701406</td>
<td>150</td>
<td>MALE</td>
<td>45</td>
<td>Observation</td>
<td>NEUTROPENIA</td>
<td>03/01/2007</td>
<td>49</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>UNITED KINGDOM</td>
<td>5003603701406</td>
<td>233</td>
<td>MALE</td>
<td>50</td>
<td>Rituximab</td>
<td>NEUTROPENIA</td>
<td>13/03/2008</td>
<td>120</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>ISRAEL</td>
<td>5003603701406</td>
<td>259</td>
<td>FEMALE</td>
<td>62</td>
<td>Rituximab</td>
<td>THROMBOCYTOPENIA</td>
<td>17/08/2008</td>
<td>32</td>
<td>Recovered without sequelae</td>
</tr>
</tbody>
</table>

Cardiac disorders

<table>
<thead>
<tr>
<th>Country</th>
<th>Inclusion number</th>
<th>SAE number</th>
<th>Gender</th>
<th>Age</th>
<th>Induction Arm</th>
<th>MedDRA LLT</th>
<th>Onset Date</th>
<th>Latency last administration (D)</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWEDEN</td>
<td>5003601401602</td>
<td>127</td>
<td>MALE</td>
<td>43</td>
<td>Rituximab</td>
<td>MYOCARDITIS (*)</td>
<td>06/08/2006</td>
<td>299</td>
<td>Died</td>
</tr>
</tbody>
</table>

Ear and Labyrinth disorders

<table>
<thead>
<tr>
<th>Country</th>
<th>Inclusion number</th>
<th>SAE number</th>
<th>Gender</th>
<th>Age</th>
<th>Induction Arm</th>
<th>MedDRA LLT</th>
<th>Onset Date</th>
<th>Latency last administration (D)</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRANCE</td>
<td>5003101051056</td>
<td>223</td>
<td>MALE</td>
<td>65</td>
<td>Observation</td>
<td>HEARING LOSS</td>
<td>03/04/2007</td>
<td>78</td>
<td>Ongoing</td>
</tr>
</tbody>
</table>

Gastrointestinal disorders

<table>
<thead>
<tr>
<th>Country</th>
<th>Inclusion number</th>
<th>SAE number</th>
<th>Gender</th>
<th>Age</th>
<th>Induction Arm</th>
<th>MedDRA LLT</th>
<th>Onset Date</th>
<th>Latency last administration (D)</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNITED KINGDOM</td>
<td>5003602501001</td>
<td>222</td>
<td>MALE</td>
<td>44</td>
<td>Observation</td>
<td>DIARRHEA</td>
<td>12/12/2007</td>
<td>97</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>GERMANY</td>
<td>5003602501001</td>
<td>237</td>
<td>MALE</td>
<td>52</td>
<td>Observation</td>
<td>DIARRHEA</td>
<td>24/03/2008</td>
<td>18</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>SWITZERLAND</td>
<td>5003602501001</td>
<td>236</td>
<td>MALE</td>
<td>56</td>
<td>Rituximab</td>
<td>FAECALOMA</td>
<td>23/03/2008</td>
<td>53</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>SWITZERLAND</td>
<td>5003602501001</td>
<td>204</td>
<td>MALE</td>
<td>54</td>
<td>Rituximab</td>
<td>GASTROINTESTINAL BLEEDING</td>
<td>03/09/2007</td>
<td>55</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>5003601301015</td>
<td>267</td>
<td>FEMALE</td>
<td>58</td>
<td>Rituximab</td>
<td>NAUSEA</td>
<td>12/03/2008</td>
<td>67</td>
<td>Recovered with sequelae</td>
</tr>
</tbody>
</table>

General disorders and administration site condition

<table>
<thead>
<tr>
<th>Country</th>
<th>Inclusion number</th>
<th>SAE number</th>
<th>Gender</th>
<th>Age</th>
<th>Induction Arm</th>
<th>MedDRA LLT</th>
<th>Onset Date</th>
<th>Latency last administration (D)</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUSTRALIA</td>
<td>5003601301015</td>
<td>266</td>
<td>FEMALE</td>
<td>58</td>
<td>Rituximab</td>
<td>MUCOSITIS</td>
<td>18/02/2008</td>
<td>44</td>
<td>Recovered without sequelae</td>
</tr>
</tbody>
</table>

(*) Suspected Unexpected Serious Adverse Reaction

Line-listing 03 July 2003 to 02 July 2011
Hepatobiliary disorders

<table>
<thead>
<tr>
<th>Country</th>
<th>Inclusion number</th>
<th>SAE number</th>
<th>Gender</th>
<th>Age</th>
<th>Induction Arm</th>
<th>MedDRA LLT</th>
<th>Onset Date</th>
<th>Latency last administration (D)</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>BELGIUM</td>
<td>5003101621615</td>
<td>026</td>
<td>MALE</td>
<td>65</td>
<td>Observation</td>
<td>HEPATITIS</td>
<td>14/10/2004</td>
<td>25</td>
<td>Recovered without sequelae</td>
</tr>
</tbody>
</table>

Infections and infestations

<table>
<thead>
<tr>
<th>Country</th>
<th>Inclusion number</th>
<th>SAE number</th>
<th>Gender</th>
<th>Age</th>
<th>Induction Arm</th>
<th>MedDRA LLT</th>
<th>Onset Date</th>
<th>Latency last administration (D)</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISRAEL</td>
<td>5003604901603</td>
<td>282</td>
<td>FEMALE</td>
<td>62</td>
<td>Rituximab</td>
<td>ACUTE BRONCHOPNEUMONIA (*)</td>
<td>04/09/2008</td>
<td>50</td>
<td>Died</td>
</tr>
<tr>
<td>SWITZENLAN</td>
<td>5003603701001</td>
<td>256</td>
<td>MALE</td>
<td>64</td>
<td>Observation</td>
<td>BACTERIAEMIA</td>
<td>20/04/2005</td>
<td>9</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>FRANCE</td>
<td>5003605701401</td>
<td>205</td>
<td>FEMALE</td>
<td>31</td>
<td>Rituximab</td>
<td>BACTERIAL PNEUMONIA, UNSPECIFIED</td>
<td>18/09/2007</td>
<td>47</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>FRANCE</td>
<td>5003101031621</td>
<td>207</td>
<td>FEMALE</td>
<td>57</td>
<td>Rituximab</td>
<td>BRONCHITIS PNEUMOCOCCAL</td>
<td>18/01/2007</td>
<td>374</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>FRANCE</td>
<td>5003101031621</td>
<td>208</td>
<td>FEMALE</td>
<td>58</td>
<td>Rituximab</td>
<td>BRONCHOPULMONARY INFECTION</td>
<td>02/06/2007</td>
<td>509</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>USA</td>
<td>5003601601601</td>
<td>030</td>
<td>FEMALE</td>
<td>53</td>
<td>Rituximab</td>
<td>CATHETER RELATED INFECTION</td>
<td>02/11/2004</td>
<td>1</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>BELGIUM</td>
<td>5003101621615</td>
<td>026</td>
<td>MALE</td>
<td>65</td>
<td>Observation</td>
<td>CHEST INFECTION</td>
<td>21/08/2007</td>
<td>0</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>ISRAEL</td>
<td>5003601601601</td>
<td>092</td>
<td>FEMALE</td>
<td>65</td>
<td>Observation</td>
<td>CLOSTRIDIUM DIFFICILE INFECTION</td>
<td>13/12/2005</td>
<td>64</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>ISRAEL</td>
<td>5003604901603</td>
<td>257</td>
<td>FEMALE</td>
<td>62</td>
<td>Rituximab</td>
<td>CMV INFECTION</td>
<td>19/07/2008</td>
<td>3</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>FRANCE</td>
<td>5003101431608</td>
<td>166</td>
<td>MALE</td>
<td>65</td>
<td>Rituximab</td>
<td>HAEMOPHILUS INFLUENZAE INFECTION</td>
<td>16/03/2005</td>
<td>14</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>GERMANY</td>
<td>50036018201030</td>
<td>185</td>
<td>FEMALE</td>
<td>46</td>
<td>Rituximab</td>
<td>HERPES ZOSTER</td>
<td>19/05/2007</td>
<td>72</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>GERMANY</td>
<td>5003606201617</td>
<td>155</td>
<td>FEMALE</td>
<td>55</td>
<td>Rituximab</td>
<td>INFECTION</td>
<td>12/01/2006</td>
<td>8</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>FRANCE</td>
<td>5003101021601</td>
<td>089</td>
<td>FEMALE</td>
<td>49</td>
<td>Rituximab</td>
<td>INFECTION BACILLUS PYOCYANEUS</td>
<td>10/01/2005</td>
<td>32</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>IRELAND</td>
<td>50035010501402</td>
<td>231</td>
<td>MALE</td>
<td>59</td>
<td>Rituximab</td>
<td>LOWER RESPIRATORY TRACT INFECTION</td>
<td>01/02/2008</td>
<td>51</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>IRELAND</td>
<td>500360510501402</td>
<td>188</td>
<td>MALE</td>
<td>59</td>
<td>Rituximab</td>
<td>NEUTROPIC SEPSIS</td>
<td>21/06/2007</td>
<td>23</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>SWEDEN</td>
<td>5003604901603</td>
<td>126</td>
<td>FEMALE</td>
<td>62</td>
<td>Rituximab</td>
<td>PNEUMOCYSTIS JIROVCI PNEUMONIA (*)</td>
<td>17/07/2006</td>
<td>33</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>50036018201030</td>
<td>157</td>
<td>FEMALE</td>
<td>53</td>
<td>Rituximab</td>
<td>PNEUMONIA</td>
<td>04/02/2007</td>
<td>93</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>ISRAEL</td>
<td>5003606201617</td>
<td>158</td>
<td>FEMALE</td>
<td>30</td>
<td>Rituximab</td>
<td>PNEUMONIA</td>
<td>14/02/2007</td>
<td>1</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>SWITZENLAN</td>
<td>5003605701401</td>
<td>134</td>
<td>FEMALE</td>
<td>57</td>
<td>Rituximab</td>
<td>PULMONARY ASPERGILLOSIS</td>
<td>06/07/2006</td>
<td>178</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>IRELAND</td>
<td>500360510501402</td>
<td>244</td>
<td>MALE</td>
<td>60</td>
<td>Rituximab</td>
<td>RESPIRATORY TRACT INFECTION</td>
<td>14/04/2008</td>
<td>124</td>
<td>Not reported</td>
</tr>
<tr>
<td>BELGIUM</td>
<td>5003101431608</td>
<td>121</td>
<td>MALE</td>
<td>46</td>
<td>Rituximab</td>
<td>SEPTIC SHOCK</td>
<td>26/05/2006</td>
<td>14</td>
<td>Recovered with sequelae</td>
</tr>
<tr>
<td>FRANCE</td>
<td>5003601031621</td>
<td>128</td>
<td>FEMALE</td>
<td>57</td>
<td>Rituximab</td>
<td>SEPTICEMIA STREPTOCOCCAL</td>
<td>28/01/2004</td>
<td>10</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>FRANCE</td>
<td>5003601031621</td>
<td>128</td>
<td>MALE</td>
<td>65</td>
<td>Observation</td>
<td>VARICELLA</td>
<td>23/11/2007</td>
<td>57</td>
<td>Recovered without sequelae</td>
</tr>
</tbody>
</table>

Investigations

<table>
<thead>
<tr>
<th>Country</th>
<th>Inclusion number</th>
<th>SAE number</th>
<th>Gender</th>
<th>Age</th>
<th>Induction Arm</th>
<th>MedDRA LLT</th>
<th>Onset Date</th>
<th>Latency last administration (D)</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUSTRALIA</td>
<td>5003613301404</td>
<td>307</td>
<td>FEMALE</td>
<td>61</td>
<td>Observation</td>
<td>CREATININE BLOOD INCREASED</td>
<td>23/05/2007</td>
<td>Not reported</td>
<td>Not yet recovered</td>
</tr>
</tbody>
</table>

(*) Suspected Unexpected Serious Adverse Reaction

Line-listing 03 July 2003 to 02 July 2011
Neoplasms benign, malignant and unspecified (incl cysts and polyps)

<table>
<thead>
<tr>
<th>Country</th>
<th>Inclusion number</th>
<th>SAE number</th>
<th>Gender</th>
<th>Age</th>
<th>Induction Arm</th>
<th>MedDRA LLT</th>
<th>Onset Date</th>
<th>Latency last administration (D)</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWEDEN</td>
<td>50036014010002</td>
<td>261</td>
<td>MALE</td>
<td>58</td>
<td>Rituximab</td>
<td>ACUTE LEUKEMIA (*)</td>
<td>15/06/2006</td>
<td>371</td>
<td>Died</td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>50036063016004</td>
<td>292</td>
<td>MALE</td>
<td>65</td>
<td>Observation</td>
<td>MYELODYSPLASTIC SYNDROME (*)</td>
<td>05/02/2008</td>
<td>1281</td>
<td>Died</td>
</tr>
<tr>
<td>AUSTRALIAN</td>
<td>50036063012007</td>
<td>293</td>
<td>MALE</td>
<td>40</td>
<td>Observation</td>
<td>UROTHELIAL CARCINOMA (*)</td>
<td>20/03/2008</td>
<td>1215</td>
<td>Died</td>
</tr>
</tbody>
</table>

Nervous system disorders

<table>
<thead>
<tr>
<th>Country</th>
<th>Inclusion number</th>
<th>SAE number</th>
<th>Gender</th>
<th>Age</th>
<th>Induction Arm</th>
<th>MedDRA LLT</th>
<th>Onset Date</th>
<th>Latency last administration (D)</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWEDEN</td>
<td>50036014010004</td>
<td>190</td>
<td>FEMALE</td>
<td>63</td>
<td>Rituximab</td>
<td>LEUKOENCEPHALOPATHY (*)</td>
<td>26/06/2007</td>
<td>54</td>
<td>Died</td>
</tr>
<tr>
<td>CZECH REP</td>
<td>50036018016007</td>
<td>246</td>
<td>FEMALE</td>
<td>41</td>
<td>Observation</td>
<td>PARESIS</td>
<td>14/05/2008</td>
<td>36</td>
<td>Recovered without sequelae</td>
</tr>
</tbody>
</table>

Renal and urinary disorders

<table>
<thead>
<tr>
<th>Country</th>
<th>Inclusion number</th>
<th>SAE number</th>
<th>Gender</th>
<th>Age</th>
<th>Induction Arm</th>
<th>MedDRA LLT</th>
<th>Onset Date</th>
<th>Latency last administration (D)</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUSTRALIA</td>
<td>50036063016004</td>
<td>063</td>
<td>MALE</td>
<td>62</td>
<td>Observation</td>
<td>ACUTE RENAL FAILURE</td>
<td>11/10/2004</td>
<td>22</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>50036063016004</td>
<td>062</td>
<td>MALE</td>
<td>62</td>
<td>Observation</td>
<td>NEPHROPATHY TOXIC</td>
<td>11/10/2004</td>
<td>22</td>
<td>Recovered with sequelae</td>
</tr>
<tr>
<td>IRELAND</td>
<td>50038105014002</td>
<td>153</td>
<td>MALE</td>
<td>59</td>
<td>Rituximab</td>
<td>RENAL ACIDOSIS TUBULAR (*)</td>
<td>05/01/2007</td>
<td>18</td>
<td>Recovered with sequelae</td>
</tr>
</tbody>
</table>

Respiratory, thoracic and mediastinal disorders

<table>
<thead>
<tr>
<th>Country</th>
<th>Inclusion number</th>
<th>SAE number</th>
<th>Gender</th>
<th>Age</th>
<th>Induction Arm</th>
<th>MedDRA LLT</th>
<th>Onset Date</th>
<th>Latency last administration (D)</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRANCE</td>
<td>50030101431622</td>
<td>087</td>
<td>MALE</td>
<td>50</td>
<td>Rituximab</td>
<td>INTERSTITIAL PNEUMONITIS</td>
<td>19/09/2005</td>
<td>33</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>BELGIUM</td>
<td>50030101621026</td>
<td>143</td>
<td>MALE</td>
<td>64</td>
<td>Observation</td>
<td>PNEUMOPATHY</td>
<td>15/11/2005</td>
<td>122</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>BELGIUM</td>
<td>50030101641623</td>
<td>110</td>
<td>FEMALE</td>
<td>63</td>
<td>Rituximab</td>
<td>PULMONARY INFILTRATION</td>
<td>28/02/2006</td>
<td>54</td>
<td>Recovered without sequelae</td>
</tr>
</tbody>
</table>

(*) Suspected Unexpected Serious Adverse Reaction
Gastrointestinal disorders

<table>
<thead>
<tr>
<th>Country</th>
<th>Inclusion number</th>
<th>SAE number</th>
<th>Gender</th>
<th>Age</th>
<th>MedDRA LLT</th>
<th>Onset Date</th>
<th>Treatment Period</th>
<th>Arm</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWEDEN</td>
<td>5003601401001</td>
<td>001</td>
<td>FEMALE</td>
<td>48</td>
<td>ABDOMINAL PAIN</td>
<td>19/11/2003</td>
<td>Induction</td>
<td>R-DHAP</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>5003606301207</td>
<td>059</td>
<td>MALE</td>
<td>37</td>
<td>DENTAL CARIES</td>
<td>20/02/2005</td>
<td>Maintenance</td>
<td>Observation</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>GERMANY</td>
<td>5003603201627</td>
<td>172</td>
<td>MALE</td>
<td>49</td>
<td>GASTRIC PERFORATION</td>
<td>31/03/2007</td>
<td>Induction</td>
<td>R-ICE</td>
<td>Died</td>
</tr>
<tr>
<td>CZECH REPUBLIC</td>
<td>5003601801603</td>
<td>040</td>
<td>MALE</td>
<td>41</td>
<td>GASTROINTESTINAL HEMORRHAGE</td>
<td>26/12/2004</td>
<td>Induction</td>
<td>R-DHAP</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>5003613301404</td>
<td>182</td>
<td>FEMALE</td>
<td>61</td>
<td>NAUSEA AND VOMITING</td>
<td>13/05/2007</td>
<td>Maintenance</td>
<td>Observation</td>
<td>Not yet recovered</td>
</tr>
</tbody>
</table>

General disorders and administration site condition

<table>
<thead>
<tr>
<th>Country</th>
<th>Inclusion number</th>
<th>SAE number</th>
<th>Gender</th>
<th>Age</th>
<th>MedDRA LLT</th>
<th>Onset Date</th>
<th>Treatment Period</th>
<th>Arm</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISRAEL</td>
<td>5003604901603</td>
<td>258</td>
<td>FEMALE</td>
<td>62</td>
<td>CATHETER SITE BLEEDING</td>
<td>12/08/2008</td>
<td>Maintenance</td>
<td>Rituximab</td>
<td>Recovered without sequelae</td>
</tr>
</tbody>
</table>

Hepatobiliary disorders

<table>
<thead>
<tr>
<th>Country</th>
<th>Inclusion number</th>
<th>SAE number</th>
<th>Gender</th>
<th>Age</th>
<th>MedDRA LLT</th>
<th>Onset Date</th>
<th>Treatment Period</th>
<th>Arm</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>GERMANY</td>
<td>5003630201055</td>
<td>300</td>
<td>FEMALE</td>
<td>62</td>
<td>ACUTE CHOLECYSTITIS</td>
<td>16/06/2008</td>
<td>Induction</td>
<td>R-ICE</td>
<td>Recovered without sequelae</td>
</tr>
</tbody>
</table>

Infections and infestations

<table>
<thead>
<tr>
<th>Country</th>
<th>Inclusion number</th>
<th>SAE number</th>
<th>Gender</th>
<th>Age</th>
<th>MedDRA LLT</th>
<th>Onset Date</th>
<th>Treatment Period</th>
<th>Arm</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNITED KINGDOM</td>
<td>5003619501010</td>
<td>161</td>
<td>FEMALE</td>
<td>45</td>
<td>CHEST INFECTION</td>
<td>22/02/2007</td>
<td>Induction</td>
<td>R-DHAP</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td>5003622501604</td>
<td>238</td>
<td>MALE</td>
<td>48</td>
<td>CHEST INFECTION</td>
<td>10/01/2008</td>
<td>Maintenance</td>
<td>Observation</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>GERMANY</td>
<td>5003609301018</td>
<td>249</td>
<td>MALE</td>
<td>38</td>
<td>CHEST INFECTION</td>
<td>08/06/2008</td>
<td>Induction</td>
<td>R-DHAP</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>GERMANY</td>
<td>5003610201612</td>
<td>098</td>
<td>FEMALE</td>
<td>57</td>
<td>PULMONARY ASPERGILLOSIS</td>
<td>13/07/2005</td>
<td>Induction</td>
<td>R-ICE</td>
<td>Died</td>
</tr>
<tr>
<td>GERMANY</td>
<td>5003603201027</td>
<td>101</td>
<td>MALE</td>
<td>54</td>
<td>SEPTIC SHOCK</td>
<td>25/01/2006</td>
<td>Induction</td>
<td>R-DHAP</td>
<td>Died</td>
</tr>
<tr>
<td>FRANCE</td>
<td>5003101071643</td>
<td>290</td>
<td>FEMALE</td>
<td>59</td>
<td>STAPHYLOCOCCUS EPIDERMIDIS SEPTICEMIA</td>
<td>07/05/2008</td>
<td>Maintenance</td>
<td>Observation</td>
<td>Died</td>
</tr>
</tbody>
</table>

Injury, poisoning and procedural complications

<table>
<thead>
<tr>
<th>Country</th>
<th>Inclusion number</th>
<th>SAE number</th>
<th>Gender</th>
<th>Age</th>
<th>MedDRA LLT</th>
<th>Onset Date</th>
<th>Treatment Period</th>
<th>Arm</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUSTRALIA</td>
<td>5003604301013</td>
<td>227</td>
<td>MALE</td>
<td>41</td>
<td>POST LUMBAR PUNCTURE SYNDROME</td>
<td>11/01/2008</td>
<td>Induction</td>
<td>R-ICE</td>
<td>Recovered without sequelae</td>
</tr>
</tbody>
</table>

Investigations

<table>
<thead>
<tr>
<th>Country</th>
<th>Inclusion number</th>
<th>SAE number</th>
<th>Gender</th>
<th>Age</th>
<th>MedDRA LLT</th>
<th>Onset Date</th>
<th>Treatment Period</th>
<th>Arm</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNITED KINGDOM</td>
<td>5003612501019</td>
<td>220</td>
<td>FEMALE</td>
<td>51</td>
<td>CREATININE BLOOD INCREASED</td>
<td>06/09/2007</td>
<td>Induction</td>
<td>R-DHAP</td>
<td>Recovered without sequelae</td>
</tr>
</tbody>
</table>
Musculoskeletal and connective tissue disorders

<table>
<thead>
<tr>
<th>Country</th>
<th>Inclusion number</th>
<th>SAE number</th>
<th>Gender</th>
<th>Age</th>
<th>MedDRA LLT</th>
<th>Onset Date</th>
<th>Treatment Period</th>
<th>Arm</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRANCE</td>
<td>5003101021601</td>
<td>021</td>
<td>FEMALE</td>
<td>48</td>
<td>BACK PAIN</td>
<td>06/10/2003</td>
<td>Induction</td>
<td>R-DHAP</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>SWITZERLAND</td>
<td>5003605701401</td>
<td>213</td>
<td>FEMALE</td>
<td>31</td>
<td>RHABDOMYOLYSIS</td>
<td>17/10/2007</td>
<td>Maintenance</td>
<td>Rituximab</td>
<td>Recovered with sequelae</td>
</tr>
</tbody>
</table>

Neoplasms benign, malignant and unspecified (incl cysts and polyps)

<table>
<thead>
<tr>
<th>Country</th>
<th>Inclusion number</th>
<th>SAE number</th>
<th>Gender</th>
<th>Age</th>
<th>MedDRA LLT</th>
<th>Onset Date</th>
<th>Treatment Period</th>
<th>Arm</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRANCE</td>
<td>5003101051603</td>
<td>274</td>
<td>FEMALE</td>
<td>58</td>
<td>CARCINOMA OF ESOPHAGUS</td>
<td>09/02/2006</td>
<td>Induction</td>
<td>R-ICE</td>
<td>Died</td>
</tr>
<tr>
<td>FRANCE</td>
<td>5003101431608</td>
<td>263</td>
<td>MALE</td>
<td>67</td>
<td>HEPATIC ADENOCARCINOMA</td>
<td>24/04/2007</td>
<td>Maintenance</td>
<td>Rituximab</td>
<td>Died</td>
</tr>
<tr>
<td>ISRAEL</td>
<td>5003605901003</td>
<td>281</td>
<td>FEMALE</td>
<td>50</td>
<td>HODGKIN'S LYMPHOMA</td>
<td>03/10/2007</td>
<td>Induction</td>
<td>R-ICE</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>FRANCE</td>
<td>5003102161604</td>
<td>305</td>
<td>MALE</td>
<td>61</td>
<td>MELANOMA LIMITED TO EXTREMITY</td>
<td>15/03/2009</td>
<td>Maintenance</td>
<td>Rituximab</td>
<td>Recovered without sequelae</td>
</tr>
</tbody>
</table>

Nervous system disorders

<table>
<thead>
<tr>
<th>Country</th>
<th>Inclusion number</th>
<th>SAE number</th>
<th>Gender</th>
<th>Age</th>
<th>MedDRA LLT</th>
<th>Onset Date</th>
<th>Treatment Period</th>
<th>Arm</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>GERMANY</td>
<td>5003618201030</td>
<td>201</td>
<td>FEMALE</td>
<td>46</td>
<td>HYPOESTHESIA</td>
<td>03/09/2007</td>
<td>Maintenance</td>
<td>Rituximab</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>FRANCE</td>
<td>5003101141624</td>
<td>102</td>
<td>FEMALE</td>
<td>65</td>
<td>LOSS OF CONSCIOUSNESS</td>
<td>29/01/2006</td>
<td>Maintenance</td>
<td>Observation</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>BELGIUM</td>
<td>5003101281017</td>
<td>038</td>
<td>MALE</td>
<td>60</td>
<td>SYNOCOPE</td>
<td>25/11/2004</td>
<td>Induction</td>
<td>R-ICE</td>
<td>Recovered without sequelae</td>
</tr>
</tbody>
</table>

Psychiatric disorders

<table>
<thead>
<tr>
<th>Country</th>
<th>Inclusion number</th>
<th>SAE number</th>
<th>Gender</th>
<th>Age</th>
<th>MedDRA LLT</th>
<th>Onset Date</th>
<th>Treatment Period</th>
<th>Arm</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWITZERLAND</td>
<td>5003604701015</td>
<td>211</td>
<td>MALE</td>
<td>56</td>
<td>DEPRESSION MENTAL</td>
<td>15/10/2007</td>
<td>Induction</td>
<td>R-DHAP</td>
<td>Recovered without sequelae</td>
</tr>
</tbody>
</table>

Renal and urinary disorders

<table>
<thead>
<tr>
<th>Country</th>
<th>Inclusion number</th>
<th>SAE number</th>
<th>Gender</th>
<th>Age</th>
<th>MedDRA LLT</th>
<th>Onset Date</th>
<th>Treatment Period</th>
<th>Arm</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRANCE</td>
<td>5003101031019</td>
<td>045</td>
<td>FEMALE</td>
<td>58</td>
<td>RENAL FAILURE</td>
<td>01/01/2005</td>
<td>Induction</td>
<td>R-DHAP</td>
<td>Recovered without sequelae</td>
</tr>
<tr>
<td>UNITED KINGDOM</td>
<td>5003615501201</td>
<td>144</td>
<td>MALE</td>
<td>56</td>
<td>UROLITHIASIS</td>
<td>17/11/2006</td>
<td>Induction</td>
<td>R-ICE</td>
<td>Recovered with sequelae</td>
</tr>
</tbody>
</table>

Respiratory, thoracic and mediastinal disorders

<table>
<thead>
<tr>
<th>Country</th>
<th>Inclusion number</th>
<th>SAE number</th>
<th>Gender</th>
<th>Age</th>
<th>MedDRA LLT</th>
<th>Onset Date</th>
<th>Treatment Period</th>
<th>Arm</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>GERMANY</td>
<td>5003610201612</td>
<td>097</td>
<td>FEMALE</td>
<td>57</td>
<td>DYSPNEA</td>
<td>12/05/2005</td>
<td>Induction</td>
<td>R-ICE</td>
<td>Recovered with sequelae</td>
</tr>
<tr>
<td>UNITED KINGDOM</td>
<td>5003614501013</td>
<td>197</td>
<td>MALE</td>
<td>35</td>
<td>RESPIRATORY DISORDER</td>
<td>20/07/2007</td>
<td>Induction</td>
<td>R-DHAP</td>
<td>Died</td>
</tr>
</tbody>
</table>

Skins and subcutaneous tissue disorders

<table>
<thead>
<tr>
<th>Country</th>
<th>Inclusion number</th>
<th>SAE number</th>
<th>Gender</th>
<th>Age</th>
<th>MedDRA LLT</th>
<th>Onset Date</th>
<th>Treatment Period</th>
<th>Arm</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRANCE</td>
<td>5003101071643</td>
<td>284</td>
<td>FEMALE</td>
<td>58</td>
<td>SKIN REACTION</td>
<td>06/12/2007</td>
<td>Induction</td>
<td>R-DHAP</td>
<td>Recovered without sequelae</td>
</tr>
</tbody>
</table>
Social circumstances

<table>
<thead>
<tr>
<th>Country</th>
<th>Inclusion number</th>
<th>SAE number</th>
<th>Gender</th>
<th>Age</th>
<th>MedDRA LLT</th>
<th>Onset Date</th>
<th>Treatment Period</th>
<th>Arm</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUSTRALIA</td>
<td>5003606301604</td>
<td>064</td>
<td>MALE</td>
<td>62</td>
<td>SOCIAL STAY HOSPITALIZATION</td>
<td>24/09/2004</td>
<td>Maintenance</td>
<td>Observation</td>
<td>Recovered without sequelae</td>
</tr>
</tbody>
</table>

Surgical and medical procedures

<table>
<thead>
<tr>
<th>Country</th>
<th>Inclusion number</th>
<th>SAE number</th>
<th>Gender</th>
<th>Age</th>
<th>MedDRA LLT</th>
<th>Onset Date</th>
<th>Treatment Period</th>
<th>Arm</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUSTRALIA</td>
<td>5003619301006</td>
<td>139</td>
<td>MALE</td>
<td>54</td>
<td>PARTIAL HEPATECTOMY</td>
<td>05/09/2006</td>
<td>Induction</td>
<td>R-DHAP</td>
<td>Recovered without sequelae</td>
</tr>
</tbody>
</table>
Protocol 50-03B / CORAL – Data Safety Monitoring Committee (DSMC) Meeting
Centre Hayem, Hôpital Saint-Louis – Paris
August 10, 2007
– Minutes of the Meeting –

Attendants: Massimo Federico (Oncologia Medica II, Università di Modena e Reggio Emilia – Modena, Italy), Marc Buyse (International Drug Development Institute – Brussels, Belgium), Armando Lopez-Guillermo (Department of Haematology, Hospital Clinic– Barcelona, Spain)

After confirming Massimo Federico as chairman of the Committee, the participants defined the following Agenda:
1) Review of safety data
2) Review of efficacy data
3) Give an opinion on what can be given on the results to the investigators after DSMC

As planned, the members of the DSMC reviewed data on the first 200 enrolled patients with respect to safety and efficacy of the induction (R-ICE vs R-DHAP) and the maintenance therapy (Rituximab vs observation). Moreover, the committee analysed the updated Safety Report for the CORAL study, covering the period between July 03, 2003 and July 03, 2007. Comments after review of available documentation are hereby reported.

1) Review of safety data
Part I, induction therapy: a total of 163 SAE were reported, involving 108 subjects out of the 385 subjects included in the study within the covered period.

- Fatal and life-threatening SAEs were equally distributed between study Arms and in the range of expected rate considering the study population.
- Hospitalization due to SAEs was more frequent in the standard Arm (R-DHAP); however, based on these data no change in trial conduct or clinical practice has been suggested.
- Based on safety reports and all additional available documentation the DSMC ensures that patients are not put at undue risk.

Part II, maintenance therapy: a total of 35 SAEs occurred during the maintenance period, 14 in the observation arm and 21 in the maintenance arm. In the observation arm these SAEs could be considered as related to the induction treatment (BEAM or ASCT). In the maintenance Arm 4 cases were considered as SUSARs (Suspected Unexpected Serious Adverse Reactions). After review of available information the committee did not confirm one (SAE 127 – 5003601401602) out of the four SUSARs and was puzzled about another (SAE 126 – 5003601401604)

- SAE 127: the patient was found dead in his bed 10 months after the administration of the last dose of Rituximab. He received his ASCT one year earlier. The DSMC is of the opinion that death can not clearly be related to Rituximab treatment but most probably to late toxicity of induction therapy (R-ICE plus BEAM and ASCT).
- SAE 126: the patient developed fever and cough one week after the last administration of Rituximab. Previously she had been treated with R-DHAP, BEAM and ASCT. A bronchiolar lavage revealed pneumocystis jirovecii. She was prescribed appropriate therapy and treatment with Rituximab remained ongoing. She recovered from the pulmonary infection. The DSMC concluded that given the complete recovery under Rituximab, the SUSAR is not clearly related to the study drug.
- SAE 129 and SAE 190: SAE 129 was concerned with a pneumonia by pneumocystic carinii while SAE 190 was related to a reactivation of varicella virus. These two reactions were considered to be related to Rituximab.

Based on these events, the DSMC recommends an appropriate prophylaxis for patients randomised for maintenance with Rituximab.
Modena, March 3rd, 2010

Pr. Christian Gisselbrecht
Hopital Saint Louis – Centre Hayem
1, Avenue Claude Vellefaux
75010 Paris

Subject : Protocol 50-03B / CORAL
Safety Report 03/07/2003 – 02/07/2009 (72 months)

Dear Christian,

Following the review of the 72 months Safety report of the CORAL study I do not need additional details before returning you an answer.

Based on the data presented in the report I do not think that changes in the conduct of the study are to be warranted, due also to the fact that the study already completed the planned accrual. However, I have just one comment on a SAE recorded during maintenance phase and listed in chapter 4.2, page 17 of the Safety report:

- **Ear and labyrinth disorders: Hearing loss**
 The SAE is reported for a patient allocated in the Observational arm, so it can’t be related to “maintenance therapy”; to me this is to be considered as a late effect of induction treatment.

Finally, it seems to me that a phone conference is not needed at the moment, although I am of course available if someone else suggests it is worth of to organize it.

With best regards,

Massimo
2) Review of efficacy data
The DSMC confirms the previously reported comment, i.e. that with respect to efficacy data no differences between arms emerges that would impose a modification or premature termination of the study: actually, the percentage of events (17%) is too small to draw any conclusion.

General comments and suggestions:
- As from study protocol, the primary endpoint of part II (maintenance) of the study used to assess sample size was event free survival: to provide a 80% power at the overall 5% significance level to detect a 15% difference in favor of the Rituximab arm and considering a 40% drop out, 400 patients were planned to be registered to have 240 patients to be transplanted. However, as pointed out during the previous DSMC Meeting, the sample size planned and reported in the study protocol for evaluation of study endpoints is insufficient to fit with study requirements since the drop out for the first 200 patients enrolled is still higher than expected (about 50%). Therefore, an additional 80 patients should be enrolled in the CORAL trial to reach 240 randomized patients for the second part of the study;
- adoption of strict criteria for response assessment to avoid risk of biases in the evaluation between study arms should be considered;
- given the relevance of the ongoing study, the need for a centralized histologic review emerges, and the indication to make any effort to have diagnostic biopsies reviewed is warmly suggested;
- the study was planned to complete accrual in three years; an additional year has already passed without completing patients’ registration: the DSMC approves the prolongation of the study to complete patients’ accrual (even if the suggested modification related to introduction of prophylaxis for patients randomised in the Rituximab arm is not accepted);
- a separate analysis of the subset of patients who received Rituximab as first-line treatment is recommended.

3) What can be given on the results of DSMC analysis to the investigators
The DSMC expresses the opinion that during the next ASH a preliminary disclosure of some study data can be provided to Investigators taking part in the study; information to be given must be related to the following:
 a) Accrual status;
 b) Demographics;
 c) Baseline data, underlining differences between patients who received Rituximab including regimens as front-line therapy and patients first treated with Rituximab in the CORAL study;
 d) Toxicity data;
 e) Overall efficacy data, providing that results per arm remain hidden

The CORAL study DSMC Committee
Massimo Federico, Armando Lopez-Guillermo, Marc Buyse